首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
2.
Noninvasive diffusing capacity and cardiac output in exercising dogs   总被引:1,自引:0,他引:1  
We have developed a rebreathing procedure to determine diffusing capacity (DLCO) and pulmonary blood flow (Qc) in the awake, exercising dog. A low dead space, leak-free respiratory mask with an incorporated mouthpiece was utilized to achieve mixing between the rebreathing bag and the dog's lung. The rebreathing bag was initially filled with approximately 1.0 liter of gas containing 0.6% C2H2, 0.3% C18O, 9% He, and 35-40% O2. End-tidal gas concentrations were measured with a respiratory mass spectrometer. The disappearance of C2H2 and C18O was measured with respect to He to calculate Qc and DLCO. Values for DLCO in dogs, expressed per kilogram of body weight, were much larger than those reported in humans. However, at a given level of absolute O2 consumption, measurements of absolute DLCO in dogs were comparable to those reported in humans by both rebreathing and steady-state methods at rest and near-maximal exercise. These results suggest that DLCO is more closely matched to the metabolic capacity (i.e., maximal O2 consumption) than to body size between these two species.  相似文献   

3.
4.
5.
Single-breath carbon monoxide diffusing capacity (DLco), pulmonary capillary blood volume (Vc), and membrane diffusing capacity (Dm) were measured in 24 beagle dogs aged 289-3,882 days. DLco and Vc were a function of age and alveolar volume (Va). Vc decreased with age resulting in changes in DLco. Changes in Vc may have been due to pulmonary morphological changes or to an exaggerated decrease in pulmonary blood flow in old dogs in response to 20-30 cmH-2O transpulmonary pressure. There was no age-related change in Dm.  相似文献   

6.
7.
Vaïda, Pierre, Christian Kays, Daniel Rivière,Pierre Téchoueyres, and Jean-Luc Lachaud.Pulmonary diffusing capacity and pulmonary capillary blood volumeduring parabolic flights. J. Appl.Physiol. 82(4): 1091-1097, 1997.Data from theSpacelab Life Sciences-1 (SLS-1) mission have shown sustained butmoderate increase in pulmonary diffusing capacity(DL). Because of the occupational constraints of the mission, data were only obtained after24 h of exposure to microgravity. Parabolic flights are often used tostudy some effects of microgravity, and we measured changes inDL occurring at the very onsetof weightlessness. Measurements ofDL, membrane diffusing capacity,and pulmonary capillary blood volume were made in 10 male subjectsduring the 20-s 0-G phases of parabolic flights performed by the"zero-G" Caravelle aircraft. Using the standardized single-breathtechnique, we measuredDL for CO andnitric oxide simultaneously. We found significant increases inDL for CO (62%),in membrane diffusing capacity for CO (47%), inDL for nitric oxide (47%), andin pulmonary capillary blood volume (71%). We conclude that majorchanges in the alveolar membrane gas transfers and in the pulmonarycapillary bed occur at the very onset of microgravity. Because thesechanges are much greater than those reported during sustainedmicrogravity, the effects of rapid transition from hypergravity tomicrogravity during parabolic flights remain questionable.

  相似文献   

8.
In normal gravity, lung diffusing capacity (DL(CO)) and lung tissue volume (LTV; including pulmonary capillary blood volume) change in concert, for example, during shifts between upright and supine. Accordingly, DL(CO) and LTV might be expected to decrease together in sitting subjects in hypergravity due to peripheral pooling of blood and reduced central blood volume. Nine sitting subjects in a human centrifuge were exposed to one, two, and three times increased gravity in the head-to-feet direction (G(z+)) and rebreathed a gas containing trace amounts of acetylene and carbon monoxide. DL(CO) was 25.2 +/- 2.6, 20.0 +/- 2.1, and 16.7 +/- 1.7 ml. min(-1). mbar(-1) (means +/- SE) at 1, 2, and 3 G(z+), respectively (ANOVA P < 0.001). Corresponding values for LTV increased from 541 +/- 34 to 677 +/- 43, and 756 +/- 71 ml (P < 0.001) at 2 and 3 G(z+). Results are compatible with sequestration of blood in the dependent part of the pulmonary circulation just as in the systemic counterpart. DL(CO,) which under normoxic conditions is mainly determined by its membrane component, decreased despite an increased pulmonary capillary blood volume, most likely as a consequence of a less homogenous distribution of alveolar volume with respect to pulmonary capillary blood volume.  相似文献   

9.
10.
Pulmonary diffusing capacity at high altitude   总被引:4,自引:0,他引:4  
  相似文献   

11.
Pulmonary diffusing capacity after maximal exercise   总被引:4,自引:0,他引:4  
  相似文献   

12.
Both in normal subjects exposed to hypergravity and in patients with acute respiratory distress syndrome, there are increased hydrostatic pressure gradients down the lung. Also, both conditions show an impaired arterial oxygenation, which is less severe in the prone than in the supine posture. The aim of this study was to use hypergravity to further investigate the mechanisms behind the differences in arterial oxygenation between the prone and the supine posture. Ten healthy subjects were studied in a human centrifuge while exposed to 1 and 5 times normal gravity (1 G, 5 G) in the anterioposterior (supine) and posterioanterior (prone) direction. They performed one rebreathing maneuver after approximately 5 min at each G level and posture. Lung diffusing capacity decreased in hypergravity compared with 1 G (ANOVA, P = 0.002); it decreased by 46% in the supine posture compared with 25% in the prone (P = 0.01 for supine vs. prone). At the same time, functional residual capacity decreased by 33 and 23%, respectively (P < 0.001 for supine vs. prone), and cardiac output by 40 and 31% (P = 0.007 for supine vs. prone), despite an increase in heart rate of 16 and 28% (P < 0.001 for supine vs. prone), respectively. The finding of a more impaired diffusing capacity in the supine posture compared with the prone at 5 G supports our previous observations of more severe arterial hypoxemia in the supine posture during hypergravity. A reduced pulmonary-capillary blood flow and a reduced estimated alveolar volume can explain most of the reduction in diffusing capacity when supine.  相似文献   

13.
14.
15.
16.
17.
A model has been developed to quantify the effectiveness of alveolar-capillary transport in the presence of ventilation inhomogeneity. The exhalation dynamics of carbon monoxide (CO), argon (Ar), and lung volume from a single-breath experiment are analyzed simultaneously. A membrane transport coefficient (MTCO) that does not vary with lung volume is evaluated by a two-stage optimization procedure and related to diffusing capacity. Also, the model allows for a decrease in membrane transport rate associated with reduced lung volume. The model is tested by simulation studies and experiments with human subjects having normal or diseased (mainly obstructed) lungs. The MTCO provides a clear distinction between normal and obstructed lungs with respect to alveolar-capillary transport, whereas the semilog slope of the Ar alveolar plateau characterizes the ventilation inhomogeneity. Only when the diffusing capacity is corrected by the Ar slope, DLCO(Ar), do the breathing maneuvers performed from different preinflation volumes (residual volume or functional residual capacity) yield the same results for lungs with ventilation inhomogeneity. The uncorrected DLCO overestimates the effectiveness of alveolar-capillary transport in the presence of ventilation inhomogeneity.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号