首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alternative splicing of pre-mRNA is a highly regulated process that allows cells to change their genetic informational output. These changes are mediated by protein factors that directly bind specific pre-mRNA sequences. Although much is known about how these splicing factors regulate pre-mRNA splicing events, comparatively little is known about the regulation of the splicing factors themselves. Here, we show that the Drosophila splicing factor P element Somatic Inhibitor (PSI) is phosphorylated at at least two different sites by at minimum two different kinases, casein kinase II (CK II) and tousled-like kinase (tlk). These phosphorylation events may be important for regulating protein-protein interactions involving PSI. Additionally, we show that PSI interacts with several proteins in Drosophila S2 tissue culture cells, the majority of which are splicing factors.  相似文献   

2.
3.
4.
Rolling-circle replication is initiated by a replicon-encoded endonuclease which introduces a single-strand nick into specific origin sequences, becoming covalently attached to the 5′ end of the DNA at the nick and providing a 3′ hydroxyl to prime unidirectional, leading-strand synthesis. Parvoviruses, such as minute virus of mice (MVM), have adapted this mechanism to amplify their linear single-stranded genomes by using hairpin telomeres which sequentially unfold and refold to shuttle the replication fork back and forth along the genome, creating a continuous, multimeric DNA strand. The viral initiator protein, NS1, then excises individual genomes from this continuum by nicking and reinitiating synthesis at specific origins present within the hairpin sequences. Using in vitro assays to study ATP-dependent initiation within the right-hand (5′) MVM hairpin, we have characterized a HeLa cell factor which is absolutely required to allow NS1 to nick this origin. Unlike parvovirus initiation factor (PIF), the cellular complex which activates NS1 endonuclease activity at the left-hand (3′) viral origin, the host factor which activates the right-hand hairpin elutes from phosphocellulose in high salt, has a molecular mass of around 25 kDa, and appears to bind preferentially to structured DNA, suggesting that it might be a member of the high-mobility group 1/2 (HMG1/2) protein family. This prediction was confirmed by showing that purified calf thymus HMG1 and recombinant human HMG1 or murine HMG2 could each substitute for the HeLa factor, activating the NS1 endonuclease in an origin-specific nicking reaction.  相似文献   

5.
Abstract: We have shown previously that a neurofilament (NF)-associated kinase (NFAK) extracted from chicken NF preparations phosphorylates selectively the middle molecular mass NF subunit (NF-M). Here we show that the major kinase activity in NFAK is indistinguishable from enzymes of the casein kinase I (CKI) family based on the following criteria: (1) inhibition of NFAK phosphorylation by the selective CKI inhibitor CKI-7, (2) the similarity in substrate specificity of NFAK and authentic CKI, (3) the correspondence of two-dimensional phosphopeptide maps of NF-M phosphorylated in vitro by NFAK with those generated by CKI under similar conditions, and (4) immunological cross-reactivity of NFAK with an antibody raised against CKI. We have also identified Ser502, Ser528, and Ser536 as phosphorylation sites by NFAK/CKI in vitro, each of which is also phosphorylated in vivo. All three serines are found in peptides with CKI phosphorylation consensus sequences, and Ser528 and Ser536 and flanking amino acids are highly conserved in higher vertebrate NF-M sequences. Neither Ser502 nor Ser536 has been identified previously as NF-M phosphorylation sites.  相似文献   

6.
Zhang S  Jin CD  Roux SJ 《Plant physiology》1993,103(3):955-962
A casein kinase II-type protein kinase has been purified from the cytosolic fraction of etiolated pea (Pisum sativum L.) plumules to about 90% purity as judged from Coomassie blue stained sodium dodecyl sulfate-polyacrylamide gels. This kinase has a tetrameric [alpha][alpha]'[beta]2 structure with a native molecular mass of 150 kD, and subunit molecular masses of 41 and 40 kD for the two catalytic subunits ([alpha] and [alpha]') and 35 kD for the putative regulatory subunit ([beta]).Casein and phosvitin can be used as artificial substrates for this kinase. Both serine and threonine residues were phosphorylated when mixed casein, [beta]-casein, or phosvitin were used as the substrate, whereas only serine was phosphorylated if [alpha]-casein or histone III-S was the substrate. The kinase activity was stimulated 130% by 0.5 mM spermine (the concentration required for 50% of maximal enzyme activity [A50] = 0.1 mM) and 80% by 2.5 mM spermidine (A50 = 0.4 mM), whereas putrescine and cadaverine had no effect. The kinase was very sensitive to inhibition by heparin (concentration for 50% inhibition [I50] = 0.025 [mu]g/mL). In contrast to most other casein kinase II-type protein kinases, this preparation was inhibited by K+ and Na+, with I50 values of 75 and 65 mM, respectively. Pretreatment of the purified kinase preparation in vitro with alkaline phosphatase caused a 5-fold decrease in its activity. Additionally, this kinase also lost its activity when its [beta] subunit was autophosphorylated in the absence of substrate. These results suggest that the activity of this casein kinase II protein kinase may be regulated by the phosphorylation state of two different sites in its multimeric structure.  相似文献   

7.
Abstract: Highly purified casein kinase II (CK II) isozymes from bovine brain gray matter (BBGM) were obtained by means of a new purification procedure consisting of one phosphocellulose and three Mono-Q steps. The phosphocellulose eluate showed two BBGM-CK II activities. The first minor component (BBGM-CK IIa) was eluted with 0.9 M NaCl and the major component was eluted at 1.1 M NaCl (BBGM-CK IIb). The protein complexes responsible for these two activities were comprised of three subunits, i.e., α (40 kDa), α' (38 kDa), and β (28 kDa), with various subunit ratios. The two isozymes displayed the same behavior on Superose 12 fast protein liquid chromatographic gel filtration and sucrose density centrifugation. BBGM-CK IIa and b showed chromatographic and biochemical differences including differing K m for ATP and GTP and K i for heparin and 2,3-bisphosphoglycerate. The properties of the main peak (BBGM-CK IIb) were studied in detail. The stimulatory effect of Mg2+, Mn2+, and Co2+ was highly dependent both on the nature of the substrate and on ionic type and concentration. It is surprising that with phosvitin as substrate, BBGM-CK IIb was fully active even in the absence of Mg2+ and NaCl. The inhibitory effect of heparin and the stimulatory effects of NaCl, KCl, spermine, and polylysine were highly dependent on the ionic strength, buffer type, and substrate. BBGM-CK II isozymes phosphorylated stathmine in the presence of polylysine, but the requirement for polybasic compounds was not absolute, as is the case with calmodulin and clathrin β-light chain. The unusual chromatographic behavior and biochemical properties of these BBGM-CK II isozymes, compared with the classical CK II, could be explained at least in part by their subunit ratios.  相似文献   

8.
9.
Abstract: Purified chromaffin granules from bovine adrenal medulla bound a small group of medullary cell cytosol proteins at micromolar levels of Ca2+ and physiological levels of K+, Mg2+, and Mg-ATP. The bound proteins had molecular weights of 33,000-37,000 and 70,000-71,000 on sodium dodecyl sulphate-polyacrylamide gel electrophoresis and did not correspond with any previously reported cytosolic components of chromaffin cells. The new proteins were eluted from intact granules or resealed granule membranes at 0.1 μ M Ca2+; binding was half-maximal at 2.6 μ M . Adsorption and elution in this manner resulted in a high degree of purification of the new proteins that were minor components of the original cytosol. Partially purified fractions enriched in the 33,000-37,000 and 70,000-71,000 proteins bound 45Ca2+ at submicromolar levels in the presence of millimolar Mg2+. Calmodulin was also bound by the granule membranes and was present in trace amounts in cytosol eluates from granules, but it did not bind to the new proteins in the presence of calcium ions. The possible significance of the new proteins to calcium-mediated secretion from chromaffin cells is discussed.  相似文献   

10.
11.
目的:构建人源CK2催化亚基pET-28a(+)-hcsnk2a1和pET-28a(+)-hcsnk2a2重组质粒,并进行原核表达纯化得到高纯度融合蛋白,为进一步开展CK2生理病理机制研究以及CK2作为肿瘤抑制靶点相关抑制剂的筛选和评价提供实验基础。方法:利用合成的人源csnk2a1和csnk2a2目的基因片段,将酶切连接得到的重组质粒经测序验证后,进行大肠杆菌感受态BL21 (DE3)/Transetta (DE3)转化。使用合适浓度IPTG诱导融合蛋白的表达以得到可溶性的融合蛋白,并应用AKTA avant蛋白纯化仪和Ni2+-NTA预装柱进行纯化,蛋白纯度最后经SDS-PAGE胶分离后考马斯亮蓝染色和Western Blot检测鉴定。结果:测序结果表明pET-28a(+)-hcsnk2a1和pET-28a(+)-hcsnk2a2质粒均成功被构建;经转化诱导表达后,成功纯化得到相对分子量为42KD的his-hcsnk2a1和38KD的his-hcsnk2a2目的融合蛋白。结论:首次成功构建得到pET-28a(+)-hcsnk2a1和pET-28a(+)-hcsnk2a2质粒;并表达纯化得到高浓度和高纯度的his-hcsnk2a1和his-hcsnk2a2融合蛋白,为后期的蛋白功能研究和抑制剂筛选评价提供了基础。  相似文献   

12.
13.
Casein kinase1 (CK1) plays crucial roles in regulating growth and development via phosphorylating various substrates throughout the eukaryote kingdom. Blue light is crucial for normal growth of both plants and animals, and blue light receptor cryptochrome2 (CRY2) undergoes blue light–dependent phosphorylation and degradation in planta. To study the function of plant CK1s, systematic genetic analysis showed that deficiency of two paralogous Arabidopsis thaliana CK1s, CK1.3 and CK1.4, caused shortened hypocotyls, especially under blue light, while overexpression of either CK1.3 or CK1.4 resulted in the insensitive response to blue light and delayed flowering under long-day conditions. CK1.3 or CK1.4 act dependently on CRY2, and overexpression of CK1.3 or CK1.4 significantly suppresses the hypersensitive response to blue light by CRY2 overexpression. Biochemical studies showed that CK1.3 and CK1.4 directly phosphorylate CRY2 at Ser-587 and Thr-603 in vitro and negatively regulate CRY2 stability in planta, which are stimulated by blue light, further confirming the crucial roles of CK1.3 and CK1.4 in blue light responses through phosphorylating CRY2. Interestingly, expression of CK1.3 and CK1.4 is stimulated by blue light and feedback regulated by CRY2-mediated signaling. These results provide direct evidence for CRY2 phosphorylation and informative clues on the mechanisms of CRY2-mediated light responses.  相似文献   

14.
Abstract: The protein kinase activity tightly associated with paired helical filaments (PHFs) purified from the brain tissue of individuals with Alzheimer's disease has been characterized in vitro. The activity is shown to phosphorylate casein, an exogenous substrate, with a maximal velocity of ∼2 nmol/min/mg, suggesting it comprises a significant component of the total protein in the PHF preparation. On the basis of substrate selectivity, isoquinoline sulfonamide inhibitor selectivity, in-gel renaturation assays, and western analysis, the activity consists of closely related members of the α branch of the casein kinase 1 family of protein kinases. Because of its tight association with PHFs and its phosphate-directed substrate selectivity, casein kinase 1 is positioned to participate in the pathological hyperphosphorylation of tau protein that is observed in neurodegenerative diseases such as Alzheimer's disease.  相似文献   

15.
The spatial organization of chromosomes within interphase nuclei is important for gene expression and epigenetic inheritance. Although the extent of physical interaction between chromosomes and their degree of compaction varies during development and between different cell-types, it is unclear how regulation of chromosome interactions and compaction relate to spatial organization of genomes. Drosophila is an excellent model system for studying chromosomal interactions including homolog pairing. Recent work has shown that condensin II governs both interphase chromosome compaction and homolog pairing and condensin II activity is controlled by the turnover of its regulatory subunit Cap-H2. Specifically, Cap-H2 is a target of the SCFSlimb E3 ubiquitin-ligase which down-regulates Cap-H2 in order to maintain homologous chromosome pairing, chromosome length and proper nuclear organization. Here, we identify Casein Kinase I alpha (CK1α) as an additional negative-regulator of Cap-H2. CK1α-depletion stabilizes Cap-H2 protein and results in an accumulation of Cap-H2 on chromosomes. Similar to Slimb mutation, CK1α depletion in cultured cells, larval salivary gland, and nurse cells results in several condensin II-dependent phenotypes including dispersal of centromeres, interphase chromosome compaction, and chromosome unpairing. Moreover, CK1α loss-of-function mutations dominantly suppress condensin II mutant phenotypes in vivo. Thus, CK1α facilitates Cap-H2 destruction and modulates nuclear organization by attenuating chromatin localized Cap-H2 protein.  相似文献   

16.
In eukaryotic cells, both lysosomal and nonlysosomal pathways are involved in degradation of cytosolic proteins. The physiological condition of the cell often determines the degradation pathway of a specific protein. In this article, we show that cytosolic proteins can be taken up and degraded by isolated Saccharomyces cerevisiae vacuoles. After starvation of the cells, protein uptake increases. Uptake and degradation are temperature dependent and show biphasic kinetics. Vacuolar protein import is dependent on cytosolic heat shock proteins of the hsp70 family and on protease-sensitive component(s) on the outer surface of vacuoles. Degradation of the imported cytosolic proteins depends on a functional vacuolar ATPase. We show that the cytosolic isoform of yeast glyceraldehyde-3-phosphate dehydrogenase is degraded via this pathway. This import and degradation pathway is reminiscent of the protein transport pathway from the cytosol to lysosomes of mammalian cells.  相似文献   

17.
We have investigated the regulation and localization of mitogen-activated protein kinase (MAPK) and mitogen-activated protein kinase kinase (MAPKK) in both cytosolic and nuclear fractions of glomerular mesangial cells. p42 MAPK was localized by both immunoblot and kinase activity in both cytosol and nucleus and was rapidly activated, in both fractions, by fetal bovine serum and TPA. Downregulation of protein kinase C (PKC) by TPA inhibited stimulation of cytosolic p42 MAPK, but unexpectedly had no effect on stimulated p42 MAPK in the nucleus. Next we studied the upstream kinase p45 MAPKK by indirect immunofluorescence microscopy, Western blot analysis, and kinase specific activity. Unlike MAPK, p45 MAPKK is almost exclusively cytosolic in resting cells and kinase activity stimulated by TPA is restricted to the cytosol. Interestingly, PKC downregulation for 24 h with TPA dramatically enhanced nuclear MAPKK as assessed by all three techniques. Cytosolic stimulated MAPKK was attenuated in PKC downregulation. Collectively these results show that in mesangial cells: (i) p42 MAPK and p45 MAPKK localize in both the cytosol and the nucleus, and (ii) PKC exerts a negative effect on nuclear MAPKK activity as documented by PKC downregulation, which augments p45 MAPKK nuclear mass and activity. These results indicate that the dual regulation of these two kinases is under differential control in the cytosol and the nucleus.  相似文献   

18.
Phosphorylation of the expressed NS5A protein of hepatitis C virus (HCV), a member of the Hepacivirus genus of the family Flaviviridae, has been demonstrated in mammalian cells and in a cell-free assay by an associated kinase activity. In this report, phosphorylation is also shown for the NS5A and NS5 proteins, respectively, of bovine viral diarrhea virus (BVDV) and yellow fever virus (YF), members of the other two established genera in this family. Phosphorylation of BVDV NS5A and YF NS5 was observed in infected cells, transient expression experiments, and a cell-free assay similar to the one developed for HCV NS5A. Phosphoamino acid analyses indicated that all three proteins were phosphorylated by serine/threonine kinases. Similarities in the properties of BVDV NS5A, YF NS5, and HCV NS5A phosphorylation in vitro further suggested that closely related kinases or the same kinase may phosphorylate these viral proteins. Conservation of this trait among three quite distantly related viruses representing three separate genera suggests that phosphorylation of the NS5A/NS5 proteins or their association with cellular kinases may play an important role in the flavivirus life cycle.  相似文献   

19.
20.
Using ssDNA-cellulose column chromatography, a 34 kDa ribonucleoprotein(p34) has been purified from a 0.4 M KCl crude extract of spinachchloroplasts as an effective phosphate acceptor for casein kinaseII (CK-II) in vitro. Monomeric and oligomeric CK-IIs were copurifiedwith p34 by the column chromatography and the kinases were separatedfrom p34 by means of Mono Q column chromatography. It was foundthat (i) the purified p34 (pi 4.9) was phosphorylated specificallyby CK-II in vitro; and (ii) similar polypeptides, such as p35(pI 4.7) and p39 (pI 4.9) in maize and p33 (pI 4.7) in liverwort,were detected as ssDNA-binding chloroplast proteins phosphorylatedby CK-II in vitro. The findings suggest that (i) RNPs that functionas phosphate acceptors for CK-II exist commonly in chloroplastsamong plant cells; and (ii) the physiological activity of RNPsis regulated by their specific phosphorylation by CK-II in chloroplasts. (Received July 3, 1995; Accepted October 5, 1995)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号