首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Liu Y  Tan H  Tian H  Liang C  Chen S  Liu Q 《Molecular cell》2011,44(3):502-508
The effector of RNA interference (RNAi) is the RNA-induced silencing complex (RISC). C3PO promotes the activation of RISC by degrading the Argonaute2 (Ago2)-nicked passenger strand of duplex siRNA. Active RISC is a multiple-turnover enzyme that uses the guide strand of siRNA to direct the Ago2-mediated sequence-specific cleavage of complementary mRNA. How this effector step of RNAi is regulated is currently unknown. Here, we used the human Ago2 minimal RISC system to purify Sj?gren's syndrome antigen B (SSB)/autoantigen La as an activator of the RISC-mediated mRNA cleavage activity. Our reconstitution studies showed that La could promote multiple-turnover RISC catalysis by facilitating the release of cleaved mRNA from RISC. Moreover, we demonstrated that La was required for efficient RNAi, antiviral defense, and transposon silencing in vivo. Taken together, the findings of C3PO and La reveal a general concept that regulatory factors are required to remove Ago2-cleaved products to assemble or restore active RISC.  相似文献   

2.
In the Drosophila RNA interference (RNAi) pathway, small interfering RNAs (siRNAs) direct Argonaute2 (Ago2), an endonuclease, within the RNA-induced silencing complex (RISC) to cleave complementary mRNA targets. In vitro studies have shown that, for each siRNA duplex, RISC retains only one strand, the guide, and releases the other, the passenger, to form a holo-RISC complex. Here, we have isolated a new Ago2 mutant allele and provide, for the first time, in vivo evidence that endogenous Ago2 slicer activity is important to mount an RNAi response in Drosophila. We demonstrate in vivo that efficient removal of the passenger strand from RISC requires the cleavage activity of Ago2. We have also identified a new intermediate complex in the RISC assembly pathway, pre-RISC, in which Ago2 is stably bound to double-stranded siRNA.  相似文献   

3.
Argonaute (Ago) proteins constitute a key component of the RNA-induced silencing complex (RISC). We report the crystal structure of Aquifex aeolicus Ago (Aa-Ago) together with binding and cleavage studies, which establish this eubacterial Ago as a bona fide guide DNA strand-mediated site-specific RNA endonuclease. We have generated a stereochemically robust model of the complex, where the guide DNA-mRNA duplex is positioned within a basic channel spanning the bilobal interface, such that the 5' phosphate of the guide strand can be anchored in a basic pocket, and the mRNA can be positioned for site-specific cleavage by RNase H-type divalent cation-coordinated catalytic Asp residues of the PIWI domain. Domain swap experiments involving chimeras of human Ago (hAgo1) and cleavage-competent hAgo2 reinforce the role of the PIWI domain in "slicer" activity. We propose a four-step Ago-mediated catalytic cleavage cycle model, which provides distinct perspectives into the mechanism of guide strand-mediated mRNA cleavage within the RISC.  相似文献   

4.
5.
The canonical exogenous trigger of RNA interference (RNAi) in mammals is small interfering RNA (siRNA). One promising application of RNAi is siRNA-based therapeutics, and therefore the optimization of siRNA efficacy is an important consideration. To reduce unfavorable properties of canonical 21mer siRNAs, structural and chemical variations to canonical siRNA have been reported. Several of these siRNA variants demonstrate increased potency in downstream readout-based assays, but the molecular mechanism underlying the increased potency is not clear. Here, we tested the performance of canonical siRNAs and several sequence-matched variants in parallel in gene silencing, RNA-induced silencing complex (RISC) assembly, stability and Argonaute (Ago) loading assays. The commonly used 19mer with two deoxythymidine overhangs (19merTT) variant performed similarly to canonical 21mer siRNA. A shorter 16mer variant (16merTT) did not perform comparably in our assays. Dicer substrate interfering RNA (dsiRNA) demonstrated better gene silencing by the guide strand (target complementary strand), better RISC assembly, persistence of the guide strand and relatively more loading of the guide strand into Ago. Hence, we demonstrate the advantageous properties of dsiRNAs at upstream, intermediate and downstream molecular steps of the RNAi pathway.  相似文献   

6.
Robb GB  Rana TM 《Molecular cell》2007,26(4):523-537
RNA interference is a conserved pathway of sequence-specific gene silencing that depends on small guide RNAs and the action of proteins assembled in the RNA-induced silencing complex (RISC). Minimally, the action of RISC requires the endonucleolytic slicer activity of Argonaute2 (Ago2) directed to RNA targets whose sequences are complementary to RISC-incorporated small RNA. To identify RISC components in human cells, we developed an affinity-purification strategy to isolate siRNA-programmed RISC. Here we report the identification of RNA helicase A (RHA) as a human RISC-associated factor. We show that RHA interacts in human cells with siRNA, Ago2, TRBP, and Dicer and functions in the RNAi pathway. In RHA-depleted cells, RNAi was reduced as a consequence of decreased intracellular concentration of active RISC assembled with the guide-strand RNA and Ago2. Our results identify RHA as a RISC component and demonstrate that RHA functions in RISC as an siRNA-loading factor.  相似文献   

7.
Human RISC couples microRNA biogenesis and posttranscriptional gene silencing   总被引:40,自引:0,他引:40  
RNA interference is implemented through the action of the RNA-induced silencing complex (RISC). Although Argonaute2 has been identified as the catalytic center of RISC, the RISC polypeptide composition and assembly using short interfering RNA (siRNA) duplexes has remained elusive. Here we show that RISC is composed of Dicer, the double-stranded RNA binding protein TRBP, and Argonaute2. We demonstrate that this complex can cleave target RNA using precursor microRNA (pre-miRNA) hairpin as the source of siRNA. Although RISC can also utilize duplex siRNA, it displays a nearly 10-fold greater activity using the pre-miRNA Dicer substrate. RISC distinguishes the guide strand of the siRNA from the passenger strand and specifically incorporates the guide strand. Importantly, ATP is not required for miRNA processing, RISC assembly, or multiple rounds of target-RNA cleavage. These results define the composition of RISC and demonstrate that miRNA processing and target-RNA cleavage are coupled.  相似文献   

8.
Kawamata T  Yoda M  Tomari Y 《EMBO reports》2011,12(9):944-949
MicroRNAs (miRNAs) function through the RNA-induced silencing complex (RISC), which contains an Argonaute (Ago) protein at the core. RISC assembly follows a two-step pathway: miRNA/miRNA* duplex loading into Ago, and separation of the two strands within Ago. Here we show that the 5' phosphate of the miRNA strand is essential for duplex loading into Ago, whereas the preferred 5' nucleotide of the miRNA strand and the base-pairing status in the seed region and the middle of the 3' region function as additive anchors to Ago. Consequently, the miRNA authenticity is inspected at multiple steps during RISC assembly.  相似文献   

9.
10.
Mature microRNAs are bound by a member of the Argonaute (Ago1-4) protein family, forming the core of the RNA-induced silencing complex (RISC). Association of RISC with target mRNAs results in ribonucleoprotein (RNP) assembly involved in translational silencing or RNA degradation. Yet, the dynamics of RNP assembly and its underlying functional implications are unknown. Here, we have characterized the role of the RNA-binding protein Staufen2, a candidate Ago interactor, in RNP assembly. Staufen2 depletion resulted in the upregulation of Ago1/2 and the RISC effector proteins Ddx6 and Dcp1a. This upregulation was accompanied by the displacement of Ago1/2 from processing bodies, large RNPs implicated in RNA storage, and subsequent association of Ago2 with polysomes. In parallel, Staufen2 deficiency decreased global translation and increased dendritic branching. As the observed phenotypes can be rescued by Ago1/2 knockdown, we propose a working model in which both Staufen2 and Ago proteins depend on each other and contribute to neuronal homeostasis.  相似文献   

11.
Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs   总被引:19,自引:0,他引:19  
Argonaute proteins associate with small RNAs that guide mRNA degradation, translational repression, or a combination of both. The human Argonaute family has eight members, four of which (Ago1 through Ago4) are closely related and coexpressed in many cell types. To understand the biological function of the different Ago proteins, we set out to determine if Ago1 through Ago4 are associated with miRNAs as well as RISC activity in human cell lines. Our results suggest that miRNAs are incorporated indiscriminately of their sequence into Ago1 through Ago4 containing microRNPs (miRNPs). Purification of the FLAG/HA-epitope-tagged Ago containing complexes from different human cell lines revealed that endonuclease activity is exclusively associated with Ago2. Exogenously introduced siRNAs also associate with Ago2 for guiding target RNA cleavage. The specific role of Ago2 in guiding target RNA cleavage was confirmed independently by siRNA-based depletion of individual Ago members in combination with a sensitive positive-readout reporter assay.  相似文献   

12.
13.
14.
Despite progress in mechanistic understanding of the RNA interference (RNAi) pathways, the subcellular sites of RNA silencing remain under debate. Here we show that loading of lipid‐transfected siRNAs and endogenous microRNAs (miRNA) into RISC (RNA‐induced silencing complexes), encounter of the target mRNA, and Ago2‐mediated mRNA slicing in mammalian cells are nucleated at the rough endoplasmic reticulum (rER). Although the major RNAi pathway proteins are found in most subcellular compartments, the miRNA‐ and siRNA‐loaded Ago2 populations co‐sediment almost exclusively with the rER membranes, together with the RISC loading complex (RLC) factors Dicer, TAR RNA binding protein (TRBP) and protein activator of the interferon‐induced protein kinase (PACT). Fractionation and membrane co‐immune precipitations further confirm that siRNA‐loaded Ago2 physically associates with the cytosolic side of the rER membrane. Additionally, RLC‐associated double‐stranded siRNA, diagnostic of RISC loading, and RISC‐mediated mRNA cleavage products exclusively co‐sediment with rER. Finally, we identify TRBP and PACT as key factors anchoring RISC to ER membranes in an RNA‐independent manner. Together, our findings demonstrate that the outer rER membrane is a central nucleation site of siRNA‐mediated RNA silencing.  相似文献   

15.
In flies, asymmetric loading of small RNA duplexes into Argonaute2-containing RNA-induced silencing complex (Ago2-RISC) requires Dicer-2/R2D2 heterodimer, which acts as a protein sensor for the thermodynamic stabilities of the ends of small RNA duplexes. However, the mechanism of small RNA asymmetry sensing in mammalian RISC assembly remains obscure. Here, we quantitatively examined RISC assembly and target silencing activity in the presence or absence of Dicer in mammals. Our data show that, unlike the well-characterized fly Ago2-RISC assembly pathway, mammalian Dicer is dispensable for asymmetric RISC loading in vivo and in vitro.  相似文献   

16.
Human adenoviruses (HAds) encode for one or two highly abundant virus-associated RNAs, designated VA RNAI and VA RNAII, which fold into stable hairpin structures resembling miRNA precursors. Here we show that the terminal stem of the VA RNAs originating from Ad4, Ad5, Ad11 and Ad37, all undergo Dicer dependent processing into virus-specific miRNAs (so-called mivaRNAs). We further show that the mivaRNA duplex is subjected to a highly asymmetric RISC loading with the 3′-strand from all VA RNAs being the favored strand, except for the Ad37 VA RNAII, where the 5′-mivaRNAII strand was preferentially assembled into RISC. Although the mivaRNA seed sequences are not fully conserved between the HAds a bioinformatics prediction approach suggests that a large fraction of the VA RNAII-, but not the VA RNAI-derived mivaRNAs still are able to target the same cellular genes. Using small RNA deep sequencing we demonstrate that the Dicer processing event in the terminal stem of the VA RNAs is not unique and generates 3′-mivaRNAs with a slight variation of the position of the 5′ terminal nucleotide in the RISC loaded guide strand. Also, we show that all analyzed VA RNAs, except Ad37 VA RNAI and Ad5 VA RNAII, utilize an alternative upstream A start site in addition to the classical +1 G start site. Further, the 5′-mivaRNAs with an A start appears to be preferentially incorporated into RISC. Although the majority of mivaRNA research has been done using Ad5 as the model system our analysis demonstrates that the mivaRNAs expressed in Ad11- and Ad37-infected cells are the most abundant mivaRNAs associated with Ago2-containing RISC. Collectively, our results show an unexpected variability in Dicer processing of the VA RNAs and a serotype-specific loading of mivaRNAs into Ago2-based RISC.  相似文献   

17.
Short interfering RNA (siRNA) molecules with good gene-silencing properties are needed for drug development based on RNA interference (RNAi). An initial step in RNAi is the activation of the RNA-induced silencing complex RISC, which requires degradation of the sense strand of the siRNA duplex. Although various chemical modifications have been introduced to the antisense strand, modifications to the Argonaute2 (Ago2) cleavage site in the sense strand have, so far, not been described in detail. In this work, novel 2'-F-purine modifications were introduced to siRNAs, and their biological efficacies were tested in cells stably expressing human tartrate-resistant acid phosphatase (TRACP). A validated siRNA that contains both purine and pyrimidine nucleotides at the putative Ago2 cleavage site was chemically modified to contain all possible combinations of 2'-fluorinated 2'-deoxypurines and/or 2'-deoxypyrimidines in the antisense and/or sense strands. The capacity of 2'-F-modified siRNAs to knock down their target mRNA and protein was studied, together with monitoring siRNA toxicity. All 2'-F-modified siRNAs resulted in target knockdown at nanomolar concentrations, despite their high thermal stability. These experiments provide the first evidence that RISC activation not only allows 2'-F modifications at the sense-strand cleavage site, but also increase the biological efficacy of modified siRNAs in vitro.  相似文献   

18.

Background  

Dicer, Ago2 and TRBP are the minimum components of the human RNA-induced silencing complex (RISC). While Dicer and Ago2 are RNases, TRBP is the double-stranded RNA binding protein (dsRBP) that loads small interfering RNA into the RISC. TRBP binds directly to Dicer through its C-terminal domain.  相似文献   

19.
The endonuclease Argonaute2 (Ago2) mediates the degradation of the target mRNA within the RNA-induced silencing complex. We determined the binding and cleavage properties of recombinant human Ago2. Human Ago2 was unable to cleave preformed RNA duplexes and exhibited weaker binding affinity for RNA duplexes compared with the single strand RNA. The enzyme exhibited greater RNase H activity in the presence of Mn2+ compared with Mg2+. Human Ago2 exhibited weaker binding affinities and reduced cleavage activities for antisense RNAs with either a 5′-terminal hydroxyl or abasic nucleotide. Binding kinetics suggest that the 5′-terminal heterocycle base nucleates the interaction between the enzyme and the antisense RNA, and the 5′-phosphate stabilizes the interaction. Mn2+ ameliorated the effects of the 5′-terminal hydroxyl or abasic nucleotide on Ago2 cleavage activity and binding affinity. Nucleotide substitutions at the 3′ terminus of the antisense RNA had no effect on human Ago2 cleavage activity, whereas 2′-methoxyethyl substitutions at position 2 reduced binding and cleavage activity and 12–14 reduced the cleavage activity. RNase protection assays indicated that human Ago2 interacts with the first 14 nucleotides at the 5′-pole of the antisense RNA. Human Ago2 preloaded with the antisense RNA exhibited greater binding affinities for longer sense RNAs suggesting that the enzyme interacts with regions in the sense RNA outside the site for antisense hybridization. Finally, transiently expressed human Ago2 immunoprecipitated from HeLa cells contained the double strand RNA-binding protein human immunodeficiency virus, type 1, trans-activating response RNA-binding protein, and deletion mutants of Ago2 showed that trans-activating response RNA-binding protein interacts with the PIWI domain of the enzyme.RNA interference is a mechanism by which double-stranded RNA triggers the loss of RNA of homologous sequence (1). Long double strand RNAs are processed by the double strand endonuclease Dicer into short RNA duplexes (siRNA)2 ranging from 21 to 23 nucleotides in length (2). The double strand RNA-binding proteins Dicer and human immunodeficiency virus, type 1, trans-activating response RNA-binding protein (TRBP) transfer the siRNAs to the RNA-induced silencing complex (RISC) (3). The antisense strand of the siRNA binds to the RISC endonuclease Argonaute 2 (Ago2), which then cleaves the target mRNA at a single phosphodiester bond bridging the ribonucleotides opposing the 10th and 11th nucleotide from the 5′ terminus of the antisense strand (411).The structure-activity relationships of siRNAs in human cultured cells have been studied extensively, but these types of studies offer few insights into the underlying mechanisms contributing to the observed activities of the siRNA and, in particular, their interaction with the RISC endonuclease human Ago2. Surprisingly, the little that is known about the interaction between human Ago2 and the substrate comes from a single report describing the preliminary characterization of recombinant human Ago2 (11). Specifically, human Ago2 cleavage activity was magnesium-dependent, and the antisense RNA containing a phosphate at the 5′ terminus exhibited greater cleavage activity compared with the antisense RNA with a 5′-hydroxyl. The enzyme was unable to cleave a DNA target or use a DNA antisense strand to trigger the cleavage of a complementary RNA (11). In addition, UV cross-linking experiments showed that single strand but not double strand RNA was able to cross-link with the recombinant enzyme. Finally, unlike RISC activity from cellular extracts, which has been shown to catalyze multiple rounds of cleavage, recombinant Ago2 exhibited single-turnover kinetics (11, 12).The architecture of the human Ago2 protein consists of a PIWI domain at the amino terminus, a centrally located Mid domain and a PAZ domain at the carboxyl terminus (1317). The PIWI domain constitutes the catalytic domain of the enzyme and exhibits a three-dimensional structure similar to RNase H, sharing the same aspartic acid-aspartic acid-glutamic acid (DDE) catalytic triad and metal cofactor requirements (10, 16, 17). Recently, the structures of argonaute from Thermus thermophilus and Archaeoglobus fulgidus bound to the antisense strand have been solved (15, 18). The structures show that the PAZ, Mid, and PIWI domains form an extended nucleic acid binding surface for the antisense strand. In addition, a basic binding pocket positioned within the Mid domain and a basic cleft in the PIWI domain were shown to bind, respectively, the 5′-terminal phosphate and the backbone at the 5′-pole of the antisense strand (15, 18). Aside from the two 3′-terminal nucleotides of the antisense strand, which were shown to bind a hydrophobic pocket within the PAZ domain, no interactions were observed between the enzyme and the 3′-pole of the antisense strand. An important difference between the structures of the two prokaryotic proteins was that the A. fulgidus protein contained a tyrosine residue positioned in the basic binding pocket, which formed a stacking interaction with the heterocycle base of the 5′-terminal nucleotide in the antisense strand. The human Ago2 protein appears to differ significantly from the prokaryotic argonaute proteins in that the key amino acids that make up the nucleic acid binding surface of the prokaryotic proteins are not conserved in the human enzyme. Consequently, the structures of the prokaryotic proteins appear to offer limited insights into the interaction between the human enzyme and the antisense strand of the siRNA.Given that Ago2 is responsible for the siRNA-mediated cleavage of the target RNA, understanding the properties important for the interaction between the antisense strand and Ago2 could lead to the identification of siRNA configurations with improved potency. To better understand the substrate specificity of human Ago2, we determined the cleavage activities, binding affinities, and binding kinetics of human Ago2 for various antisense oligonucleotides. The antisense oligonucleotides were designed to evaluate the interaction between human Ago2 and various regions in the antisense RNA, including the 5′ and 3′ termini and 2′-hydroxyl. The activities and binding affinities were compared for two different preparations of the enzyme as follows: a human Ago2 protein containing a glutathione S-transferase tag (GST-Ago2) that was expressed in insect cells and purified to homogeneity and an HA-tagged protein that was expressed in HeLa cells and immunoprecipitated with HA antibody (HA-Ago2). In addition, we evaluated the effects of divalent cation metals on the substrate specificity of human Ago2. Finally, we identified endogenous TRBP in the immunoprecipitated HA-Ago2 preparation and demonstrated using deletion mutants that the PIWI domain of Ago2 interacts with TRBP.  相似文献   

20.
S Gu  L Jin  Y Huang  F Zhang  MA Kay 《Current biology : CB》2012,22(16):1536-1542
Small RNAs regulate genetic networks through a ribonucleoprotein complex called the RNA-induced silencing complex (RISC), which, in mammals, contains at its center one of four Argonaute proteins (Ago1-Ago4) (reviewed in [1-4]). A key regulatory event in the RNA interference (RNAi) and microRNA (miRNA) pathways is Ago loading, wherein double-stranded small-RNA duplexes are incorporated into RISC (pre-RISC) and then become single-stranded (mature RISC), a process that is not well understood [5, 6]. The?Agos contain an evolutionarily conserved PAZ (Piwi/Argonaute/Zwille) domain [7, 8] whose primary function is to bind the 3' end of small RNAs [9-13]. We created multiple PAZ-domain-disrupted mutant Ago proteins and studied their biochemical properties and biological functionality in cells.?We found that the PAZ domain is dispensable for Ago loading of slicing-competent RISC. In contrast, in the absence of slicer activity or slicer-substrate duplex RNAs,?PAZ-disrupted Agos bound duplex small interfering RNAs,?but were unable to unwind or eject the passenger strand and form functional RISC complexes. We have discovered that the highly conserved PAZ domain plays an important role in RISC activation, providing new mechanistic insights into how miRNAs regulate genes, as well as new insights for future design of miRNA- and RNAi-based therapeutics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号