首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In controlled temperature glasshouses plant morphology, gramdevelopment and yield of pearl millet (Pennisetum americanum)were markedly affected by temperature during three stages ofplant growth: vegetative, stem elongation, and grain development.High temperature (to 33/28 °C day/night) during all threegrowth stages lowered grain yields by reducing basal tillering,numbers of grains per inflorescence, and single grain weight.Low temperature (21/16 °C) during the vegetative stage increasedbasal tillering and, as a result, total grain yield per plant.However, low temperature during the stem elongation stage reducedspikelet fertility and influorescence length, and thereby reducedthe potential main shoot grain yield. Low temperature duringgrain development increased the grain filling period and grainyield. The rate of grain filling did not vary over the rangeof 21/16 to 33/28 °C. Although plant morphology and grainyield were markedly affected by pre-anthesis thermal environment,grain development was not. At all temperatures ethanol-solublecarbohydrates stored in the stem were depleted during earlygrain development.  相似文献   

2.
Craufurd, P. Q. and Bidinger, F. R. 1988. Effect of the durationof the vegetative phase on shoot growth, development and yieldin pearl millet (Pennisetum americanum (L.) Leeke).–J.exp. Bot. 38: 124–139 The duration of the vegetative phase (DVP) in millet, whichis the major cause of variation in the crop duration, has markedeffects on the number of productive tillers per plant and onmainshoot (MS) and tiller grain yield. Daylength extensionswere used to vary the DVP and the effect on factors affectingpanicle (tiller) number per plant and panicle yield examinedin millet hybrid 841A x J104, grown in the field at Hyderabad,India. Tiller appearance, shoot leaf appearance and leaf area,and stem and panicle growth, in both MS and primary tillers(PTs), were monitored at frequent intervals over the season.At maturity grain yield per shoot was measured The concept of thermal time was used to describe shoot development.The rates of tiller appearance and shoot leaf appearance werelinearly related to thermal time and were not affected by DVPtreatments. The duration of the growth phase from panicle initiationto flowering (GS2) and from flowering to maturity (GS3) was320 and 390 degree days (°Cd), respectively. There was nodifference in rates of leaf or tiller appearance or developmentbetween MS and PTs. Tiller appearance, tiller leaf appearanceand tiller apical development all ceased at the same time inthe later initiated PTs, approximately 550 °Cd from sowing,shortly after rapid stem growth had begun. Tillers that didnot survive were all vegetative or in the early stages of reproductivedevelopment at this time The rate of accumulation of dry matter per plant was similarin all DVP treatments, but in the longer DVP treatments a greaterproportion of the dry matter was partitioned to the MS. Mainshootstem and panicle growth rates were increased by a longer DVP,as was grain yield on the MS, and these were related to increasedMS leaf area. Concurrently, growth rates and yields in laterinitiated tillers were reduced in relation to their leaf areas.Stem growth rate was proportionately increased more than paniclegrowth rate in the longer DVP treatments and this, combinedwith a longer duration of stem growth, resulted in greater stemdry matter at maturity and, therefore, in reduced harvest index.  相似文献   

3.
Summary In a dryland cropping systems study preceding crops either of groundnuts, cowpea or pigeon pea were found to increase the early seedling vigour, rate of plant growth and grain production of the subsequent pearl millet. No such benefit was noted from a previous crop of mung. Grown after groundnuts and cowpea the unfertilized pearl millet removed from the soil 39.9 and 32.5 kg N compared to 18.9 kg N per hectare following a pearl millet crop. At harvest the number of viable nodules was the highest in groundnuts and cowpea. Especially in groundnuts the number of viable nodules increased after flowering stage.  相似文献   

4.
干旱对东北春玉米生长发育和产量的影响   总被引:5,自引:4,他引:1  
选取玉米品种丹玉39为供试材料,利用大型农田水分控制试验场,采用大田池栽方式,在玉米三叶-拔节期、拔节-吐丝期、吐丝-乳熟期分别开展中度干旱胁迫及复水控制对比试验,分析3个关键生育时期干旱胁迫对春玉米生长发育和产量的影响.结果表明:与水分适宜对照(CK)相比,三叶-拔节期遭受干旱胁迫后,全生育期推迟13 d,至拔节普遍期,株高偏低29.8%,叶面积偏小41.2%,复水后,株高和产量得到较大程度恢复,果穗性状和最终产量差异不大;拔节-吐丝期遭受干旱胁迫后,全生育期缩短7 d,至吐丝普遍期,株高偏低18.6%,叶面积偏小14.1%,果穗长、穗粒数、果穗干质量、穗粒质量分别下降6.9%、19.1%、28.1%和29.4%,空秆率增加13.3%;吐丝-乳熟期遭受干旱胁迫后,全生育期缩短15 d,生长至乳熟普遍期,株高偏低2.3%,叶面积偏小37.3%,果穗长、穗粒数、果穗干质量、穗粒质量分别下降9.2%、24.1%、30.8%和27.9%,空秆率增加24.5%.拔节-吐丝期、吐丝-乳熟期干旱胁迫处理并复水后,玉米株高恢复不明显,产量降幅显著.  相似文献   

5.
Coaldrake, P. D., Pearson, C. J. and Saffigna, P. G. 1987. Grainyield of Pennisetum americanum adjusts to nitrogen supply bychanging rates of grain filling and root uptake of nitrogen.–J.exp. Bot 38: 558–566. Pearl millet (Pennisetum americanum(L.)Leeke) was grown in containers at three constant rates of nitrogensupply or with the nitrogen supply increased from the lowestto the highest rate during panicle differentiation or at anthesis.We measured the rate and duration of nitrogen and dry weightgain by individual grains and nitrogen (15N) uptake by rootsand its distribution during grain filling. The total amountsof nitrogen and dry weight in all grain per plant at the lowestnitrogen supply were 8% and 14% respectively of plants growncontinuously at the highest rate of nitrogen. This was becauselow rates of nitrogen supply reduced grain number, mean grainweight and the nitrogen content of each individual grain. Theamino acid composition of the grain protein was affected onlyslightly by nitrogen treatments. Rates of grain growth were sensitive to nitrogen supply whereasthe duration of nitrogen movement to the grain was not. Nitrogenuptake by roots continued throughout grain filling; rates ofuptake per g root in plants given least nitrogen were one-halfthose of plants given the highest amount of nitrogen. A changefrom lowest to highest nitrogen supply at panicle differentiationincreased the uptake of nitrogen by roots and the rates of growthof individual grains, to the rates observed in plants whichhad been supplied continuously with the highest nitrogen. Whenthe change in supply was made at anthesis there was rapid movementof nitrogen into the plant but this was not translated intomore rapid grain growth. Key words: Nitrogen supply, Pennisetum americanum, grain yield, root uptake  相似文献   

6.
Stands of millet were grown in temperature-controlled glasshousesmaintained at mean air temperatures of 19-31 °C and sub-plotswere heated or cooled to examine the effect of soil temperatureon early plant development. Soil temperature influenced all aspects of early vegetativedevelopment: the emergence of seedlings, the initiation, appearanceand final number of leaves and tillers. Results are presentedin terms of both chronological and ‘thermal’ time(the summation of degree days (°C d) above an extrapolatedbase (Tb) determined from the rate/temperature relation). Ratesof the processes examined increased linearly with temperature,but the duration of vegetative phases appeared to be constantbetween 19-30 °C. The rate of all processes can thereforebe described by a specific thermal time () e. g. 26 °C dfor each leaf initiated and a base temperature (Tb) which wassimilar for all the vegetative processes examined. 0 was relativelyconstant over the range of irradiance and saturation deficitexperienced in the experiments. The results are compared to previous data for millet and othertropical species. Key words: Millet, Thermal time, Vegetative development  相似文献   

7.
Green, C. F., Dawkins, T. C. K. and McDonald, H. G. 1985. Influenceof chlorocholine chloride on grain growth of winter barley (Hordeumdistichon L. cv. Igri) in the field.–J. exp. Bot. 36:1126–1133. Chlorocholine chloride was applied to winter barley either inthe Spring or Autumn. It increased grain number per unit croparea. Rates of incorporation of dry matter into the grain weredecreased, but the period of growth was extended by the treatments.Overall the final mean grain weight was reduced so that no advantagesin terms of yield resulted from the increased grain numbers. Key words: —Chlormequat, chlorocholine chloride, CCC, Hordeum distichon L., barley, grain growth, grain weight, senescence, grain yield  相似文献   

8.
An efficient in vitro plant regeneration protocol through somatic embryogenesis and direct shoot organogenesis has been developed for pearl millet (Pennisetum glaucum). Efficient plant regeneration is a prerequisite for a complete genetic transformation protocol. Shoot tips, immature inflorescences, and seeds of two genotypes (843B and 7042-DMR) of pearl millet formed callus when cultured on Murashige and Skoog (MS) medium supplemented with varying levels of 2,4-dichlorophenoxyacetic acid (2,4-D; 4.5, 9, 13.5, and 18 μM). The level of 2,4-D, the type of explant, and the genotype significantly effected callus induction. Calli from each of the three explant types developed somatic embryos on MS medium containing 2.22 μM 6-benzyladenine (BA) and either 1.13, 2.25, or 4.5 μM of 2,4-D. Somatic embryos developed from all three explants and generated shoots on MS medium containing high levels of BA (4.4, 8.8, or 13.2 μM) combined with 0.56 μM 2,4-D. The calli from the immature inflorescences exhibited the highest percentage of somatic embryogenesis and shoot regeneration. Moreover, these calli yielded the maximum number of differentiated shoots per callus. An efficient and direct shoot organogenesis protocol, without a visible, intervening callus stage, was successfully developed from shoot tip explants of both genotypes of pearl millet. Multiple shoots were induced on MS medium containing either BA or kinetin (4.4, 8.8, 17.6, or 26.4 μM). The number of shoots formed per shoot tip was significantly influenced by the level of cytokinin (BA/kinetin) and genotype. Maximum rooting was induced in 1/2 strength MS with 0.8% activated charcoal. The regenerated plants were transferred to soil in pots, where they exhibited normal growth.  相似文献   

9.
Stands of pearl millet were grown in glasshouses in which meanair temperature was controlled to 19, 22, 25, 28 and 31 ?C withan amplitude of ?5 ?C. During the main growth period, leaf areaindex increased at a constant rate which was proportional tomean temperature above a base of 10 ?C. The warmest stand, therefore,intercepted more radiation before anthesis but the transmissioncoefficient was independent of temperature (K 0.3). Based ondry weight at final harvest, the efficiency of conversion forintercepted radiation ranged from about 2.1–2.4 g MJ–1consistent with field experience. Combining this informationwith figures for the duration of growth in relation to temperaturesuggests that growth rate should be maximal at 25–27 ?Cand total dry weight at 20–22 ?C. Key words: Temperature, Pearl millet, Growth rate, Light  相似文献   

10.
选择不同年代(1960s-1970s、1980s-1990s、2000s-2010s)在陕北种植的6个谷子品种为试验材料,于2018-2019年在陕西榆林进行田间试验,研究分析了不同年代品种谷子产量及其农艺性状的演变特征.结果 表明:随年代更替,谷子品种产量呈现明显增加趋势,2000s-2010s选育的品种平均产量分别...  相似文献   

11.
糜子育成品种成株期抗旱性鉴定与评价   总被引:2,自引:0,他引:2  
在年降雨量不足40 mm的甘肃省敦煌市,采用大田干旱胁迫法对我国不同地区育成的56份糜子品种成株期抗旱性进行了鉴定。结果表明,成株期干旱胁迫对糜子主茎节数、单株有效穗数、单株草重、主穗长、千粒重、比叶重影响不显著,而对株高、单株穗重、单株粒重、小区产量、旗叶面积、叶面积指数、生育期影响达到了极显著水平,干旱胁迫处理后株高降低了14.08 cm,单株穗重、单株粒重和小区产量分别下降2.65 g、2.19 g和86.18 g,旗叶面积和叶面积指数分别减少9.36 cm2和1.21,生育期延长了11.68 d;以抗旱指数和抗旱性综合评价值D的聚类结果为依据,筛选出成株期1级抗旱品种2份:陇糜2号、陇糜10号;经灰色关联度分析,旗叶面积、千粒重、单株有效穗数、小区产量均与抗旱指数、抗旱性综合评价值D的关联度较大,可作为成株期抗旱评价指标。  相似文献   

12.
基于黄土高原干旱地区生态环境特性,研究了4种糜子(P)-绿豆(M)间作模式下[2∶2(2P2M)、4∶2(4P2M)、4∶4(4P4M)、2∶4(2P4M)]农田小气候特征及产量效应.结果表明: 糜子-绿豆间作模式显著增加了生育后期糜子的株高、叶面积指数(LAI)和叶绿素含量(SPAD),使其达到最佳的生长状态;由于高位糜子的遮阴,导致矮位绿豆阶段性徒长,株高显著增加,而LAI和SPAD均有所下降.糜子-绿豆间作模式降低了糜子籽粒灌浆过程中的群体上层光照度和空气温度,而相对湿度显著上升.地上部气候环境的变化调控了间作体系地下部的土壤温度,减少了群体的漏光损失,使其表现出冷湿的生态环境.而矮位绿豆较差的通风透光条件形成相对封闭的间作系统,抑制了绿豆植株的生长发育,使其处于间作劣势.与单作相比,2P2M、4P2M、4P4M和2P4M处理的糜子单株穗数、穗长、单株粒重和千粒重分别增加了7.5%~45.0%、2.2%~12.2%、35.4%~94.0%和2.3%~4.7%,产量比单作提高了5.6%~20.7%;间作处理下矮位绿豆的分枝数、单株荚数、单株粒重和百粒重均有不同程度的下降,2P4M间作模式下的绿豆受糜子影响最小,产量比单作降低了34.8%.糜子-绿豆间作存在明显的间作优势,各间作处理下的土地当量比(LER)均大于1,2P4M间作模式下的LER达到最大值(1.86).因此,黄土高原地区糜子-绿豆最佳的间作配比为2P4M.  相似文献   

13.
Yield studies show that increases in grain yield are always accompanied by an increase in grain number and, hence, further increases in yield potential may require additional improvements in grain number. The improvement of modern durum wheat was mainly based on the introduction of semidwarf genes. A 2‐year field drought stress experiment, concerning two different genotype groups (landraces vs modern cultivars), was carried out under a rainout shelter in order (a) to assess the effect of water deficit on floret dynamics and grain number determination, (b) to explore the relationship between plant water status with grain number per spike and its components (i.e., spikelets per spike, fertile florets per spikelet and grain set) and (c) to quantify the importance of several plant traits in determining the final number of grains per spike and fertile florets per spike when the main source of variation is water availability. Compared to control (well irrigated), grain number per spike was reduced, depending on year, genotype and water availability level, by 12.4–58.7% and this reduction was evident almost in all spikelet positions along the spike. Although there were some doubts in the past about the increased sensitivity of semidwarf cultivars to drought stress, they were not confirmed from our results. In most of the cases, the variation in plant water status (by means of water potential index [WPI]) during floret primordia phase (FPP) explained most of the variance in grain number per spike, fertile florets per spikelet, grain set and fertile spikelets per spike. In general, increasing water stress intensity decreased grain number per spike by an average rate of 13.5 and 9.4 grains per 0.2 MPa decrease in WPI, in modern cultivars and landraces, respectively. However, seasonal and genotypic effects were evident by modifying the slopes of the linear regressions between WPI and the studied plant traits. Commonality analysis revealed that the number of fertile florets per spikelet was the best predictor of grain number per spike, indicating that there is still much space for further improvement for this trait in landraces. However, this trait has been clearly improved in modern cultivars, especially at the basal and central spikelets. Although the number of spikelets per spike was the best unique predictor of the number of grains per spike in modern cultivars, grain set presented the highest total effect.  相似文献   

14.
In a field study with six winter wheat genotypes losses of drymatter from the stems between 30 June and maturity averaged172 g m–2 (range 82–236), there being significantdifferences in loss between genotypes. Respiration from thestems during the same period was estimated to amount to 106g m–2 (range 104–225). The amount of dry mattermobilized from the stems, calculated by difference, was estimatedas 66 g m–2. The loss of ethanol- and water-soluble carbohydratefrom the stems (170 g m–2; range 124–215) was verysimilar to the dry weight loss. Carbon-14 labelling was used to trace the time course and theamount of the movement of assimilates from the vegetative organsto the grain. Only 14•3 per cent (range 10•3–21•0)of the products of photosynthesis over the period 21 May-20June were relocated to the grains. This relocation amountedto an average of 7 per cent (range 5•7–11•4)of the final grain weight. It was estimated that during the18 days following anthesis on 20 June photosynthesis contributed48 per cent (range 39–55) of the final grain dry weight.Of this, about half was translocated to the grain within 10days of initial assimilation. The remainder appeared to be storedtemporarily in the stems and leaves and translocated to thegrains during the period 17–29 July. In general, relocationof dry matter from the vegetative organs to the grains, assessedby carbon-14 labelling, was greatest in those genotypes (Hobbitand Sportsman) which lost most dry weight from the stems andleaves.  相似文献   

15.
Increasing population density and food needs in the Sahel are major drivers behind the conversion of land under natural vegetation to arable land. Intensification of agriculture is a necessity for farmers to produce enough food. As manure is scarce and fertilizers expensive, this study looks into the potential role of cowpea (Vigna unguiculata L.) and short duration fallow in maintaining soil fertility and productivity and in reducing the major weed problem Striga hermonthica (Del.) Benth. The research was carried out ‘on-farm’ in a traditional millet (Pennisetum glaucum (L.) R.Br.) growing area in the Malian Sahel, near Bankass. The four year experiment combined 0, 2, 5, and 7 years of preceding fallow with (i) 4 years of millet, (ii) 1 year of cowpea + 3 years of millet, and (iii) 1 year of cowpea + 3 years of millet/cowpea inter-cropping. Total millet production (4 years) was 1440 kg ha−1 for all systems with 2, 5 or 7 years of preceding fallow against 1180 kg ha−1 for systems without fallow. Cowpea grain production showed no significant differences between fallow treatments. Over 4 years, all cropping systems produced similar total amounts of millet grain, implying that the millet ‘lost’ during the year with a pure cowpea crop in treatments (ii) and (iii) was compensated within three years, while the cowpea grain production was an additional benefit. Such compensation was however not observed for increasing number of preceding fallow years, showing that there is no additional production benefit in 5–7 years of fallow as compared to 2 years.The soil organic carbon content decreased more slowly in treatments with a cowpea pure crop in 1998 than in the millet pure crop, while overall higher contents were observed after preceding fallow also after four years of cropping. Striga hermonthica infestation decreased linearly with duration of preceding fallow, but also after seven years of fallow and one year of cowpea the hemi-parasitic weed still re-appeared. Overall the intensification through a cowpea pure crop and cowpea intercrop in these millet-based systems improved production and a number of other characteristics of the system, making it more viable.Treatments used in the experiments reported here are indicated by the following abbreviations, for further details see text below.  相似文献   

16.
分蘖型谷子资源的表型和遗传多样性分析   总被引:1,自引:0,他引:1  
本研究选用了来自国外及国内的68份分蘖型谷子进行了表型及遗传多样性分析。表型分析表明,质量性状以绿鞘、白谷黄米、圆锥穗、松散穗码居多,数量性状变异系数除出谷率较小外,其他性状表现了丰富的遗传变异,来自山西的小软谷单株穗重、单株穗粒重、千粒重均为最高,而来自黑龙江的大青谷单株穗粒重、出谷率、千粒重均为最低。遗传多样性分析结果表明,77对引物共检测出202个等位位点,每对引物可检测到1~6个位点不等,平均为2.62个;77对引物多态性信息含量(PIC)在0.0283~0.6974之间,平均多态性信息量(PIC)为0.4169,68份材料间的遗传相似系数变化范围为0.59~0.96,平均值为0.68。利用软件NTSYSpc 2.10的UPGMA聚类方法对68份谷子分蘖材料进行了聚类,这些材料被划分为4个类群,即Ⅰ、Ⅱ、Ⅲ和Ⅳ。Ⅰ类群主要来自西北地区谷子分蘖种质,Ⅱ类群主要来自国外谷子分蘖种质,Ⅲ类群包括华北、华东和东北的谷子分蘖种质,Ⅳ类群仅包括一个种质。结合表型鉴定出10份优势谷子分蘖种质。这些结果揭示68份谷子分蘖种质遗传多样性较好,研究结果为挖掘谷子分蘖优良基因及谷子分蘖育种提供理论依据。  相似文献   

17.
Buerkert  A.  Lamers  J. P. A. 《Plant and Soil》1999,215(2):239-253
It is well known that surface mulched crop residues (CR) lead to large yield increases of pearl millet (Pennisetum glaucum L.) on acid sandy soils of the West African Sahel. This effect is generally attributed to mulch-induced changes in chemical properties of the surface soil and the protection of millet seedlings from erosive sand storms. However, previous research has failed to separate the anti-erosive effects of CR on plant growth from chemical effects due to the release of nutrients during CR decomposition. To this end a mulching trial with surface applied millet stalks at a rate of 2000 kg ha-1, an equivalent 10% surface coverage obtained by inert polyethylene (PE) tubes and a bare control treatment was conducted from 1992 to 1994 on an acid sandy soil in southwest Niger. Across treatments, sand flux at 0.1 m height was more than twice as high in the rainy seasons than in the dry months and mulching reduced sand flux by between 25 and 50% during rainy season storms compared with 67% during the dry season. Over the 21 months measurement period, cumulative erosion by wind and water was almost 270 t ha-1 of soil in unmulched control plots. In mulched plots, in contrast, between 160 and 200 t ha-1 of soil was deposited. Surface soil temperature at 0.01 m depth reached above 40 °C in bare plots but was up to 4 °C lower with CR. Mulch reduced soil penetration resistance at 0–0.02 m and 0–0.05 depth by more than half and decreased runoff leading to higher water contents at flowering and grain filling in the upper 0.3 m soil layers in 1993 and throughout the entire profile in 1994, a year with particularly high rainfall. Both mulch types were similarly effective in increasing final stand density of millet in the first two years between 5 and 23% compared with bare control plots. Relative to the bare control CR mulch effects on total dry matter of millet at harvest increased from 35% in 1992 and 108% in 1993 to 283% in 1994, whereas PE mulch led to respective relative increases in dry matter of only 6, 44 and 13%. In 1992 and 1993, CR mulch increased total nutrient uptake of millet at harvest by between 34 and 86% for nitrogen (N), between 31 and 162% for P and between 56 and 126% for potassium (K). These differences were mostly the result of differences in total dry matter and only to a smaller part due to changed nutrient concentrations in plants. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
The free proline content in maize ear-leaves, silk and pollen were analyzed in field grown plants which had matured to the pollination stage. Using maize hybrids PR34F02, PR35P12 and PR36B08 field trials were set up at two locations in eastern Croatia in two different years. Two enzymes of proline metabolism were analyzed in the same leaf samples and specific activities of synthetase (P5CS) and proline dehydrogenase (PDH). Plant productivity was evaluated at harvest by the estimation of total and fully developed grain number per ear and per plant, the mean single grain mass, and the mass of grain per plant. The year in which the plants were grown had a very significant effect on the free proline content in the leaf and pollen, as well as on the enzyme activities assayed. The differences between the plants from the two localities were very significant in all tested parameters of plant grain productivity. There was a significant genotype effect on proline content and P5CS total activity in leaf and on all the productivity parameters. Some of the correlations established suggest that the rate of proline synthesis and degradation in maize ear-leaf at pollination might contribute to the final grain production of the maize plant. Multiple regression analyses was used to further analyze the relationship between proline and grain productivity, but it is clear that future work should include other environmental conditions, plant species and organs such as roots.Key words: maize, maize silk, plant productivity, pollen, proline, proline dehydrogenase, Δ1-pyrroline-5-carboxylate synthetase, Zea mays L.  相似文献   

19.
A significant reduction in the growth parameters viz., plant height, number of tillers, number of productive tillers, leaves, leaf area, 1000 grain weight and grain yield were observed in the mottle streak virus infected finger millet plants compared to healthy finger millet plants. The germination and vigour of seedlings from the seeds of infected plants were reduced. Physiological changes in finger millet as a result of virus infection were investigated. The chlorophyll pigments ‘a’ and ‘b’ as well as total chlorophyll were reduced due to mottle streak infection. The virus infection led to increased total sugar, starch, soluble protein and phenol contents. The mineral metabolism of infected plants showed a reduction in nitrogen, phosphorus, potassium, magnesium, calcium and iron.  相似文献   

20.
VOS  J; BIEMOND  H 《Annals of botany》1992,70(1):27-35
Potatoes (Solanum tuberosum L) were planted in pots in a temperature-controlledglasshouse to collect data on the rate of leaf apearance, leafexpansion, apical lateral branching and active life spans ofleaves The treatments consisted of three rates of nitrogen supply,i e the NI treatment with 2 5 g N per pot and the N2 and N3treatments with 8 and 16 g N per pot, respectively The rate of leaf appearance was 0·53 leaves d–1(one leaf per 28 °C d) and was negligibly affected by nitrogensupply The rate of leaf expansion was related to leaf numberand nitrogen supply The areas of mature leaves increased withleaf number on the main stem to reach a maximum for leaf numbers12–14, and declined for higher leaf numbers Leaves onapical lateral branches declined in mature area with increasein leaf number The expansion rate of leaves was the dominantfactor that determined the mature leaf area, irrespective ofleaf number and nitrogen treatment The smallest leaves wereobserved at the lowest rate of nitrogen supply Nitrogen promotedapical branching and hence the total number of leaves that appearedon a plant The proportion of total leaf area contributed byleaves on apical branches increased with time and nitrogen supply Active life span, i e the period of time between leaf appearanceand yellowing of the leaf, showed a similar relation to leafnumber as mature leaf area, at least in qualitative terms Leavesof the N3 treatment showed systematically longer life spansthan leaves of the NI and N2 treatment in the order of 3 weeksThe number of main stem leaves was not affected by nitrogensupply Potato, Solanum tuberosum L, leaf development, leaf extension, plant structure, nitrogen nutrition  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号