首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
1,25-Dihydroxyvitamin D3 receptors in rat kidney cytosol   总被引:5,自引:0,他引:5  
Rat kidney cytosol contains a 3.3 S high affinity binding component for 1,25-dihydroxyvitamin D3 as detected by DNA-cellulose chromatography and subsequent sucrose gradient analysis. The semipurified aporeceptor demonstrates specificity for 1,25-dihydroxyvitamin D3 and an apparent dissociation constant for this sterol-hormone of 3.4 × 10?10M at 25°C. The physicochemical properties of this binding component are in agreement with those observed for the chick intestinal 1,25-dihydroxyvitamin D3 receptor, suggesting that this component may function as a specific receptor for the hormone in the kidney.  相似文献   

2.
Thyroid hormone-responsive tissues contain chromatin "receptor" proteins that are concentrated in chromatin subfractions enriched in DNA. These receptors appear to be DNA-binding proteins. In the present study, we utilized a DNA-cellulose binding assay to further examine the interactions of solubilized receptors with DNA. [125I]Triiodothyronine associates with receptors bound to DNA-cellulose, whereas free [I]triiodothyronine and [125I]triiodothyronine associated with other proteins does not. The DNA-receptor interactions appear to be strong enough to exist at physiological ionic strength since binding is 50% maximal ag 0.175 M NaCl and is only partly inhibited by Ca2+ and Mg2+ in the 1 to 5 mM range. Most, if not all, of the receptors are capable of DNA binding, and there are at least 80,000 receptor binding sites/diploid DNA (assuming one triiodothyronine binding site/receptor). Binding of the receptor-[125I]triiodothyronine complexes to other DNAs and analogs was examined using a competition assay. There is similar binding by native and denatured DNA, gy eukaryotic DNA from different species and by prokaryotic DNA (Bacillus subtilis). Binding by natural DNAs is more avid than by cytoplasmic RNA, nuclear RNA, poly(dA-dT)-poly(dA-dT), or poly(dG-dC)-poly(dG-dC). Under these conditions, binding by tRNA and poly(dA) is insignificant, and the nucleotide monomers ATP and GTP have no detectable binding. These studies support the idea that the thyroid hormone receptor is a DNA-binding protein and that the interaction is a major determinant for receptor localization in chromatin. The competition studies suggest that the polynucleotide composition and/or conformation can have marked influences on the binding, and that multiple orders of binding affinity can exist. The presence of specific sequences cannot be excluded. However, the finding that receptors bind extensively and tightly to DNA suggests that receptors in chromatin may randomly bind to any available DNA, resulting in some of the receptors being at physiologically unimportant sites. If so, the several thousand hormone receptors present in each target cell may be required to enhance the possibility that some of the receptors are present at the actual sites of action.  相似文献   

3.
The effect of sodium molybdate on the stability and activation of the glucocorticoid receptor from chick and rat thymus were investigated. Molybdate, at a concentration range of 1–10 mM, blocked denaturation of the cytosol receptor by elevated (25 and 37°C) temperatures. This effect could be observed only with the aggregated (low-salt) form of the receptor. Molybdate also inhibited transformation of the receptor-hormone complex to the DNA-binding state which occurs either with incubation at 25°C or with salt treatment. The inhibitory effect of molybdate could be observed only on the non-activated receptor; nuclear- and DNA-binding of the activated receptor was not significantly changed by molybdate. Both effects were concentration-dependent. Molybdate had no effect on the activation of the partially purified glucocorticoid receptor. Molybdate effect was also examined using intact lymphocytes. Sodium molybdate had no effect either on the steroid binding of whole cells or on the nuclear transfer of the hormone-receptor complex. While the mechanism of molybdate action remains unknown the results of experiments on purified receptor suggest that molybdate does not act directly on the receptor molecule; rather through some cytosol factor(s). However, these effects could only be seen in cell-free experiments, and not during the conditions of the living cell.  相似文献   

4.
We have previously demonstrated that binding of in vitro synthesized thyroid hormone receptor (TR) to thyroid hormone response elements (TREs) is enhanced by the addition of nuclear extracts from several different cell types, suggesting that binding of TR is partially dependent on a T3 receptor auxiliary protein (TRAP). We have used the avidin-biotin complex DNA-binding assay to discriminate between regions of TREs that bind TR alone and sites that are influenced by interactions with TRAP. Mutations in the TREs from rat GH and glycoprotein hormone alpha-subunit genes show that a specific DNA sequence is required for TRAP-mediated enhancement of TR binding. Mutations in the B half-site of the rat GH TRE or in similar sequences [(T/A)GGGA] in the alpha-subunit TRE ablate the enhancement of TR binding by TRAP. Furthermore, binding of TR to a natural half-site in the TSH beta-subunit gene (bases -16 to 6), which lacks an additional AGGGA-like sequence, is not enhanced by the addition of TRAP. Binding of TR to TREs was also tested at physiological salt concentrations in the avidin-biotin complex DNA-binding assay. Binding of human TR beta to TREs decreases dramatically at 140 mM KCl compared to binding at 50 mM KCl; however, the addition of TRAP enhances the binding to almost 4-fold of basal binding, suggesting that TRAP may be important for stabilization of TR binding to TREs in the cell.  相似文献   

5.
The addition of vanadyl ribonucleoside complex (VRC), a potent inhibitor of RNase, to the transformed 4.5S androgen receptor from rat submandibular gland caused an increase in the sedimentation coefficient to 7.0S. Moreover, VRC decreased the DNA-cellulose binding of the transformed receptor; 50% inhibition of the DNA-cellulose binding was achieved at 1.8 mM VRC. On the other hand, agents related to VRC and oxoanions of transient metals, such as ribonucleoside, vanadate, molybdate, tungstate and arsenate, exerted no effect on the DNA-cellulose binding ability of the receptor. These findings suggest that VRC binds to the transformed androgen receptor at the DNA-binding site and that both oxovanadium ion and ribonucleoside are indispensable for the binding of VRC to the transformed androgen receptor.  相似文献   

6.
We used isothermal titration calorimetry in the temperature range 21-25 degrees C to investigate the effect of pH on the calorimetric enthalpy (delta H(cal)) for sequence specific DNA-binding of the glucocorticoid receptor DNA-binding domain (GR DBD). Titrations were carried out in solutions containing 100 mM NaCl, 1 mM dithiothreitol, 5% glycerol by volume, and 20 mM Tris, Hepes, Mops, or sodium phosphate buffers at pH 7.5. A strong dependence of delta H(cal) on the buffer ionization enthalpy is observed, demonstrating that the DNA binding of the GR DBD is linked to proton uptake at these conditions. The apparent increase in the pK(a) for an amino acid side chain upon DNA binding is supported by the results of complementary titrations, where delta H(cal) shows a characteristic dependence on the solution pH. delta H(cal) is also a function of the NaCl concentration, with opposite dependencies in Tris and Hepes buffers, respectively, such that a similar delta H(cal) value is approached at 300 mM NaCl. This behavior shows that the DNA-binding induced protonation is inhibited by increased concentrations of NaCl. A comparison with structural data suggests that the protonation involves a histidine (His451) in the GR DBD, because in the complex this residue is located close to a DNA phosphate at an orientation that is consistent with a charged-charged hydrogen bond in the protonated state. NMR spectra show that His451 is not protonated in the unbound protein at pH 7.5. The pH dependence in delta H(cal) can be quantitatively described by a shift of the pK(a) of His451 from approximately 6 in the unbound state to close to 8 when bound to DNA at low salt concentration conditions. A simple model involving a binding competition between a proton and a Na(+) counterion to the GR DBD-DNA complex reproduces the qualitative features of the salt dependence.  相似文献   

7.
Calf uterine cytosol contains an androgen receptor with a relative molecular mass of approx. 90,000. In this study we have analysed the structure and aggregation properties of the androgen receptor, using sucrose density gradient centrifugation on a vertical rotor (VTi65). In the presence of 10 mM NaCl the androgen receptor in whole cytosol sedimented at 8 S irrespective of the presence of molybdate. In 400 mM NaCl the receptor dissociated to a 4.3 S entity. In whole cytosol molybdate promoted a partial shift of the 4.3 S receptor into the aggregated 8 S state. The time of exposure of the receptor to molybdate and NaCl determined the proportion of receptor sedimentating at 8 S and 4.3 S. The DNA-binding form of the uterine androgen receptor when analysed under the conditions of the DNA-cellulose binding assay, sedimented at 6.5 S. Increasing concentrations of molybdate shifted its sedimentation coefficient gradually from 6.5 S to 4.5 S and in parallel reduced the DNA-binding capacity. Molybdate added to a partially purified, DNA-binding form of the androgen receptor did not promote receptor aggregation to faster sedimentating forms. This suggests that such preparations are devoid of an androgen receptor-aggregation factor. Indirect evidence for such a factor was obtained from reconstitution experiments with whole cytosol. Our results indicate that the DNA-binding form of the androgen receptor interacts with a cytosol factor to form the 8 S receptor complex. Molybdate has diverse effects: in the presence of the cytosol factor it stabilizes the 8S complex; in its absence molybdate prevents in a concentration-dependent way DNA-binding as well as reaggregation of the monomeric 4.3 S form.  相似文献   

8.
HMGA2 is a DNA minor-groove binding protein. We previously demonstrated that HMGA2 binds to AT-rich DNA with very high binding affinity where the binding of HMGA2 to poly(dA-dT)2 is enthalpy-driven and to poly(dA)poly(dT) is entropy-driven. This is a typical example of enthalpy-entropy compensation. To further study enthalpy-entropy compensation of HMGA2, we used isothermal-titration-calorimetry to examine the interactions of HMGA2 with two AT-rich DNA hairpins: 5′-CCAAAAAAAAAAAAAAAGCCCCCGCTTTTTTTTTTTTTTTGG-3′ (FL-AT-1) and 5′-CCATATATATATATATAGCCCCCGCTATATATATATATATGG-3′ (FL-AT-2). Surprisingly, we observed an atypical isothermal-titration-calorimetry-binding curve at low-salt aqueous solutions whereby the apparent binding-enthalpy decreased dramatically as the titration approached the end. This unusual behavior can be attributed to the DNA-annealing coupled to the ligand DNA-binding and is eliminated by increasing the salt concentration to ∼200 mM. At this condition, HMGA2 binding to FL-AT-1 is entropy-driven and to FL-AT-2 is enthalpy-driven. Interestingly, the DNA-binding free energies for HMGA2 binding to both hairpins are almost temperature independent; however, the enthalpy-entropy changes are dependent on temperature, which is another aspect of enthalpy-entropy compensation. The heat capacity change for HMGA2 binding to FL-AT-1 and FL-AT-2 are almost identical, indicating that the solvent displacement and charge-charge interaction in the coupled folding/binding processes for both binding reactions are similar.  相似文献   

9.
Hongjuan Xi 《FEBS letters》2009,583(13):2269-15405
Poly(A) is a relevant sequence in cell biology due to its importance in mRNA stability and translation initiation. Neomycin is an aminoglycoside antibiotic that is well known for its ability to target various nucleic acid structures. Here it is reported that neomycin is capable of binding tightly to a single-stranded oligonucleotide (A30) with a Kd in the micromolar range. CD melting experiments support complex formation and indicate a melting temperature of 47 °C. The poly(A) duplex, which melts at 44 °C (pH 5.5), was observed to melt at 61 °C in the presence of neomycin, suggesting a strong stabilization of the duplex by the neomycin.  相似文献   

10.
Although peptide nucleic acids (PNAs) are neutral by themselves, they are usually appended with positively charged lysine residues to increase their solubility and binding affinity for nucleic acid targets. Thus obtained cationic PNAs very effectively interact with the designated duplex DNA targets in a sequence-specific manner forming strand-invasion complexes. We report on the study of the nonspecific effects in the kinetics of formation of sequence-specific PNA-DNA complexes. We find that in a typical range of salt concentrations used when working with strand-invading PNAs (10-20 mM NaCl) the PNA binding rates essentially do not depend on the presence of nontarget DNA in the reaction mixture. However, at lower salt concentrations (<10 mM NaCl), the rates of PNA binding to DNA targets are significantly slowed down by the excess of unrelated DNA. This effect of nontarget DNA arises from depleting the concentration of free PNA capable of interacting with DNA target due to adhesion of positively charged PNA molecules on the negatively charged DNA duplex. As expected, the nonspecific electrostatic effects are more pronounced for more charged PNAs. We propose a simple model quantitatively describing all major features of the observed phenomenon. This understanding is important for design of and manipulation with the DNA-binding polycationic ligands in general and PNA-based drugs in particular.  相似文献   

11.
The roles of sulfhydryl and disulfide groups in the specific binding of synthetic cannabinoid CP-55,940 to the cannabinoid receptor in membrane preparations from the rat cerebral cortex have been examined. Various sulfhydryl blocking reagents including p-chloromercuribenzoic acid (p-CMB), N-ethylmaleimide (NEM), o-iodosobenzoic acid (o-ISB), and methyl methanethiosulfonate (MMTS) inhibited the specific binding of [3H]CP-55,940 to the cannabinoid receptor in a dose-dependent manner. About 80–95% inhibition was obtained at a 0.1 mM concentration of these reagents. Scatchard analysis of saturation experiments indicates that most of these sulfhydryl modifying reagents reduce both the binding affinity (Kd) and capacity (Bmax). On the other hand, DL-dithiothreitol (DTT), a disulfide reducing agent, also irreversibly inhibited the specific binding of [3H]CP-55,940 to the receptor and about 50% inhibition was obtained at a 5 mM concentration. Furthermore, 5mM DTT was abelt to dissociate 50% of the bound ligand from the ligand-receptor complex. The marked inhibition of [3H]CP-55,940 binding by sulfhydryl reagents suggests that at least one free sulfhydryl group is essential to the binding of the ligand to the receptor. In addition, the inhibition of the binding by DTT implies that besides free sulfhydryl group(s), the integrity of a disulfide bridge is also important for [3H]CP-55,940 binding to the cannabinoid receptor.  相似文献   

12.
Escherichia coli PriA is a primosome assembly protein with 3' to 5' helicase activity whose apparent function is to promote resumption of DNA synthesis following replication-fork arrest. Here, we describe how initiation of helicase activity on DNA forks is influenced by both fork structure and by single-strand DNA-binding protein. PriA could recognize and unwind forked substrates where one or both arms were primarily duplex, and PriA required a small (two bases or larger) single-stranded gap at the fork in order to initiate unwinding. The helicase was most active on substrates with a duplex lagging-strand arm and a single-stranded leading-strand arm. On this substrate, PriA was capable of translocating on either the leading or lagging strands to unwind the duplex ahead of the fork or the lagging-strand duplex, respectively. Fork-specific binding apparently orients the helicase domain to unwind the lagging-strand duplex. Binding of single-strand-binding protein to forked templates could inhibit unwinding of the duplex ahead of the fork but not unwinding of the lagging-strand duplex or translocation on the lagging-strand template. While single-strand-binding protein could inhibit binding of PriA to the minimal, unforked DNA substrates, it could not inhibit PriA binding to forked substrates. In the cell, single-strand-binding protein and fork structure may direct PriA helicase to translocate along the lagging-strand template of forked structures such that the primosome is specifically assembled on that DNA strand.  相似文献   

13.
Treatment of rat liver cytosol containing temperature-transformed, [3H]dexamethasone-bound receptors at 0 degree C with the sulfhydryl-modifying reagent methyl methanethiosulfonate (MMTS) inhibits the DNA-binding activity of the receptor, and DNA-binding activity is restored after addition of dithiothreitol (DTT). When cytosol containing untransformed receptors is heated at 25 degrees C in the presence of MMTS, the 90-kDa heat shock protein dissociates from the receptor in the same manner as in the absence of MMTS, and the receptor will bind to DNA-cellulose if DTT is added subsequently at 0 degree C. These observations are consistent with the conclusion of Bodwell et al. (Bodwell, J. E., Holbrook. N. J. and Munck, A. (1984) Biochemistry 23, 1392-1398) that sulfhydryl moieties on the receptor are absolutely required for the receptor to bind to DNA, and they show that the sulfhydryl-modifying reagent does not inhibit the temperature-mediated dissociation of the heteromeric receptor complex that accompanies transformation to the DNA-binding state. When steroid-receptor complexes that are prebound to DNA-cellulose are exposed to MMTS, the steroid rapidly dissociates, but the receptor remains bound to DNA. Thus, the presence of steroid is not required for the receptor to remain bound to DNA in a high affinity manner. Treatment of cytosol containing transformed glucocorticoid-receptor complexes at 0 degrees C with 20 mM hydrogen peroxide also inactivates the DNA-binding activity of the receptor. The peroxide-induced inactivation is reversed by DTT. Incubation of rat liver cytosol containing untransformed glucocorticoid-receptor complexes at 25 degrees C with hydrogen peroxide prevents their transformation to the DNA-binding form as shown by their inability to bind to DNA-cellulose after addition of DTT. The presence of peroxide during heating of the cytosol also prevents dissociation of the receptor complex as assayed both by reduction in sedimentation value of the receptor and by dissociation of the 90-kDa heat shock protein from the steroid-binding protein. These results strongly suggest that critical sulfur moieties in the receptor complex must be in a reduced form for the temperature-mediated dissociation of the receptor to occur.  相似文献   

14.
The Xeroderma Pigmentosum A (XPA) protein is involved in the DNA damage recognition and repair complex formation steps of nucleotide excision repair (NER), and has been shown to preferentially bind to various forms of DNA damage including bulky lesions. DNA interstrand crosslinks are of particular interest as a form of DNA damage, since these lesions involve both strands of duplex DNA and present special challenges to the repair machinery, and mitomycin C (MMC) is one of several useful cancer chemotherapy drugs that induce these lesions. Purified XPA and the minimal DNA-binding domain of XPA are both fully capable of preferentially binding to MMC-DNA interstrand crosslinks in the absence of other proteins from the NER complex. Circular dichroism (CD) and gel shift assays were used to investigate XPA-DNA binding and to assess changes in secondary structure induced as a consequence of the interaction of XPA with model MMC-crosslinked and unmodified DNAs. These studies revealed that while XPA demonstrates only a modest increase in affinity for adducted DNA, it adopts a different conformation when bound to MMC-damaged DNA than when bound to undamaged DNA. This change in conformation may be more important in recruiting other proteins into a competent NER complex at damaged sites than preferential binding per se. Arsenic had little effect on XPA binding even at toxic concentrations, whereas cadmium reduced XPA binding to DNA to 10-15% that of Zn-XPA, and zinc addition could only partially restore activity. In addition, there was little or no change in conformation when Cd-XPA bound MMC-crosslinked DNA even though it demonstrated preferential binding, which may contribute to the mechanism by which cadmium can act as a co-mutagen and co-carcinogen.  相似文献   

15.
Since approximately 1% of 3-ketosteroid reductase (which metabolizes dihydrotestosterone [17β-hydroxy-5α-androstan-3-one] to 5α-androstane-3α,17β-diol or 5α-androstane-3α,17β-diol) from mouse kidney cytosol adheres to DNA under conditions that allow virtually complete androgen receptor binding, these two DNA-binding activities were compared in cytosol extracts of mouse kidney and hypothalamus-preoptic area. This DNA-binding fraction of 3-ketosteroid reductase was distinguished from androgen receptor in several ways: (1) its pattern of elution from DNA-cellulose with steps of increasing NaC1 concentration differed from that for receptors from wild-type kidney; (2) it was influenced differently by the mutation Tfm, both in level and in DNA-cellulose elution pattern; (3) in mouse kidney cytosol it was relatively stable at moderate (25°C) temperatures which rapidly inactivated ligand-free androgen receptors in the same cytosols; (4) the DNA-binding was not proportional to androgen receptor levels between two wild-type tissues, the hypothalamus-preoptic area and kidney. By these criteria, a simple relationship of androgen receptors and a DNA-binding fraction of 3-ketosteroid reductase activity is unlikely.  相似文献   

16.
This study systematically examined the characteristics of specific binding of adult diferric transferrin to its receptor using a Triton X-100 solubilized preparation from human placentas as the receptor source. The following information was obtained. The ionic strength for maximal binding is in the range of 0.1-0.3 M NaCl. The pH optimum for specific binding extends over the range, from pH 6.0-10.0. Specific binding of diferric transferrin is not affected by 2.5 approximately 50 mM CaCl2 or by 10 mM EDTA. Triton X-100 in the concentration range of 0.02-3.0% does not affect specific binding. Specific binding is saturated within 10 min at 25 or 37 degrees C in the presence of excess amounts of diferric transferrin. The binding is reversible and the dissociation of diferric transferrin from the transferrin receptor is complete within 40 min at 25 degrees C. Apotransferrin, both adult and fetal, showed less binding than the holotransferrin species by competitive binding assay in the presence of 10 mM EDTA independent of up to 20 mM CaCl2. A 1500-fold molar excess of adult and fetal apotransferrin is required to give 40% inhibition for 125I-labeled diferric transferrin binding. Since calcium ion is not a factor, and since apotransferrin has such high binding affinity for iron (Ka = 1 X 10(24], this experiment suggests that the EDTA was necessary to prevent conversion of apotransferrin to holotransferrin from available iron in the reaction system. The specificity of the transferrin receptor for transferrin was examined by competitive binding studies in which 125I-diferric transferrin binding was measured in the presence of a series of other proteins. The proteins tested in the competitive binding studies were classified into three groups; in the first group were human serum albumin and ovalbumin; in the second group were proteins containing iron ions, such as hemoglobin, hemoglobin-haptoglobin complex, heme-hemopexin complex, ferritin, and diferric lactoferrin; in the third group were the metal-binding serum proteins, ceruloplasmin and metallothionein. None of these proteins except ferritin showed inhibition of diferric transferrin binding to the receptor. The effect of ferritin was small since a 700- to 1500-fold molar excess of ferritin is required for 50% inhibition of binding of diferric transferrin to the receptor.  相似文献   

17.
18.
sinR encodes a tetrameric repressor of genes required for biofilm formation in Bacillus subtilis. sinI, which is transcribed under Spo0A control, encodes a dimeric protein that binds to SinR to form a SinR-SinI heterodimer in which the DNA-binding functions of SinR are abrogated and repression of biofilm genes is relieved. The heterodimer-forming surface comprises residues conserved between SinR and SinI. Each forms a pair of α-helices that hook together to form an intermolecular four-helix bundle. Here, we are interested in the assembly of the SinR tetramer and its binding to DNA. Size-exclusion chromatography with multi-angle laser light scattering and crystallographic analysis reveal that a DNA-binding fragment of SinR (residues 1-69) is a monomer, while a SinI-binding fragment (residues 74-111) is a tetramer arranged as a dimer of dimers. The SinR(74-111) chain forms two α-helices with the organisation of the dimer similar to that observed in the SinR-SinI complex. The tetramer is formed through interactions of residues at the C-termini of the four chains. A model of the intact SinR tetramer in which the DNA binding domains surround the tetramerisation core was built. Fluorescence anisotropy and surface plasmon resonance experiments showed that SinR binds to an oligonucleotide duplex, 5′-TTTGTTCTCTAAAGAGAACTTA-3′, containing a pair of SinR consensus sequences in inverted orientation with a Kd of 300 nM. The implications of these data for promoter binding and the curious quaternary structural transitions of SinR upon binding to (i) SinI and (ii) the SinR-like protein SlrR, which “repurposes” SinR as a repressor of autolysin and motility genes, are discussed.  相似文献   

19.
A DNA-binding protein was partially purified from extracts of HeLa cells by high-speed centrifugation and chromatography on DEAE-cellulose, phosphocellulose and ultraviolet light-irradiated DNA-cellulose columns. It eluted from the phosphocellulose column with 0.375 M potassium phosphate and from the ultraviolet light-irradiated DNA-cellulose column between 0.5 M and 1 M NaCl. The protein binds preferentially to supercoiled PM2 DNA treated with ultraviolet light or N-acetoxy-N-acetyl-2-aminofluorene, as compared to native supercoiled PM2 DNA. The binding is non-cooperative. Nicked or linear forms of PM2 DNA (damaged or untreated) are not efficient substrates, indicating a requirement of DNA supercoiling for DNA binding. The sedimentation coefficient of the protein estimated by glycerol gradient centrifugation is 2.0–2.5 S, corresponding to a molecular weight of about 20 000–25 000 if the protein is spherical. The binding to DNA irradiated with ultraviolet light or treated with acetoxyacetylaminofluorene is optimal at around 100–200 mM NaCl and is relatively independent of temperature and pH. MgCl2 and MnCl2 at concentrations between 1 and 5 mM do not markedly affect the binding, but it is inhibited by sucrose, ATP and caffeine. The biological significance of the DNA-binding protein remains to be determined. It does not possess significant glycosylase, endonuclease or exonuclease activities. The dissociation equilibrium constant for the binding reaction of the protein to the ultraviolet light or acetoxyacetylaminofluorene-induced binding sites on DNA is estimated to be 4·10?11 M. There are at least 1·105 DNA-binding protein molecules/HeLa cell.  相似文献   

20.
We report the first calorimetrically-derived characterization of the thermodynamics of ethidium bromide (EB) and propidium iodide (PI) binding to a series of nucleic acid host duplexes. Our spectroscopic and calorimetric measurements yield the following results: 1) At low salt (16mM Na+) and 25 degrees C. PI binds more strongly than EB to a given host duplex. The magnitude of this PI preference depends only marginally on base sequence, with AT base pairs showing a greater PI preference than GC base pairs. 2) The enhanced binding of PI relative to EB at low salt and 25 degrees C reflects a more favorable entropic driving force for PI binding. 3) The PI binding preference diminishes at higher salt concentrations (216mM). In other words, the binding preference is electrostatic in origin. 4) The salt dependence of the binding constants (delta lnKb/delta ln[Na+]) reveal that PI binds as a dication while EB binds as a monocation. 5) PI and EB both exhibit impressive enthalpy-entropy compensations when they bind to the deoxy homopolymers poly dA.poly dT and poly dA.poly dU. We have observed a similar enthalpy-entropy compensation for netropsin binding to the poly dA.poly dT homopolymer duplex. We therefore conclude that the compensation phenomenon is an intrinsic property of the host duplex rather than reflecting a property of the binding ligand. 6) When either PI or EB bind to the corresponding ribo homopolymer (poly rA.poy rU) we do not observe the enthalpy-entropy compensation that characterizes the binding to the deoxy homopolymer. 7) EB and PI both bind more strongly to poly d(AT).poly d(AT) than to poly d(AU).poly d(AU). Specifically, the absence of the thymine methyl group in poly d(AU).poly d(AU) reduces the binding constant of both drugs by a factor of four. This reduction in binding is due to a less favorable entropy change. In this paper we present and discuss possible molecular origins for our observed thermodynamic and extra-thermodynamic data. In particular, we evoke solvent effects involving both the drugs and the host duplexes when we propose molecular interpretations which are consistent with our thermodynamic data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号