首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of sucA or sucC gene knockout on the metabolism in Escherichia coli was investigated for the aerobic cell growth in batch and continuous cultivations based on gene expressions, enzyme activities, intracellular metabolite concentrations and metabolic flux analysis. In the batch cultivation, the cell growth rate and the glucose uptake rate were lower for sucA mutant as compared with the parent strain, while it was not the case for sucC mutant. A significantly higher amount of acetate was produced, and it was not utilized in sucC mutant, while a little less acetate was produced in sucA mutant as compared with the parent strain. Unlike the parent strain and sucC mutant, sucA mutant excreted a little amount of l-glutamate. Enzyme activity results show that some of the glycolytic enzymes such as Tpi and Pgk were up-regulated, while Pfk, Fba and Pyk activities were down-regulated for sucA mutant as compared with the parent strain. For sucC mutant, the activities of Pfk, Fba, Tpi, GAPDH, Pgk and Pyk activities were down-regulated. As for the TCA cycle enzymes, the activities of CS and ICDH were down-regulated, while those of Icl, MS, Fum and MDH were up-regulated for sucA mutant. The activities of the oxidative pentose phosphate (PP) pathway enzymes such as G6PDH and 6PGDH and the gluconeogenic pathway enzyme such as Mez were up-regulated in sucA mutant. The Ack activity was down-regulated for sucA mutant, but not for sucC mutant. In continuous cultivation, the gene expression results indicate that the global regulatory genes such as fadR and iclR were slightly down-regulated in sucA mutant, which enhanced the expression of aceA gene and caused the up-regulation of the isocitrate lyase activity in sucA mutant, while fadR and iclR of sucC mutant changed little and no isocitrate lyase activation was observed for sucC mutant. Some other global regulatory genes such as arcA and fnr genes were down-regulated in both mutants, which caused some of the TCA cycle genes to be up-regulated. The effect of the sucA gene knockout on the metabolic flux distributions was investigated based on 1H–13C NMR spectra and GC–MS signals obtained from 13C-labeling experiments. Flux analysis results indicate that the knockout of sucA gene caused the activation of PP pathway and the glyoxylate shunt. The fluxes through glycolysis and the TCA cycle were down-regulated in the sucA mutant. On the other hand, the fluxes through PP pathway and the anaplerotic reactions of Ppc-Pck and Mez increased.  相似文献   

2.
Regulation of the main metabolic pathways of Escherichia coli K12 was investigated based on 2-dimensional electrophoresis (2DE) and the measurement of enzyme activities. The cells were grown aerobically in different carbon sources, such as glucose, acetate, gluconate or glycerol. Microaerobic cultivation was also conducted with glucose as a carbon source. Fifty-two proteins could be identified based on 2DE, and 26 enzyme activities from the main metabolic pathways-including glycolysis, pentose phosphate pathway, TCA cycle, Entner-Doudoroff pathway and fermentative pathway-were assayed. These enzyme activities, together with global and quantitative protein expression, gave us a clear picture of metabolic regulation. The results show that, compared with the control experiment with glucose as a carbon source under aerobic conditions, glycolytic enzymes were slightly up-regulated (<2-fold), TCA cycle enzymes were significantly down-regulated (2- to 10-fold), and fermentative enzymes such as pfl and adhE were highly up-regulated (>10-fold) under microaerobic conditions in glucose medium. When acetate was used as a carbon source, pfkA, pykF, ppc and zwf were down-regulated, while fbp, pckA, ppsA and mez were significantly up-regulated. Glyoxylate enzymes such as aceA and aceB were strongly up-regulated (>10-fold) and TCA-cycle-related enzymes were also up-regulated to some extent. With gluconate as a carbon source, edd, eda, fbp and TCA cycle enzymes were up-regulated. With glycerol as a carbon source, fbp and TCA cycle enzymes were up-regulated, while ackA was significantly down-regulated. Protein abundance obtained by 2DE correlated well with enzyme activity, with a few exceptions (e.g., isocitrate dehydrogenase), during aerobic growth on acetate.  相似文献   

3.
Metabolic flux analysis based on 13C-labeling experiments followed by the measurement of intracellular isotope distribution using both 2D NMR and GC-MS was carried out to investigate the effect of pyruvate kinase (pyk) gene knockout on the metabolism of Escherichia coli in continuous culture. In addition, the activities of 16 enzymes, and the concentrations of 5 intracellular metabolites, were measured as a function of time in batch culture as well as continuous culture. It was found that flux through phosphoenol pyruvate carboxylase and malic enzyme were up-regulated in the pykF mutant as compared with the wild type, and acetate formation was significantly reduced in the mutant. In addition, flux through the phosphofructose kinase pathway was reduced and that through the oxidative pentose phosphate (PP) pathway increased in the mutant. This was evidenced by the corresponding enzyme activities, and the increase in the concentrations of phosphoenol pyruvate, glucose-6-phosphate and 6-phosphogluconate, etc. It was also found for continuous cultivation that the enzyme activities of the oxidative PP and Entner-Doudoroff pathways increased as the dilution rate increased for the pykF mutant. To clarify the metabolism quantitatively, it was found to be quite important to integrate the information on intracellular metabolic flux distribution, enzyme activities and intracellular metabolite concentrations.  相似文献   

4.
An integrated study on cell growth, enzyme activities and carbon flux redistribution was made to investigate how the central metabolism of Escherichia coli changes with the knockout of genes in the oxidative pentose phosphate pathway (PPP). Mutants deficient in glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase were constructed by disrupting the zwf and gnd genes and were grown in minimal media with two different carbon sources, such as glucose or pyruvate. It was shown that the knockout of either gnd or zwf gene did not affect the cell growth rate significantly, but the cellular metabolism was changed. While the specific substrate uptake rate and the specific carbon dioxide evolution rate for either mutant grown on glucose were higher than those obtained for the parent strain, these two rates were markedly decreased in mutants grown on pyruvate. The measurement of enzyme activities implied a significant change in metabolism, when alternative pathways such as the Entner–Doudoroff pathway (EDP) and the malic enzyme pathway were activated in the gnd mutant grown on glucose. As compared with the parent strain, the activities of phosphoglucose isomerase were increased in mutants grown on glucose but decreased in mutants grown on pyruvate. The metabolic flux redistribution obtained based on 13C-labeling experiments further indicated that the direction of the flux through the non-oxidative PPP was reversed in response to the gene knockout. Moreover, the knockout of genes caused an increased flux through the tricarboxlic acid cycle in mutants grown on glucose but caused a decrease in the case of using pyruvate. There was also a negative correlation between the fluxes through malic enzyme and isocitrate dehydrogenase in the mutants; and a positive correlation was found between the fluxes through malic enzyme and phosphoenolpyruvate carboxylase.Electronic Supplementary Material Supplementary material is available in the online version of this article at  相似文献   

5.
6.
The physiology and central metabolism of a ppc mutant Escherichia coli were investigated based on the metabolic flux distribution obtained by (13)C-labelling experiments using gas chromatography-mass spectrometry (GC-MS) and 2-dimensional nuclear magnetic resonance (2D NMR) strategies together with enzyme activity assays and intracellular metabolite concentration measurements. Compared to the wild type, its ppc mutant excreted little acetate and produced less carbon dioxide at the expense of a slower growth rate and a lower glucose uptake rate. Consequently, an improvement of the biomass yield on glucose was observed in the ppc mutant. Enzyme activity measurements revealed that isocitrate lyase activity increased by more than 3-fold in the ppc mutant. Some TCA cycle enzymes such as citrate synthase, aconitase and malate dehydrogenase were also upregulated, but enzymes of glycolysis and the pentose phosphate pathway were downregulated. The intracellular intermediates in the glycolysis and the pentose phosphate pathway, therefore, accumulated, while acetyl coenzyme A and oxaloacetate concentrations decreased in the ppc mutant. The intracellular metabolic flux analysis uncovered that deletion of ppc resulted in the appearance of the glyoxylate shunt, with 18.9% of the carbon flux being channeled via the glyoxylate shunt. However, the flux of the pentose phosphate pathway significantly decreased in the ppc mutant.  相似文献   

7.
8.
The effects of several single-gene knockout mutants (pykF, ppc, pflA, pta, and adhE mutants) on the metabolic flux distribution in Escherichia coli were investigated under microaerobic condition. The intracellular metabolite concentrations and enzyme activities were measured, and the metabolic flux distribution was computed to study the metabolic regulation in the cell. The pflA, pta and ppc mutants produced large amount of lactate when using glucose as a carbon source under microaerobic condition. Comparing the flux distribution and the enzyme activities in the mutants, it was shown that the lactate production was promoted by the inactivation of pyruvate formate lyase and the resulting overexpression of lactate dehydrogenase. The flux through Pta-Ack pathways and the ethanol production were limited by the available acetyl coenzyme A. It was shown that the glycolysis was activated in pykF mutant in microaerobic culture. The glycolytic flux was related with Pyk activity except for pykF mutant. The cell growth rate was shown to be affected by the flux through phosphoenolpyruvate carboxylase. The quantitative regulation analysis was made based on the deviation indexes.  相似文献   

9.
10.
The oxidative pentose phosphate pathway: structure and organisation   总被引:1,自引:0,他引:1  
The oxidative pentose phosphate pathway is a major source of reducing power and metabolic intermediates for biosynthetic processes. Some, if not all, of the enzymes of the pathway are found in both the cytosol and plastids, although the precise distribution of their activities varies. The apparent absence of sections of the pathway from the cytosol potentially complicates metabolism. These complications are partly offset, however, by exchange of intermediates between the cytosol and the plastids through the activities of a family of plastid phosphate translocators. Molecular analysis is confirming the widespread presence of multiple genes encoding each of the enzymes of the oxidative pentose phosphate pathway. Differential expression of these isozymes may ensure that the kinetic properties of the activity that catalyses a specific reaction match the metabolic requirements of a particular tissue. This hypothesis can be tested thanks to recent developments in the application of 13C-steady-state labelling strategies. These strategies make it possible to quantify flux through metabolic networks and to discriminate between pathways of carbohydrate oxidation in the cytosol and plastids.  相似文献   

11.
12.
The lipoamide dehydrogenase (LPD) encoded by lpdA gene is a component of the pyruvate dehydrogenase complex (PDHc), alpha-ketoglutarate dehydrogenase (AKGDH) and the glycine cleavage multi-enzyme (GCV) systems. In the present study, cell growth characteristics, enzyme activities and intracellular metabolite concentrations were compared between the parent strain Escherichia coli BW25113 and its lpdA knockout mutant in batch and continuous cultures. The lpdA knockout mutant produced significantly more pyruvate and L-glutamate under aerobiosis. Some D-lactate and succinate also accumulated in the culture broth. Based on the investigation of enzyme activities and intracellular metabolite concentrations, acetyl-CoA was considered to be formed by the combined reactions through pyruvate oxidase (PoxB), acetyl-CoA synthetase (Acs) and acetate kinase (Ack)-phosphoacetyltransferase (Pta) in the lpdA mutant. The effect of the lpdA gene knockout on the intracellular metabolic flux distributions was investigated based on 1H-13C NMR spectra and GC-MS signals obtained from 13C-labeling experiment using the mixture of [U-13C] glucose, [1-13C] glucose, and naturally labeled glucose. Flux analysis of the lpdA mutant indicated that the Entner-Doudoroff (ED) pathway and the glyoxylate shunt were activated. The fluxes through glycolysis and oxidative pentose phosphate (PP) pathway (except for the flux through glucose-6-phosphate dehydrogenase) were slightly downregulated. The TCA cycle was also downregulated in the mutant strain. On the other hand, the fluxes through the anaplerotic reactions of PEP carboxylase, PEP carboxykinase and malic enzyme were upregulated, which were consistent with the results of enzyme activities. Furthermore, the influence of the poxB gene knockout on the growth of E. coli was also studied because of its similar function to PDHc which connects the glycolysis to the TCA cycle. Under aerobiosis, a comparison of lpdA mutant and poxB mutant indicated that PDHc is the main enzyme which catalyzes the reaction from pyruvate to acetyl-CoA in the parent strain, while PoxB plays a very important role in the PDHc-deficient strain.  相似文献   

13.
The mutant deficient in glucose-6-phosphate dehydrogenase (G6PDH) was constructed by disrupting zwf gene by one-step inactivation protocol using polymerase chain reaction primers. The knockout of zwf gene was shown to have different influence on the metabolism of Escherichia coli grown on glucose or acetate. The decreased rates of substrate uptake and CO(2) production were found for the mutant grown on acetate, whereas these two rates were increased during the growth on glucose. The metabolic flux analysis based on (13)C-labeling experiments indicates that the metabolism of the mutant grown on glucose is related to the higher flux via tricorboxylic acid (TCA) cycle to generate anabolic reducing equivalents normally provided by the oxidative pentose phosphate pathway. However, the metabolism of the mutant grown on acetate shows a lower flux towards the TCA cycle as compared with the parent strain. The decreased flux through TCA cycle is associated with an increased flux via the glyoxylate shunt, by which the carbon source can bypass the two decarboxylative steps of TCA cycle in which CO(2) is released, thus conserving more carbon for biosynthesis in response to the decreased uptake rate of the carbon source.  相似文献   

14.
在不同碳源培养条件下酿酒酵母的蛋白质组解析   总被引:4,自引:0,他引:4  
为了分析酿酒酵母在不同培养条件下的代谢调控过程的差异,采用固相pH梯度-SDS聚丙烯酰胺双向凝胶电泳对其利用不同碳源时细胞的总蛋白进行了分离,银染显色,使用2D蛋白质图像分析系统Image Master-2D Elite对双向电泳图谱进行分析,查询SWISS-2D-PAGE蛋白质组数据库,识别了约500个蛋白质点。对与糖酵解途径、磷酸戊糖途径、三羧酸循环和几种回补反应相关的大部分关键的蛋白质进行了差异分析。探讨了酿酒酵母利用不同碳源时及生长的不同阶段代谢机理的变化和在蛋白质水平的调控。  相似文献   

15.
The physiological and metabolic responses to gnd knockout in Escherichia coli K-12 was quantitatively investigated by using the (13)C tracer experiment (GC-MS/NMR) together with the enzyme activity analysis. It was shown that the general response to the gene knockout was the local flux rerouting via Entner-Doudoroff pathway and the direction reversing via non-oxidative pentose phosphate pathway (PPP). The mutant was found to direct higher flux to phosphoglucose isomerase reaction as compared to the wild-type, but the respiratory metabolism was comparable in both strains. The anaplerotic pathway catalyzed by malic enzyme was identified in the mutant, which was accompanied with an up-regulation of phosphoenolpyruvate carboxylase and down-regulation of phosphoenolpyruvate carboxykinase. The presented results provide first evidence that compensatory mechanism existed in PPP and anaplerotic pathway in response to the gnd deletion.  相似文献   

16.
Glutathione peroxidase is one of the principal antioxidant defense enzymes in human spermatozoa, but it requires oxidized glutathione to be reduced by glutathione reductase using NADPH generated in the pentose phosphate pathway. We investigated whether flux through the pentose phosphate pathway would increase in response to oxidative stress and whether glutathione reductase was required to protect sperm from oxidative damage. Isotopic measurements of the pentose phosphate pathway and glycolytic flux, thiobarbituric acid assay of malondialdehyde for lipid peroxidation, and computer-assisted sperm analysis for sperm motility were assessed in a group of normal, healthy semen donors. Applying moderate oxidative stress to human spermatozoa by adding cumene hydroperoxide, H(2)O(2), or xanthine plus xanthine oxidase or by promoting lipid peroxidation with ascorbate increased flux through the pentose phosphate pathway without changing the glycolytic rate. However, adding higher concentrations of oxidants inhibited both the pentose phosphate pathway and glycolytic flux. At concentrations of 50 microg/ml or greater, the glutathione reductase-inhibitor 1,3-bis-(2-chloroethyl) 1-nitrosourea decreased flux through the pentose phosphate pathway and blocked the response to cumene hydroperoxide. It also increased lipid peroxidation and impaired the survival of motility in sperm incubated under 95% O(2). These data show that the pentose phosphate pathway in human spermatozoa can respond dynamically to oxidative stress and that inhibiting glutathione reductase impairs the ability of sperm to resist lipid peroxidation. We conclude that the glutathione peroxidase-glutathione reductase-pentose phosphate pathway system is functional and provides an effective antioxidant defense in normal human spermatozoa.  相似文献   

17.
1. Measurements were made of the activities of the enzymes of the pentose phosphate pathway concerned in both the oxidative (glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase) and the non-oxidative (ribose 5-phosphate isomerase, ribulose 5-phosphate epimerase, transketolase and transaldolase) reactions of this pathway, together with hexokinase and phosphoglucose isomerase, in adipose tissue in a variety of nutritional and hormonal conditions. 2. Starvation for 2 days caused a significant decrease in the activities of all the enzymes of the pentose phosphate pathway, with the exception of glucose 6-phosphate dehydrogenase, when expressed as activity/2 fat-pads; only the activities of ribose 5-phosphate isomerase and ribulose 5-phosphate epimerase were significantly decreased on the basis of activity/mg. of protein. Re-feeding with a high-carbohydrate or high-fat diet for 3 days restored the activity of all the enzymes of the pentose phosphate pathway to the range of the control values, with the exception of transketolase, which showed a marked ;overshoot' in rats re-fed with carbohydrate. Starvation for 3 days caused a marked decrease in the activities of glucose 6-phosphate dehydrogenase and transketolase. 3. On the basis of activity/two fat-pads, alloxan-diabetes caused a marked decrease, to about half the control value, in the activities of all the enzymes concerned in the pentose phosphate pathway, transketolase showing the smallest decrease; hexokinase and phosphoglucose isomerase activities were also decreased. Treatment with insulin for 3 and 7 days raised the activities to normal or supranormal values, transketolase showing the most marked ;overshoot' effect. On the basis of activity/mg. of protein the activity of none of the enzymes was significantly decreased in alloxan-diabetes; transketolase and transaldolase activities were raised above the control values. With insulin treatment for 3 or 7 days the activities of all the enzymes were significantly increased, except that of ribulose 5-phosphate epimerase at the shorter time-interval. Glucagon treatment did not alter any of the enzyme activities expressed on either basis. 4. Thyroidectomy caused a decrease of 30-40% in the activities of enzymes of the pentose phosphate pathway, except for transketolase activity, which fell to 50% of the control value. Little change occurred in adipose-tissue weight or protein content. 5. Adrenalectomy caused a decrease of 40% in the activity of glucose 6-phosphate dehydrogenase and of 20-30% in the activities of the remaining enzymes of the pentose phosphate pathway; hexokinase activity was also decreased. Treatment with cortisone for 3 days did not significantly raise the activity from that found in adrenalectomized rats. Treatment of normal rats with high doses of cortisone had no significant effect on the activities of the enzymes of the pentose phosphate pathway in adipose tissue. 6. The changes in enzyme activities are discussed in relation to: (a) the concept of constant-proportion groups of enzymes; (b) the known changes in the flux of glucose through alternative metabolic pathways; (c) the pattern of change found in liver with similar hormonal and dietary conditions.  相似文献   

18.
Toward more efficient L-lysine production, we have been challenging genome-based strain breeding by the approach of assembling only relevant mutations in a single wild-type background. Following the creation of a new L-lysine producer Corynebacterium glutamicum AHP-3 that carried three useful mutations (lysC311, hom59, and pyc458) on the relevant downstream pathways, we shifted our target to the pentose phosphate pathway. Comparative genomic analysis for the pathway between a classically derived L-lysine producer and its parental wild-type identified several mutations. Among these mutations, a Ser-361-->Phe mutation in the 6-phosphogluconate dehydrogenase gene (gnd) was defined as a useful mutation for L-lysine production. Introduction of the gnd mutation into strain AHP-3 by allelic replacement led to approximately 15% increased L-lysine production. Enzymatic analysis revealed that the mutant enzyme was less sensitive than the wild-type enzyme to allosteric inhibition by intracellular metabolites, such as fructose 1,6-bisphosphate, D-glyceraldehyde 3-phosphate, phosphoribosyl pyrophosphate, ATP, and NADPH, which were known to inhibit this enzyme. Isotope-based metabolic flux analysis demonstrated that the gnd mutation resulted in 8% increased carbon flux through the pentose phosphate pathway during L-lysine production. These results indicate that the gnd mutation is responsible for diminished allosteric regulation and contributes to redirection of more carbon to the pentose phosphate pathway that was identified as the primary source for NADPH essential for L-lysine biosynthesis, thereby leading to improved product formation.  相似文献   

19.
To elucidate the physiological adaptation of Escherichia coli due to cra gene knockout, a total of 3,911 gene expressions were investigated by DNA microarray for continuous culture. About 50 genes were differentially regulated for the cra mutant. TCA cycle and glyoxylate shunt were down-regulated, while pentose phosphate (PP) pathway and Entner Doudoroff (ED) pathway were up-regulated in the cra mutant. The glucose uptake rate and the acetate production rate were increased with less acetate consumption for the cra mutant. To identify the genes controlled by Cra protein, the Cra recognition weight matrix from foot-printing data was developed and used to scan the whole genome. Several new Cra-binding sites were found, and some of the result was consistent with the DNA microarray data. The ED pathway was active in the cra mutant; we constructed cra.edd double genes knockout mutant to block this pathway, where the acetate overflowed due to the down-regulation of aceA,B and icd gene expressions. Then we further constructed cra.edd.iclR triple genes knockout mutant to direct the carbon flow through the glyoxylate pathway. The cra.edd.iclR mutant showed the least acetate production, resulting in the highest cell yield together with the activation of the glycolysis pathway, but the glucose consumption rate could not be improved. Dayanidhi Sarkar and Khandaker Al Zaid Siddiquee have contributed equally.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号