首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
HIV-tat protein, like TNF, activates a wide variety of cellular responses, including NF-kappa B, AP-1, c-Jun N-terminal kinase (JNK), and apoptosis. Whether HIV-tat transduces these signals through the same mechanism as TNF is not known. In the present study we investigated the role of the T cell-specific tyrosine kinase p56lck in HIV-tat and TNF-mediated cellular responses by comparing the responses of Jurkat T cells with JCaM1 cells, an isogeneic lck-deficient T cell line. Treatment with HIV-tat protein activated NF-kappa B, degraded I kappa B alpha, and induced NF-kappa B-dependent reporter gene expression in a time-dependent manner in Jurkat cells but not in JCaM1 cells, suggesting the critical role of p56lck kinase. These effects were specific to HIV-tat, as activation of NF-kappa B by PMA, LPS, H2O2, and TNF was minimally affected. p56lck was also found to be required for HIV-tat-induced but not TNF-induced AP-1 activation. Similarly, HIV-tat activated the protein kinases JNK and mitogen-activated protein kinase kinase in Jurkat cells but not in JCaM1 cells. HIV-tat also induced cytotoxicity, activated caspases, and reactive oxygen intermediates in Jurkat cells, but not in JCaM1 cells. HIV-tat activated p56lck activity in Jurkat cells. Moreover, the reconstitution of JCaM1 cells with p56lck tyrosine kinase reversed the HIV-tat-induced NF-kappa B activation and cytotoxicity. Overall, our results demonstrate that p56lck plays a critical role in the activation of NF-kappa B, AP-1, JNK, and apoptosis by HIV-tat protein but has minimal or no role in activation of these responses by TNF.  相似文献   

2.
Ceramide has been implicated as an intermediate in the signal transduction of several cytokines including tumor necrosis factor (TNF). Both ceramide and TNF activate a wide variety of cellular responses, including NF-kappaB, AP-1, JNK, and apoptosis. Whether ceramide transduces these signals through the same mechanism as TNF is not known. In the present study we investigated the role of the T cell-specific tyrosine kinase p56(lck) in ceramide- and TNF-mediated cellular responses by comparing the responses of Jurkat T cells with JCaM1 cells, isogeneic Lck-deficient T cells. Treatment with ceramide activated NF-kappaB, degraded IkappaBalpha, and induced NF-kappaB-dependent reporter gene expression in a time-dependent manner in Jurkat cells but not in JCaM1 cells, suggesting the critical role of p56(lck) kinase. These effects were specific to ceramide, as activation of NF-kappaB by phorbol 12-myristate 13-acetate, lipopolysaccharide, H(2)O(2), and TNF was minimally affected. p56(lck) was also found to be required for ceramide-induced but not TNF-induced AP-1 activation. Similarly, ceramide activated the protein kinases JNK and mitogen-activated protein kinase kinase in Jurkat cells but not in JCaM1 cells. Ceramide also induced cytotoxicity and activated caspases and reactive oxygen intermediates in Jurkat cells but not in JCaM1 cells. Ceramide activated p56(lck) activity in Jurkat cells. Moreover, the reconstitution of JCaM1 cells with p56(lck) tyrosine kinase reversed the ceramide-induced NF-kappaB activation and cytotoxicity. Overall our results demonstrate that p56(lck) plays a critical role in the activation of NF-kappaB, AP-1, JNK, and apoptosis by ceramide but has minimal or no role in activation of these responses by TNF.  相似文献   

3.
Inhibition of p56(lck) tyrosine kinase by isothiazolones   总被引:1,自引:0,他引:1  
Lck encodes a 56-kDa protein-tyrosine kinase, predominantly expressed in T lymphocytes, crucial for initiating T cell antigen receptor (TCR) signal transduction pathways, culminating in T cell cytokine gene expression and effector functions. As a consequence of a high-throughput screen for selective, novel inhibitors of p56(lck), an isothiazolone compound was identified, methyl-3-(N-isothiazolone)-2-thiophenecarboxylate(A-125800), which inhibits p56(lck) kinase activity with IC50 = 1-7 microM. Under similar assay conditions, the isothiazolone compound was equipotent in blocking the ZAP-70 tyrosine kinase activity but was 50 to 100 times less potent against the catalytic activities of p38 MAP kinase and c-Jun N-terminal kinase 2alpha. A-125800 blocked activation-dependent TCR tyrosine phosphorylation and intracellular calcium mobilization in Jurkat T cells (IC50 = 35 microM) and blocked T cell proliferation in response to alloantigen (IC50 = 14 microM) and CD3/CD28-induced IL-2 secretion (IC50 = 2.2 microM) in primary T cell cultures. Inhibition of p56(lck )by A-125800 was dose- and time-dependent and was irreversible. A substitution of methylene for the sulfur atom in the isothiazolone ring of the compound completely abrogated the ability to inhibit p56(lck) kinase activity and TCR-dependent signal transduction. Incubation with thiols such as beta-ME or DTT also blocked the ability of the isothiazolone to inhibit p56(lck) kinase activity. LC/MS analysis established the covalent modification of p56(lck) at cysteine residues 378, 465, and 476. Together these data support an inhibitory mechanism, whereby cysteine -SH groups within the p56(lck) catalytic domain react with the isothiazolone ring, leading to ring opening and disulfide bond formation with the p56(lck) enzyme. Loss of p56(lck) activity due to -SH oxidation has been suggested to play a role in the pathology of AIDS. Consequently, a similar mechanism of sulfhydryl oxidation leading to p56(lck) inhibition, described in this report, may occur in the intact T cell and may underlie certain T cell pathologies.  相似文献   

4.
To understand the mechanism of p56lck protein downregulation observed in human T cells infected by human T-cell leukemia virus type 1 (HTLV-1), we have investigated the ability of the 3' end of the HTLV-1 genome as well as that of the tax and rex genes to modulate p56lck protein expression and p56lck mRNA synthesis. By using Jurkat T cells stably transfected with constructs that expressed either the 3' end of the HTLV-1 genome (JK C11-pMTEX), the tax gene (JK52-Tax) or the rex gene (JK9-Rex), we found that the expression of p40tax (Tax) was sufficient to modulate p56lck protein expression. Similarly, we found that the expression of the mRNA which encoded p56lck was repressed in Jurkat T cells which expressed Tax. This downregulation was shown to be proportional to the amount of tax mRNA found in the transfected cells, as evidenced by experiments that used cells (JPX-9) stably transfected with a tax gene driven by a cadmium-inducible promoter. Furthermore, cadmium induction of Tax in JPX-9 cells transiently transfected with a construct containing the chloramphenicol acetyltransferase (CAT) gene under control of the lck distal promoter (lck DP-CAT) resulted in the downregulation of CAT gene expression. In contrast, cadmium induction of Tax in JPX-9 cells transiently transfected with a CAT construct driven by a lck DP with a deletion extending from position -259 to -253 (a sequence corresponding to a putative E-Box) did not modulate CAT gene expression, suggesting that the effect of Tax on p56lck is mediated through an E-Box binding protein.  相似文献   

5.
6.
《The Journal of cell biology》1996,135(6):1515-1523
p56lck (Lck) is a lymphoid-specific Src family tyrosine kinase that is critical for T-cell development and activation. Lck is also a membrane protein, and approximately half of the membrane-associated Lck is associated with a glycolipid-enriched membrane (GEM) fraction that is resistant to solubilization by Triton X-100 (TX-100). To compare the membrane-associated Lck present in the GEM and TX-100-soluble fractions of Jurkat cells, Lck from each fraction was immunoblotted with antibody to phosphotyrosine. Lck in the GEM fraction was found to be hyperphosphorylated on tyrosine, and this correlated with a lower kinase specific activity relative to the TX-100-soluble Lck. Peptide mapping and phosphatase diagests showed that the hyperphosphorylation and lower kinase activity of GEM-associated Lck was due to phosphorylation of the regulatory COOH-terminal Tyr505. In addition, we determined that the membrane-bound tyrosine phosphatase CD45 was absent from the GEM fraction. Cells lacking CD45 showed identical phosphorylation of Lck in GEM and TX-100-soluble membranes. We propose that the GEM fraction represents a specific membrane domain present in T-cells, and that the hyperphosphorylation of tyrosine and lower kinase activity of GEM-associated Lck is due to exclusion of CD45 from these domains. Lck associated with the GEM domains may therefore consitute a reservoir of enzyme that can be readily activated.  相似文献   

7.
The main biological properties of lactoferrin are thought to concern inflammation and immunomodulation processes, including maturation of immature B and T cells. Lactoferrin accelerates T-cell maturation by inducing the expression of the CD4 surface marker. In this report, using the Jurkat T-cell line, we have shown that lactoferrin upregulates the expression of CD4 antigen through the activation of a transduction pathway. Using an anti-phosphotyrosine antibody, lactoferrin was demonstrated to induce a cascade of phosphorylation of numerous proteins on their tyrosine residues. This tyrosine-phosphorylation was transient, reaching maxima between 5 and 10 min. We also identified the mitogen-activated protein kinase (MAP kinase) which presented an enhanced catalytic activity, reaching a maximum at 10 min of incubation with lactoferrin. Moreover, the use of inhibitors such as genistein and PD98059, tyrosine kinases and MAP kinase kinase (or MEK) inhibitors respectively, allowed us to correlate the activation of MAP kinase with the upregulation of CD4 expression. Finally, using Lck-defective Jurkat cells, our results showed that the p56(lck) (Lck) kinase is necessary for MAP kinase activity and CD4 expression. This paper demonstrates that lactoferrin activates transduction pathway(s) in lymphoblastic T-cells, and that Lck and the Erk2 isoform of MAP kinase are implicated in the upregulation of CD4, induced by lactoferrin in these cells.  相似文献   

8.
Incubation of the human T cells, Jurkat, with two sets of activating anti-CD2 mAb (T11(2) + T11(3), D66 + T11(1)) induced delocalization of p56lck and CD2 receptors from the plasma membrane and increased the tyrosine kinase activity of p56lck. The anti-CD2 mAb combination (T11(2) + T11(3)) that produced the most rapid increase in p56lck kinase activity also induced the most rapid delocalization of the kinase. In stimulated cells, both p56lck and CD2 receptors are detected in cytoplasmic vesicles. The internalization of p56lck in endocytic vesicles was established by confocal microscopy. By double staining it was shown that only part of the p56lck colocalized with the internalized CD2 receptor suggesting distinct sorting processes. Internalization of p56lck appeared to be specific of CD2 stimulation as: 1) in Jurkat cells triggered with an anti-CD3 mAb, p56lck was not internalized whereas CD3 receptors were completely endocytosed; 2) when cells were stimulated via CD4, the kinase and CD4 receptors remained associated with the plasma membrane. In addition, internalization of p56lck upon stimulation of CD2 receptors was not modified in CD2+/CD3-Jurkat cells indicating that CD3 is not involved in this process. The identification of different subcellular localizations of p56lck in resting and stimulated T cells should represent an important step in the definition of its functional activity.  相似文献   

9.
We have recently reported that tyrosine kinase, p56(lck) regulates cell motility and nuclear factor kappaB-mediated secretion of urokinase-type plasminogen activator (uPA) through tyrosine phosphorylation of IkappaBalpha following hypoxia/reoxygenation (Mahabeleshwar, G. H., and Kundu, G. C. (2003) J. Biol. Chem. 278, 52598-52612). However, the role of hypoxia/reoxygenation (H/R) on ERK1/2-mediated uPA secretion and cell motility and the involvement of p56(lck) and EGF receptor in these processes in breast cancer cells is not well defined. We provide here evidence that H/R induces Lck kinase activity and Lck-dependent tyrosine phosphorylation of EGF receptor in highly invasive (MDA-MB-231) and low invasive (MCF-7) breast cancer cells. H/R also stimulates MEK-1 and ERK1/2 phosphorylations, and H/R-induced phosphorylations were suppressed by the dominant negative form of Lck (DN Lck, K273R) as well as pharmacological inhibitors of EGF receptor and Lck indicating that EGF receptors and Lck are involved in these processes. Transfection of these cells with wild type Lck or Lck F505 (Y505F) but not with Lck F394 (Y394F) induced phosphorylations of EGF receptor followed by MEK-1 and ERK1/2, suggesting that Lck is upstream of EGF receptor and Tyr-394 of Lck is crucial for these processes. H/R also induced uPA secretion and cell motility in these cells. DN Lck and inhibitors of Lck, EGF receptor, and MEK-1 suppressed H/R-induced uPA secretion and cell motility. To our knowledge, this is the first report that p56(lck) in presence of H/R regulates MEK-1-dependent ERK1/2 phosphorylation and uPA secretion through tyrosine phosphorylation of EGF receptor, and it further demonstrates that all of these signaling molecules ultimately control the motility of breast cancer cells.  相似文献   

10.
Mutation of the major site of in vivo tyrosine phosphorylation of p56lck (tyrosine 505) to a phenylalanine constitutively enhances the p56lck-associated tyrosine-specific protein kinase activity. The mutant polypeptide is extensively phosphorylated in vivo at the site of in vitro Lck autophosphorylation (tyrosine 394) and is capable of oncogenic transformation of rodent fibroblasts. These observations have suggested that phosphorylation at Tyr-505 down regulates the tyrosine protein kinase activity of p56lck. Herein we have attempted to examine whether other posttranslational modifications may be involved in regulation of the enzymatic function of p56lck. The results indicated that activation of p56lck by mutation of Tyr-505 was prevented by a tyrosine-to-phenylalanine substitution at position 394. Furthermore, activation of p56lck by mutation of the carboxy-terminal tyrosine residue was rendered less efficient by substituting an alanine residue for the amino-terminal glycine. This second mutation prevented p56lck myristylation and stable membrane association and was associated with decreased in vivo phosphorylation at Tyr-394. Taken together, these findings imply that lack of phosphorylation at Tyr-505 may be insufficient for enhancement of the p56lck-associated tyrosine protein kinase activity. Our data suggest that activation of p56lck may be dependent on phosphorylation at Tyr-394 and that this process may be facilitated by myristylation, membrane association, or both.  相似文献   

11.
12.
The tyrosine protein kinase p56lck transduces signals important for antigen-induced T-cell activation. In transgenic mice, p56lck is oncogenic when overexpressed or expressed as a mutant, catalytically activated enzyme. In humans, the LCK gene is located at the breakpoint of the t(1;7)(p34;q34) chromosomal translocation. This translocation positions the beta T-cell receptor constant region enhancer upstream of the LCK gene without interrupting the LCK coding sequences, and a translocation of this sort occurs in both the HSB2 and the SUP-T-12 T-cell lines. We have found that, although the level of the p56lck protein in HSB2 cells is elevated approximately 2-fold in comparison with that in normal T-cell lines, total cellular tyrosine protein phosphorylation is elevated approximately 10-fold. Increased levels of phosphotyrosine in HSB2 cells resulted from mutations in the LCK gene that activated its function as a phosphotransferase and converted it into a dominant transforming oncogene. The oncogenic p56lck in HSB2 cells contained one amino acid substitution within the CD4/CD8-binding domain, two substitutions in the kinase domain, and an insertion of Gln-Lys-Pro (QKP) between the SH2 and kinase domains. In NIH 3T3 fibroblasts, three of these mutations cooperated to produce the fully oncogenic form of this p56lck variant. These results suggest that mutation of LCK may contribute to some human T-cell leukemias.  相似文献   

13.
Palmitoylation can regulate both the affinity for membranes and the biological activity of proteins. To study the importance of the palmitoylation of the Src-like tyrosine protein kinase p56lck in the function of the protein, Cys-3, Cys-5, or both were mutated to serine, and the mutant proteins were expressed stably in fibroblasts and T cells. Both Cys-3 and Cys-5 were apparent sites of palmitoylation in Lck expressed in fibroblasts, as only the simultaneous mutation of both Cys-3 and Cys-5 caused a large reduction in the incorporation of [3H]palmitic acid. The double mutant S3/5Lck was no longer membrane bound when examined by either immunofluorescence or cell fractionation. This indicated that palmitoylation was required for association of Lck with the plasma membrane. Since the S3/5Lck protein was myristoylated, myristoylation of Lck is not sufficient for membrane binding. When Cys-3, Cys-5, or both Cys-3 and Cys-5 were changed to serine in activated F505Lck, palmitoylation of either Cys-3 or Cys-5 was found to be necessary and sufficient for the transformation of fibroblasts and for the induction of spontaneous, antigen-independent interleukin-2 production in the T-helper cell line DO-11.10. Nonpalmitoylated F505Lck exhibited little activity in vivo, where it did not induce elevated levels of tyrosine phosphorylation, and in vitro, where it was unable to phosphorylate angiotensin in an in vitro kinase assay. These findings suggest that F505Lck must be anchored stably to membranes to become activated. Because palmitoylation is dynamic, it may be involved in regulating the cellular localization of p56(lck), and consequently its activity, by altering the proximity of p56(lck) to its activators and/or targets.  相似文献   

14.
Ligation of the CD3 receptor induces multiple signal transduction events that modify the activation state of the T cell. We have compared two lines that express biologically active CD3 receptors but differ in their biochemical activation pathways during ligation of this receptor. Jurkat cells respond to anti-CD3 with Ca2+ mobilization, PKC activation, induction of protein tyrosine phosphorylation, and activation of newly characterized lymphoid microtubule associated protein-2 kinase (MAP-2K). MAP-2K itself is a 43-kDa phosphoprotein that requires tyrosine phosphorylation for activation. Although ligation of the CD3 receptor in HPB-ALL could stimulate tyrosine phosphorylation of a 59- kDa substrate, there was no associated induction of [Ca2+]i flux, PKC, or MAP-2K activation. A specific PKC agonist, PMA, which bypasses the CD3 receptor, could, however, activate MAP-2K in HPB-ALL cells. This implies that defective stimulation of PKC by the CD3 receptor is responsible for its failure to activate MAP-2K in HPB-ALL. The defect in PKC activation is likely distal to the CD3 receptor as A1F14- failed to activate MAP-2K in HPB-ALL but was effective in Jurkat cells. The stimulatory effect of PMA on MAP-2K activity in HPB-ALL was accompanied by tyrosine phosphorylation of this kinase which implies that PKC may, in some way, regulate tyrosine phosphorylation of MAP-2K. A candidate for this role is pp56lck which underwent posttranslational modification (seen as mobility change on SDS-PAGE) during anti-CD3 and PMA stimulation in Jurkat or PMA treatment in HPB-ALL. There was, in fact, exact coincidence between induction of PKC activity, posttranslational modification of lck and tyrosine phosphorylation/activation of MAP-2K. Lck kinase activity in an immune complex kinase assay was unchanged during PMA treatment. An alternative explanation is that modification of lck may alter its substrate profile. We therefore looked at the previously documented ability of PKC to dissociate lck from the CD4 receptor and found that PMA could reduce the stoichiometry of the lck interaction with CD4 in HPB-ALL and to a lesser extent in Jurkat cells. These results imply the existence of a kinase cascade that is initiated by PKC and, in the course of which, lck and MAP-2K may interact.  相似文献   

15.
Protein tyrosine kinases participate in the transduction and modulation of signals that regulate proliferation and differentiation of cells. Excessive or deregulated protein tyrosine kinase activity can cause malignant transformation. The catalytic activity of the T cell protein tyrosine kinase p56lck is normally suppressed by phosphorylation of a carboxyl-terminal tyrosine, Tyr-505, by another cellular protein tyrosine kinase. Here we characterize a human cytosolic 50 kDa protein tyrosine kinase, p50csk, which specifically phosphorylates Tyr-505 of p56lck and a synthetic peptide containing this site. Phosphorylation of Tyr-505 suppressed the catalytic activity of p56lck. We suggest that p50csk negatively regulates p56lck, and perhaps other cellular src family kinases.  相似文献   

16.
The catalytic activity of p56lck is repressed by phosphorylation of a conserved carboxy-terminal tyrosine residue (tyrosine 505). Accumulating data show that this phosphorylation is mediated by the tyrosine protein kinase p50csk and that it is reversed by the transmembrane tyrosine protein phosphatase CD45. Recent studies have indicated that dephosphorylation of tyrosine 505 in resting T cells is necessary for the initiation of antigen-induced T-cell activation. To better understand this phenomenon, we have characterized the factors regulating tyrosine 505 phosphorylation in an antigen-specific T-cell line (BI-141). As is the case for other T-cell lines, Lck molecules from unstimulated BI-141 cells exhibited a pronounced dephosphorylation of the inhibitory carboxyl-terminal tyrosine. This state could be corrected by incubation of cells with the tyrosine protein phosphatase inhibitor pervanadate, suggesting that it reflected the unrestricted action of tyrosine protein phosphatases. In structure-function analyses, mutation of the site of Lck myristylation (glycine 2) partially restored phosphorylation at tyrosine 505 in BI-141 cells. Since the myristylation-defective mutant also failed to stably associate with cellular membranes, this effect was most probably the consequence of removal of p56lck from the vicinity of membrane phosphatases like CD45. Deletion of the unique domain of Lck, or its replacement by the equivalent sequence from p59fyn, also increased the extent of tyrosine 505 phosphorylation in vivo. This effect was unrelated to changes in Lck membrane association and therefore was potentially related to defects in crucial protein-protein interactions at the membrane. In contrast, deletion of the SH3 or SH2 domain, or mutation of the phosphotransfer motif (lysine 273) or the site of autophosphorylation (tyrosine 394), had no impact on phosphate occupancy at tyrosine 505. In combination, these results indicated that the hypophosphorylation of the inhibitory tyrosine of p56(lck) in T lymphocytes is likely the result of the predominant action of tyrosine protein phosphatases. Moreover, they showed that both the amino-terminal myristylation signal and the unique domain of p56(lck) play critical roles in this process.  相似文献   

17.
The catalytic function of Src-related tyrosine protein kinases is repressed by phosphorylation of a conserved carboxy-terminal tyrosine residue. Recent studies suggest that this inhibitory event is not the result of autophosphorylation but that it is mediated by another cytoplasmic tyrosine protein kinase, termed p50csk. In this report, we have evaluated the processes regulating the extent of phosphorylation of the inhibitory carboxy-terminal tyrosine residue of p56lck, a lymphocyte-specific member of the Src family. By analyzing kinase-defective variants of p56lck expressed in mouse NIH 3T3 cells, we have found that the noncatalytic Src homology 2 (SH2) domain, but not the SH3 sequence or the sites of Lck myristylation and autophosphorylation, is necessary for stable phosphorylation at the carboxy-terminal tyrosine 505. Further studies in which Lck and Csk were coexpressed in S. cerevisiae indicated that the absence of the SH2 domain did not affect the ability of Csk to phosphorylate p56lck at tyrosine 505. However, we observed that incubation of cells with the tyrosine phosphatase inhibitor pervanadate restored the tyrosine 505 phosphorylation of Lck polypeptides devoid of the SH2 motif. Additionally, the presence of the SH2 sequence protected tyrosine 505 from in vitro dephosphorylation by the hemopoietic tyrosine protein phosphatase CD45. Taken together, these findings raised the possibility that the SH2 motif contributes to the physiological suppression of the catalytic function of p56lck at least in part through its ability to stabilize phosphorylation at the inhibitory site.  相似文献   

18.
The Lck Tyrosine Kinase Is Expressed in Brain Neurons   总被引:1,自引:0,他引:1  
Abstract: The lck gene product, p56lck, is a member of the src-related family of protein tyrosine kinases. It is known as lymphocyte specific and involved in thymocyte development and in the immune response mediated by the T cell receptor. We report that the lck gene is also expressed in adult mouse CNS and that brain p56lck is similar to the thymus protein. In situ hybridization and immunohistochemistry show that the lck gene is expressed in neurons throughout the brain in distinct regions, including hippocampus and cerebellum. In primary cultures from fetal mouse brain, neuronal cells are immunoreactive to Lck antiserum. This suggests that the lck gene product might be involved in a new signal transduction pathway in mouse brain.  相似文献   

19.
Infections are thought to be important in the pathogenesis of many heart diseases. Coxsackievirus B3 (CVB3) has been linked to chronic dilated cardiomyopathy, a common cause of progressive heart disease, heart failure and sudden death. We show here that the sarcoma (Src) family kinase Lck (p56lck) is required for efficient CVB3 replication in T-cell lines and for viral replication and persistence in vivo. Whereas infection of wild-type mice with human pathogenic CVB3 caused acute and very severe myocarditis, meningitis, hepatitis, pancreatitis and dilated cardiomyopathy, mice lacking the p56lck gene were completely protected from CVB3-induced acute pathogenicity and chronic heart disease. These data identify a previously unknown function of Src family kinases and indicate that p56lck is the essential host factor that controls the replication and pathogenicity of CVB3.  相似文献   

20.
We report that stimulation of both primary human and Jurkat T lymphocytes with the calcium ionophore ionomycin, or A23187, results in the phosphorylation of p56(Lck) as determined by shifts in mobility of p56(Lck) on immunoblots. The shifts in the mobility of p56(Lck) induced by ionomycin could be blocked by preincubation of the cells with EGTA, demonstrating the requirement for extracellular calcium in this response. Although increases in intracellular calcium have been shown to modulate CD45 activity, phosphorylation of p56(Lck) was not mediated via CD45. Ionomycin stimulation of J45. 01 cells, a CD45-negative Jurkat cell derivative, also resulted in p56(Lck) mobility shifts. Instead, this response appears to be mediated via a calmodulin-dependent kinase. This response could be blocked by calmidazolium, an inhibitor of calmodulin, and KN-93, an inhibitor of calmodulin-dependent kinases (CaM-Kinase). KN-92, an inactive analog of KN-93, failed to block this response. These studies demonstrate a new role for calcium and CaM-Kinase in human T-lymphocytes and describe a novel mechanism by which p56(Lck) can be modulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号