首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Precise regulation of the number and positioning of flagella are critical in order for the mono-polar-flagellated bacterium Vibrio alginolyticus to swim efficiently. It has been shown that, in V. alginolyticus cells, the putative GTPase FlhF determines the polar location and production of flagella, while the putative ATPase FlhG interacts with FlhF, preventing it from localizing at the pole, and thus negatively regulating the flagellar number. In fact, no ΔflhF cells have flagella, while a very small fraction of ΔflhFG cells possess peritrichous flagella. In this study, the mutants that suppress inhibition of the swarming ability of ΔflhFG cells were isolated. The mutation induced an increase in the flagellar number and, furthermore, most Vibrio cells appeared to have peritrichous flagella. The sequence of the flagella related genes was successfully determined, however, the location of the suppressor mutation could not been found. When the flhF gene was introduced into the suppressor mutant, multiple polar flagella were generated in addition to peritrichous flagella. On the other hand, introduction of the flhG gene resulted in the loss of most flagella. These results suggest that the role of FlhF is bypassed through a suppressor mutation which is not related to the flagellar genes.  相似文献   

2.
3.
FlhG, a MinD homolog and an ATPase, is known to mediate the formation of the single polar flagellum of Vibrio alginolyticus together with FlhF. FlhG and FlhF work antagonistically, with FlhF promoting flagellar assembly and FlhG inhibiting it. Here, we demonstrate that purified FlhG exhibits a low basal ATPase activity. As with MinD, the basal ATPase activity of FlhG can be activated and the D171A residue substitution enhances its ATPase activity sevenfold. FlhG‐D171A localizes strongly at the cell pole and severely inhibits motility and flagellation, whereas the FlhG K31A and K36Q mutants, which are defective in ATP binding, do not localize to the poles, cannot complement a flhG mutant and lead to hyperflagellation. A strong polar localization of FlhF is observed with the K36Q mutant FlhG but not with the wild‐type or D171A mutant FlhG. Unexpectedly, an Ala substitution at the catalytic residue (D60A), which abolishes ATPase activity but still allows ATP binding, only slightly affects FlhG functions. These results suggest that the ATP‐dependent polar localization of FlhG is crucial for its ability to downregulate the number of polar flagella. We speculate that ATP hydrolysis by FlhG is required for the fine tuning of the regulation.  相似文献   

4.
5.
Control of surface organelle number and placement is a crucial aspect of the cell biology of many Gram‐positive and Gram‐negative bacteria, yet mechanistic insights into how bacteria spatially and numerically organize organelles are lacking. Many surface structures and internal complexes are spatially restricted in the bacterial cell (e.g. type IV pili, holdfasts, chemoreceptors), but perhaps none show so many distinct patterns in terms of number and localization as the flagellum. In this review, we discuss two proteins, FlhF and FlhG (also annotated FleN/YlxH), which control aspects of flagellar assembly, placement and number in polar flagellates, and may influence flagellation in some bacteria that produce peritrichous flagella. Experimental data obtained in a number of bacterial species suggest that these proteins may have acquired distinct attributes influencing flagellar assembly that reflect the diversity of flagellation patterns seen in different polar flagellates. Recent findings also suggest FlhF and FlhG are involved in other processes, such as influencing the rotation of flagella and proper cell division. Continued examination of these proteins in polar flagellates is expected to reveal how different bacteria have adapted FlhF or FlhG with specific activities to tailor flagellar biosynthesis and motility to fit the needs of each species.  相似文献   

6.
Factors leading to swarming of Vibrio alginolyticus cells on solid media were studied. Polar flagellated rods from liquid medium develop into small colonies on solid medium. Byproducts, accumulating in the colony area, induce at certain critical concentrations, the formation of peritrichous flagella and development of long heavily flagellated filaments which swarm away form the high by-product concentrations. Several types of nonswarming mutants were isolated, among them, mutants which lack the capacity to form swarming-inducing pyproducts, but can be induced to swarm by byproducts of other mutants incapable of swarming. Different compounds could replace the natural metabolic byproducts; at very low concentration these compounds induce peritrichous flagella and swarming in some of the nonswarming mutants mentioned above. The natural metabolic byproducts accumulating in yeast-extract-peptone medium are suggested to be volatile acids belonging to the valine and isoleucine pathway. Wild-type V. alginolyticus cells cannot swarm on certain substrates but its mutants, able to swarm on many substrates in minimal media, are easily selected.  相似文献   

7.
The flhF gene of Pseudomonas putida, which encodes a GTP-binding protein, is part of the flagellar-motility-chemotaxis operon. Its disruption leads to a random flagellar arrangement in the mutant (MK107) and loss of directional motility in contrast to the wild type, which has polar flagella. The return of a normal flhF allele restores polar flagella and normal motility to MK107; its overexpression triples the flagellar number but does not restore directional motility. As FlhF is homologous to the receptor protein of the signal recognition particle (SRP) pathway of membrane protein translocation, this pathway may have a role in polar flagellar placement in P. putida. MK107 is also compromised in the development of the starvation-induced general stress resistance (SGSR) and effective synthesis of several starvation and exponential phase proteins. While somewhat increased protein secretion in MK107 may contribute to its SGSR impairment, the altered protein synthesis pattern also appears to have a role.  相似文献   

8.
Spatial and numerical regulation of flagellar biosynthesis results in different flagellation patterns specific for each bacterial species. Campylobacter jejuni produces amphitrichous (bipolar) flagella to result in a single flagellum at both poles. These flagella confer swimming motility and a distinctive darting motility necessary for infection of humans to cause diarrheal disease and animals to promote commensalism. In addition to flagellation, symmetrical cell division is spatially regulated so that the divisome forms near the cellular midpoint. We have identified an unprecedented system for spatially regulating cell division in C. jejuni composed by FlhG, a regulator of flagellar number in polar flagellates, and components of amphitrichous flagella. Similar to its role in other polarly-flagellated bacteria, we found that FlhG regulates flagellar biosynthesis to limit poles of C. jejuni to one flagellum. Furthermore, we discovered that FlhG negatively influences the ability of FtsZ to initiate cell division. Through analysis of specific flagellar mutants, we discovered that components of the motor and switch complex of amphitrichous flagella are required with FlhG to specifically inhibit division at poles. Without FlhG or specific motor and switch complex proteins, cell division occurs more often at polar regions to form minicells. Our findings suggest a new understanding for the biological requirement of the amphitrichous flagellation pattern in bacteria that extend beyond motility, virulence, and colonization. We propose that amphitrichous bacteria such as Campylobacter species advantageously exploit placement of flagella at both poles to spatially regulate an FlhG-dependent mechanism to inhibit polar cell division, thereby encouraging symmetrical cell division to generate the greatest number of viable offspring. Furthermore, we found that other polarly-flagellated bacteria produce FlhG proteins that influence cell division, suggesting that FlhG and polar flagella may function together in a broad range of bacteria to spatially regulate division.  相似文献   

9.
The axial length of the polar flagellum (Pof) of Vibrio alginolyticus is about 5 microm. We previously isolated mutants that make abnormally long flagella. The swarm sizes of these mutants in a soft agar plate are smaller than that of a wild-type strain. We cloned a DNA fragment into the pMF209 plasmid that restored the swarming ability of the long-Pof strain V10578. The swimming speed and flagellar length of these transformants were almost equal to the wild-type values. The amounts of PF47 flagellin and PF60 sheath-associated protein, which increased in the long-Pof mutants, were retrieved to almost the wild-type level in the transformants. The plasmid pMF209 contained only a 143 bp chromosomal fragment whose sequence is about 80% similar to that of the motX promoter region of V parahaemolyticus. We speculate that this sequence interacts with a regulatory protein that controls Pof expression. The mutation causing the long-Pof phenotype may be in the gene encoding this protein or in the control region of a structural gene that is regulated by this protein.  相似文献   

10.
Vibrio alginolyticus has two types of flagella (polar and lateral) in one cell. We isolated mutants with only a polar flagellum (Pof+ Laf-) or only lateral flagella (Pof- Laf+). Using these mutants, we demonstrated that the energy sources of the lateral and polar flagellar motors in V. alginolyticus are H+ and Na+ motive forces, respectively, as in the related species V. parahaemolyticus.  相似文献   

11.
12.
The development of peritrichous flagella and, consequently, swarming of Vibrio alginolyticus depend on a complex relationship between temperature, salt concentrations and pH. At temperatures above 28 degrees C V. alginolyticus did not develop peritrichous flagella unless certain minimal concentrations of NaCl are present: the higher the temperature, the higher the NaCl concentrations required for peritrichous flagella synthesis. This requirement for NaCl at high temperatures is much more pronounced at pH 9 than at pH 6. High temperatures and low concentrations of NaCl also inhibited swarming of cells already armed with peritrichous flagella. Other cations, such as Li+, K+ and Mg2+. replaced NaCl only at temperatures below 28 degrees C.  相似文献   

13.
Bacterial flagella are highly conserved molecular machines that have been extensively studied for assembly, function and gene regulation. Less studied is how and why bacteria differ based on the number and arrangement of the flagella they synthesize. Here we explore the cell biology of peritrichous flagella in the model bacterium Bacillus subtilis by fluorescently labelling flagellar basal bodies, hooks and filaments. We find that the average B. subtilis cell assembles approximately 26 flagellar basal bodies and we show that basal body number is controlled by SwrA. Basal bodies are assembled rapidly (< 5 min) but the assembly of flagella capable of supporting motility is rate limited by filament polymerization (> 40 min). We find that basal bodies are not positioned randomly on the cell surface. Rather, basal bodies occupy a grid‐like pattern organized symmetrically around the midcell and that flagella are discouraged at the poles. Basal body position is genetically determined by FlhF and FlhG homologues to control spatial patterning differently from what is seen in bacteria with polar flagella. Finally, spatial control of flagella in B. subtilis seems more relevant to the inheritance of flagella and motility of individual cells than the motile behaviour of populations.  相似文献   

14.
The opportunistic human pathogen Pseudomonas aeruginosa uses two surface organelles, flagella and pili, for motility and adhesion in biotic and abiotic environments. Polar flagellar placement and number are influenced by FlhF, which is a signal recognition particle (SRP)-type GTPase. The FlhF proteins of Bacillus subtilis and Campylobacter jejuni were recently shown to have GTPase activity. However, the phenotypes associated with flhF deletion and/or mutation differ between these organisms and P. aeruginosa, making it difficult to generalize a role for FlhF in pseudomonads. In this study, we confirmed that FlhF of P. aeruginosa binds and hydrolyzes GTP. We mutated FlhF residues that we predicted would alter nucleotide binding and hydrolysis and determined the effects of these mutations on FlhF enzymatic activity, protein dimerization, and bacterial motility. Both hydrolytically active and inactive FlhF point mutants restored polar flagellar assembly, as seen for wild-type FlhF. However, differential effects on flagellar function were observed in single-cell assays of swimming motility and flagellar rotation. These findings indicate that FlhF function is influenced by its nucleotide binding and hydrolytic activities and demonstrate that FlhF affects P. aeruginosa flagellar function as well as assembly.  相似文献   

15.
16.
Rod‐shaped bacterial cells are polarized, with many organelles confined to a polar cellular site. In polar flagellates, FlhF and FlhG, a multiple‐domain (B‐N‐G) GTPase and a MinD‐like ATPase respectively, function as a cognate pair to regulate flagellar localization and number as revealed in Vibrio and Pseudomonas species. In this study, we show that FlhFG of Shewanella oneidensis (SoFlhFG), a monotrichous γ‐proteobacterium renowned for respiratory diversity, also play an important role in the flagellar polar placement and number control. Despite this, SoFlhFG exhibit distinct features that are not observed in the characterized counterparts. Most strikingly, the G domain of SoFlhF determines the polar placement, contrasting the N domain of the Vibrio cholerae FlhF. The SoFlhF N domain in fact counteracts the function of the G domain with respect to the terminal targeting in the absence of the B domain. We further show that GTPase activity of SoFlhF is essential for motility but not positioning. Overall, our results suggest that mechanisms underlying the polar placement of organelles appear to be diverse, even for evolutionally relatively conserved flagellum.  相似文献   

17.
Scanning electron microscopy was used to study the production of lateral flagella and the swarming phenomenon in Vibrio parahaemolyticus. Differences in the size and diameter of the sheathed, polar flagellum and lateral flagella were apparent in these preparations. Swarming of V. parahaemolyticus was found to be similar to the swarming of Proteus spp. in that swarm cells which are heavily flagellated and elongated are formed.  相似文献   

18.
Serratia marcescens exists in two cell forms and displays two kinds of motility depending on the type of growth surface encountered (L. Alberti and R. M. Harshey, J. Bacteriol. 172:4322-4328, 1990). In liquid medium, the bacteria are short rods with few flagella and show classical swimming behavior. Upon growth on a solid surface (0.7 to 0.85% agar), they differentiate into elongated, multinucleate, copiously flagellated forms that swarm over the agar surface. The flagella of swimmer and swarmer cells are composed of the same flagellin protein. We show in this study that disruption of hag, the gene encoding flagellin, abolishes both swimming and swarming motility. We have used transposon mini-Mu lac kan to isolate mutants of S. marcescens defective in both kinds of motility. Of the 155 mutants obtained, all Fla- mutants (lacking flagella) and Mot- mutants (paralyzed flagella) were defective for both swimming and swarming, as expected. All Che- mutants (chemotaxis defective) were also defective for swarming, suggesting that an intact chemotaxis system is essential for swarming. About one-third of the mutants were specifically affected only in swarming. Of this class, a large majority showed active "swarming motility" when viewed through the microscope (analogous to the active "swimming motility" of Che- mutants) but failed to show significant movement away from the site of initial inoculation on a macroscopic scale. These results suggest that bacteria swarming on a solid surface require many genes in addition to those required for chemotaxis and flagellar function, which extend the swarming movement outward. We also show in this study that nonflagellate S. marcescens is capable of spreading rapidly on low-agar media.  相似文献   

19.
20.
Proteus mirabilis is a dimorphic bacterium which exists in liquid cultures as a 1.5- to 2.0-microns motile swimmer cell possessing 6 to 10 peritrichous flagella. When swimmer cells are placed on a surface, they differentiate by a combination of events that ultimately produce a swarmer cell. Unlike the swimmer cell, the polyploid swarmer cell is 60 to 80 microns long and possesses hundreds to thousands of surface-induced flagella. These features, combined with multicellular behavior, allow the swarmer cells to move over a surface in a process called swarming. Transposon Tn5 was used to produce P. mirabilis mutants defective in wild-type swarming motility. Two general classes of mutants were found to be defective in swarming. The first class was composed of null mutants that were completely devoid of swarming motility. The majority of nonswarming mutations were the result of defects in the synthesis of flagella or in the ability to rotate the flagella. The remaining nonswarming mutants produced flagella but were defective in surface-induced elongation. Strains in the second general class of mutants, which made up more than 65% of all defects in swarming were motile but were defective in the control and coordination of multicellular swarming. Analysis of consolidation zones produced by such crippled mutants suggested that this pleiotropic phenotype was caused by a defect in the regulation of multicellular behavior. A possible mechanism controlling the cyclic process of differentiation and dediferentiation involved in the swarming behavior of P. mirabilis is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号