首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To investigate the dynamics of animal intake and production in grassland-based suckler systems, we constructed a model for suckling cows with their calves. The model calculates on a day-to-day basis the selective intake at pasture and the animal production (weight, condition, milk production) in response to energy intake. The model dynamically applies the feed evaluation systems developed by the INRA: the “cattle fill unit” system to predict forage intake, and the “feed unit” system to predict net energy requirements and supply. To predict intake at pasture, we adapted the cattle fill unit system by adding effects of herbage availability and sward structural composition on the amount and quality of intake.At pasture, the grazeable herbage is divided into structural components characterized by their biomass and digestibility. The model predicts the composition of the diet, assuming that the most digestible and abundant components of herbage are preferred. The amount of herbage ingested depends on the animal profile, the digestibility of the diet and the amount of herbage available. Sward depletion by animal intake at pasture has feedback effects on herbage growth and quality, which can be calculated by a vegetation model. Animal production is calculated based on net energy balance, which is the difference between net energy intake and net energy requirements for maintenance (for cow and calf), gestation and lactation (for the cow). The net energy balance determines weight and condition gain or loss, and – after 3 months of lactation – influences milk production the following day. Changes in weight and condition have feedback effects on energy requirements and intake capacity.Sensitivity analysis on the input values highlighted the importance of forage digestibility for the production of cows and calves. Calf growth was also driven over 3 months old by calf live weight, and under 3 months old by the milk production of the cow. The model's response to stocking rate during the grazing down of a paddock was consistent with current knowledge. The model was validated against experimental data for cows fed indoors or at pasture, at different feed allowances. Model predictions were precise for the digestibility of intake and for live weight (error represents 2–3% of the average observed value), satisfactory for dry matter intake, body condition score and milk production at the beginning of lactation (error represents 10% of the average observed value), and very imprecise for milk production after the third month of lactation (error represents 23% of the average observed value), but the latter had small consequences on calf live weight.  相似文献   

2.
Intensive livestock grazing can largely deplete the natural fodder resources in semi-arid, subtropical highlands and together with the low nutritional quality of the pasture vegetation limit the growth and production of grazing animals. To evaluate the contribution of homestead feeding of grazing goats to rangeland conservation and animal nutrition, two researcher-managed on-farm trials were conducted in a mountain oasis of Northern Oman. Goats' feed intake on pasture in response to four rations containing different levels of locally available green fodder and concentrate feeds was determined in six male goats each (35 ± 10.2 kg body weight (BW)). Total feed intake was estimated using titanium dioxide as external fecal marker as well as the diet organic matter (OM) digestibility derived from fecal crude protein concentration. The nutritional quality of selected fodder plants on pasture was analyzed to determine the animals' nutrient and energy intake during grazing. The pasture vegetation accounted for 0.46 to 0.65 of the goats' total OM intake (87 to 107 g/kg0.75 BW), underlining the importance of this fodder resource for the husbandry system. However, metabolizable energy (7.2 MJ/kg OM) and phosphorus concentrations (1.4 g/kg OM) in the consumed pasture plants were low. Homestead feeding of nutrient and energy-rich by-products of the national fishery and date palm cultivation to grazing goats increased their daily OM intake (R2 = 0.36; P = 0.005) and covered their requirements for growth and production. While the OM intake on pasture was highest in animals fed a concentrate-based diet (P = 0.003), the daily intake of 21 g OM/kg0.75 BW of cultivated green fodder reduced the animals' feed intake on pasture (R2 = 0.44; P = 0.001). Adjusting homestead supplementation with locally available feedstuffs to the requirements of individual goats and to the nutritional quality of the pasture vegetation improves animal performance and eases the grazing pressure exerted on the natural vegetation. This management strategy therefore appears to be a valuable alternative to intensive livestock feeding in zero-grazing systems and may contribute to sustainable livestock production in ecologically fragile, semi-arid mountain regions.  相似文献   

3.
基于小嵩草(Kobresia parva)草甸连续2 a的牦牛放牧试验,研究了暖季和冷季放牧草场地上地下生物量及其分配规律、不同植物类群的绝对生长率生长率,探讨了放牧制度和放牧强度对不同植物类群补偿效应的影响。结果表明,随着放牧强度的增加地上总生物量呈减小趋势,放牧强度对暖季草场地上总生物量的影响极显著(P?0.01),对冷季草场地上总生物量的影响不显著(P?0.05);两季放牧草场各土壤层地下生物量随放牧强度的增加呈明显下降趋势,放牧强度对暖季放牧各土壤层地下生物量的影响显著(P?0.05),对冷季放牧各土壤层地下生物量的影响不显著(P?0.05);冷季放牧草场牧草生长季地下生物量与地上生物量的比值随放牧强度的增大而减小,暖季放牧草场对照区地下生物量与地上生物量的比值低于轻度放牧和中度放牧、高于重度放牧;暖季放牧草场各放牧处理不同植物类群均存在超补偿生长,但莎草科和禾本科植物的超补偿生长在8月份,阔叶植物的超补偿生长发生在6月和7月份,禾本科植物的超补偿生长效应强于莎草科植物和阔叶植物,轻度和中度放牧的补偿效应更明显;冷季放牧下不同植物类群也存在超补偿生长,但补偿效应不明现。因此,暖季适度(轻、中度)放牧利用更有利于产生超补偿生长,而重度利用对植被的稳定产生潜在的不利影响。  相似文献   

4.
Pasture management that considers pasture growth dynamics remains an open question. Conceptually, such management must allow for grazing only after the recuperation of the pasture between two separate timely grazing periods when pasture reaches optimum recovery, as per the first law of Voisin’s rational grazing system. The optimum recovery period not only implies a pasture with better nutritional value and higher biomass yield but one that also reduces the production of enteric methane (CH4) to improve the grazing efficiency of cattle. Therefore, this study aimed to evaluate three different recovery periods (RP) of mixed grasses on the grazing behaviour of heifers, as well as herbage selectivity, herbage yield and nutritional value, in vitro degradability and CH4 production. Based on these criteria, three pasture RPs of 24 (RP24), 35 (RP3) and 46 (RP46) days were evaluated in six blocks using a randomized block design. At each predetermined RP, samples of the pasture were taken before the animals were allowed to graze. Right after collecting the pasture samples, heifers accessed the pasture during 4 h consecutively for grazing simulation and behavioural observations. We also measured the bite rate of each animal. The pasture growing for 24 days had the highest biomass production, best nutritional value, best efficiency of in vitro CH4 relative emission (ml) per DM degraded (g) and bite rate of the three RPs. Heifers all selected their herbage, irrespective of RP, but with different nutritional value and higher in vitro degradability. However, this did not change the production of in vitro CH4. Considering the growth conditions of the area where the study was performed, we recommend the shorter RP24 as the most suitable during the summer season. The study’s findings support the idea of management intervention to increase the quality of grazing systems.  相似文献   

5.
6.
牧民定居后季节草场优化配置的研究   总被引:1,自引:0,他引:1  
草地畜牧业季节草场在牧民定居后新的生产力水平下应采取怎样的利用模式,是生产中亟待解决的问题。本文采用调查与实测相结合的方法,遵循草畜平衡及能物流高效持续利用原则,研究提出了新疆天山北坡中段季节草场时空优化配置模式(暖季放牧,冷季舍饲 放牧)。此模式不仅实现了草畜平衡,使生态环境得以保护和改善,且能取得显著的经济和社会效益。  相似文献   

7.
In order to maintain small ruminant grazing systems it is necessary to know precisely how they work and what actions can be taken to improve them. The objective of this paper was to characterize, classify, analyse and propose improvements for the dairy goat grazing systems in three countries from the western Mediterranean area: Spain, France and Italy. A multivariate analysis was conducted with 21 indicators obtained from the data collected from 45 farms. As a result of the multivariate analysis, 82.5% of variance was explained by two principal components. The first component included proportion of cultivated pasture area and cultivated pasture area per goat. The second included goats present and forage supply per goat. After conducting a cluster analysis based on these two principal components, farms were classified into four groups. Group 1 was made up of French and Italian farms, which had a smaller territorial base but a high cultivated pasture area per goat, contributing to greater self-sufficiency in feed. However the concentrate per goat was too high in relation to milk production, which was medium. The difference between milk income and feed cost is also medium. Group 2 was basically made up of Italian farms. The farms in this group had the most extensive management systems, with a low use of inputs. However, the milk production was low, meaning that the difference between milk income and feed cost was also low. Group 3 was mainly made up of Spanish farms. On these farms the concentrate supply was excessive and the forage supply was low. The milk production per goat was medium and the difference between milk income and feed cost was small. Group 4 was made up mainly of French farms. The farms of this group had a moderate supply of concentrate although the forage supply was very high. They had a high milk production, which lead to a large difference between milk income and feed cost per goat.The main weaknesses observed are related to feeding management, particularly grazing, and to the goat productivity. In the former case research on the nutritional utilization of rangelands and pastures and correct feed supplementation is to be encouraged. In the latter, the production capacity of the goats present in these systems should be improved, without forgetting the balance between hardiness and general productivity.  相似文献   

8.
One of the main aims of pasture-based systems of dairy production is to increase the proportion of grazed grass in the diet. This is most easily achieved by increasing the number of grazing days. However, periods of inclement weather conditions can reduce the number of days at pasture. The two objectives of this experiment were: (i) to investigate the effect of restricting pasture access time on animal production, grazing behaviour and dry matter intake (DMI) of spring calving dairy cows in early lactation; and (ii) to establish whether silage supplementation is required when cows return indoors after short grazing periods. In all, 52 Holstein-Friesian spring calving dairy cows were assigned to a four-treatment study from 25 February to 26 March 2008. The four treatments were: full-time access to pasture (22H; control); 4.5-h- pasture access after both milkings (2 × 4.5H); 3-h pasture access after both milkings (2 × 3H); 3-h pasture access after both milkings with silage supplementation by night (2 × 3SH). All treatments were offered 14.4 kg DM/cow per day herbage from swards, with a mean pre-grazing yield of 1739 kg DM/ha above 4 cm, - and were supplemented with 3 kg DM/cow per day of concentrate. The 2 × 3SH treatment was offered an additional 4 kg DM/cow of grass silage by night. Restricting pasture access time (2 × 3H, 2 × 3SH and 2 × 4.5H) had no effect on milk (28.3 kg/cow per day) and solids-corrected milk (27.2 kg/cow per day) yield when compared with the treatment grazing full time. Supplementing animals with grass silage did not increase milk production when compared with all other treatments. Milk protein concentration tended to be lower (P = 0.08; 32.2 g/kg) for the 2 × 3SH animals when compared with the 22H animals (33.7 g/kg). The grass DMI of the 2 × 3SH treatment was significantly lower (-2.3 kg DM/cow per day) than all other treatments (11.9 kg DM/cow per day), yet the total DMI of these animals was highest (16.6 kg DM/cow per day). The 22H cows grazed for 481 min/cow per day, which is significantly longer than all other treatments. The 2 × 3H animals grazed for 98% of the time, whereas the 2 × 3SH grazed for 79% of their time at pasture. Restricting pasture access time did not affect end body weight or body condition score. The results of this study indicate that restricting pasture access time of dairy cows in early lactation does not affect milk production performance. Furthermore, supplementing cows with grass silage does not increase milk production but reduces grazing efficiency.  相似文献   

9.
草原生态系统狭翅雏蝗种群的能量动态   总被引:6,自引:3,他引:3  
为揭示蝗虫在草原生态系统中的地位和作用,作者从一关键种着手,采用室内能量参数(取食量、排泄量、呼吸量、生产量)的测定结合野外自然种群数据的方法,讨论了3个植物群落(代表不同的退化程度)中狭翅雏蝗的能量动态。结果表明:(1)狭翅雏蝗种群的生产量(P)为1.1—2kJ/m~2,通过种群的能流(A)为3.4—6.6kJ/m~2,(2)其同化效率(A/C)为48%—58%,生态效率(P/C)为14%—18%,生长效率(P/A)为30%—32%;(3)狭翅雏蝗总摄食量(C)为6.9—13.8kJ/m~2,占地上初级生产量的0.21%—1.03%;另有0.21%—1.93%的牧草因蝗虫取食而掉落;狭翅雏蝗对牧草的压力表现为在越退化的草场,其压力越大。  相似文献   

10.
Many of the studies in Campos grasslands focus on management aspects such as the control of herbage allowance, and application of nutrients and/or overseeding with legumes. However, there is little literature on how the Campos grassland resource is utilised, especially regarding the grazing pattern and the relationship between pasture quantity and quality on daily grazing activities. The study of the ingestive behaviour in species-rich and heterogeneous native grasslands during daylight hours, and understanding how animals prioritise quality or quantity of intake in relation to pasture attributes, are important to comprehend the ingestive-digestive processes modulating the energy intake of animals and to achieve a better grazing management. Therefore, the objective was to describe and quantify the daily grazing behaviour of growing cattle grazing native pasture with different structures as a result of different management practices, and study the relationship of pasture attributes and intake through multivariate analysis. The study was carried out at the Faculty of Agronomy, Paysandú, Uruguay. Treatments were native grassland, overseeding with Trifolium pratense and Lotus tenuis + phosphorus, and native pasture + nitrogen-phosphorus. Grazing activities were discriminated into grazing, searching (defined when animals take 1–2 bites in one feeding station and then change to another feeding station and so on), ruminating and idling. The probability of time allocated to each activity was continuously measured during daylight hours (0700–1930) and was related to pasture structure and forage quality using regression tree models, while the bite rate was determined every 2 h. The diurnal pattern of growing cattle showed grazing and searching sessions, followed by ruminating and idling sessions. The length of sessions (as the probability of time allocated to each activity) varied throughout the day. The grazing probability was greater during afternoon than morning and midday (0.74 vs 0.45 vs 0.46, respectively), and it was associated with higher bite rate (34.2 bites/min). Regression tree models showed different grazing, searching and ruminating strategies according to pasture attributes. During the morning, animals modified grazing, searching, ruminating and idling strategies according to bite rate, crude protein in diet and herbage allowance. At midday, they only adjusted ruminating and idling, while during afternoon sessions, grazing activities were modified by pasture quantity attributes such as herbage mass and herbage allowance. By controlling the herbage allowance, herbage mass and pasture height, animals prioritise quality in the morning and quantity in the afternoon, integrating and modifying the grazing-searching and ruminating-idling pattern.  相似文献   

11.
研究了放牧强度对多年生黑麦草人工草地蘖的形态、密度、草地生产率及组织转化的影响。结果表明,重牧条件下蘖密度大于轻牧,而轻牧的单株蘖重大于重牧。重牧划地净生产率大于轻牧,主要是由于轻和手条件下,草地的高的生长率被更高的枯死率所抵消。春夏之交,采用灵活的管理措施,转换放牧强度可以提高草地的生产率。  相似文献   

12.
As semi-natural grassland has a high level of biological diversity, understanding the effects of grazing and its variation over time is important in order to identify sustainable grazing practices. We measured temporal variation in Orthoptera abundance and spatial vegetation structure during seasonal grazing in an extensive sheep-farming system. We studied five grazed pasture areas (pre-grazing and post-grazing) and two adjacent ungrazed grasslands. We recorded the total abundance of Orthoptera and described the vegetation structure of 175 replicate plots (25 per pasture/grassland) during six field sampling sessions. We demonstrated that the impact of grazing on Orthoptera abundance is species-specific and greatly varies over the grazing season. The decrease of phytovolume is significant after 4–7 weeks of sheep grazing. Total Orthoptera abundance was higher in pre-grazed plots than in ungrazed plots, and higher in ungrazed plots than in post-grazed plots. These differences were particularly high during the peak of adult abundance. No difference in species richness was observed between grazing intensities. Total Orthoptera abundance positively correlated to phytovolume only when grazing pressure was high. However, the relationship between abundance and phytovolume differed between species. Extensive grazing by sheep tends to homogenize spatial vegetation structure and to temporarily reduce total Orthoptera abundance at pasture scale. However, rotational grazing allows spatial and temporal heterogeneity in vegetation structure to be maintained at farm scale, heterogeneity that is beneficial for Orthoptera. In contrast, absence of grazing has a negative impact on Orthoptera abundance as it favours the accumulation of litter, which is detrimental for a high proportion of xerothermophilic Orthoptera associated with bare ground and short vegetation.  相似文献   

13.
The commercially available collar device MooMonitor+ was evaluated with regards to accuracy and application potential for measuring grazing behavior. These automated measurements are crucial as cows feed intake behavior at pasture is an important parameter of animal performance, health and welfare as well as being an indicator of feed availability. Compared to laborious and time-consuming visual observation, the continuous and automated measurement of grazing behavior may support and improve the grazing management of dairy cows on pasture. Therefore, there were two experiments as well as a literature analysis conducted to evaluate the MooMonitor+ under grazing conditions. The first experiment compared the automated measurement of the sensor against visual observation. In a second experiment, the MooMonitor+ was compared to a noseband sensor (RumiWatch), which also allows continuous measurement of grazing behavior. The first experiment on n = 12 cows revealed that the automated sensor MooMonitor+ and visual observation were highly correlated as indicated by the Spearman’s rank correlation coefficient (rs) = 0.94 and concordance correlation coefficient (CCC) = 0.97 for grazing time. An rs-value of 0.97 and CCC = 0.98 was observed for rumination time. In a second experiment with n = 12 cows over 24-h periods, a high correlation between the MooMonitor+ and the RumiWatch was observed for grazing time as indicated by an rs-value of 0.91 and a CCC-value of 0.97. Similarly, a high correlation was observed for rumination time with an rs-value of 0.96 and a CCC-value of 0.99. While a higher level of agreement between the MooMonitor+ and both visual observation and RumiWatch was observed for rumination time compared to grazing time, the overall results showed a high level of accuracy of the collar device in measuring grazing and rumination times. Therefore, the collar device can be applied to monitor cow behavior at pasture on farms. With regards to the application potential of the collar device, it may not only be used on commercial farms but can also be applied to research questions when a data resolution of 15 min is sufficient. Thus, at farm level, the farmer can get an accurate and continuous measurement of grazing behavior of each individual cow and may then use those data for decision-making to optimize the animal management.  相似文献   

14.
Increasing plant species diversity has been proposed as a means for enhancing annual pasture productivity and decreasing seasonal variability of pasture production facing more frequent drought scenarios due to climate change. Few studies have examined how botanical complexity of sown swards affects cow performance. A 2-year experiment was conducted to determine how sward botanical complexity, from a monoculture of ryegrass to multi-species swards (MSS) (grasses-legumes-forb), affect pasture chemical composition and nutritive value, pasture dry matter (DM) intake, milk production and milk solids production of grazing dairy cows. Five sward species: perennial ryegrass (L as Lolium), white clover and red clover (both referred to as T as Trifolium because they were always sown together), chicory (C as Cichorium) and tall fescue (F as Festuca) were assigned to four grazing treatments by combining one (L), three (LT), four (LTC) or five (LTCF) species. Hereafter, the LT swards are called mixed swards as a single combination of ryegrass and clovers, whereas LTC and LTCF swards are called MSS as a combination of at least four species from three botanical families. The experimental area (8.7 ha) was divided into four block replicates with a mineral nitrogen fertilisation of 75 kg N/ha per year for each treatment. In total, 13 grazing rotations were carried out by applying the same grazing calendar and the same pasture allowance of 19 kg DM/cow per day above 4 cm for all treatments. Clover represented 20% of DM for mixed and MSS swards; chicory represented 30% of DM for MSS and tall fescue represented 10% of DM for LTCF swards. Higher milk production (+1.1 kg/day) and milk solids production (+0.08 kg/day) were observed for mixed swards than for ryegrass swards. Pasture nutritive value and pasture DM intake were unaffected by the inclusion of clover. Pasture DM, organic matter and NDF concentrations were lower for MSS than for mixed swards. Higher milk production (+0.8 kg/day), milk solids production (+0.04 kg/day) and pasture DM intake (+1.5 kg DM/day) were observed for MSS than for mixed swards. These positive effects of MSS were observed for all seasons, but particularly during summer where chicory proportion was the highest. In conclusion, advantages of grazing MSS on cow performance were due to the cumulative effect of improved pasture nutritive value and increased pasture DM intake that raised milk production and milk solids production.  相似文献   

15.
羊草草地生长季放牧山羊采食量和食性选择   总被引:12,自引:1,他引:12  
王旭  王德利  刘颖  巴雷  孙伟  张宝田 《生态学报》2002,22(5):661-667
在松嫩平原羊草草地,通过控制放牧实验对山羊的时限采食量和食性选择进行了研究。结果表明:(1)5-9月份,山羊的时限(1h)采食量平均为0.42kg干物质,其季节动态为5月份最低,随季节推移不断增大,8月份达到最大,9月份又有所减小;时限采食量基本上随放牧率减小而增大,但在最低放牧率小区有所减小。(2)山羊的食性选择随季节推移和放牧率不同而变化。(3)山羊对20-25cm高度草层的选择性最高;各高度草层的食性选择指数随季节推移和放牧率不同而变化;山羊对不同植物的高度选择性存在差异,但高度选择指数的最大值都在15-30cm范围内。  相似文献   

16.
Outside the scientific world, the effect of social behaviour on production is little taken into account, but the importance of this relationship has been sufficiently proven in some animal species. Nevertheless, there are scarce works that emphasise the importance of behaviour in the production of the goat. The main objective of this paper is to determine if there is a stable hierarchy of dominance in a flock of goats fed in pasture, and if this hierarchy influences somehow the diet selected in the pasture and in its production of milk and meat. The study was carried out in a flock of goats in semi-extensive grazing management. The interactions observed in the pasture during the supplementary feeding and during the milking were written down. This allowed us to determine the dominance rank. The diet was determined in the pasture by the direct observation method. The production of milk was measured daily. The meat production consisted on the weight of the kids in their first day of life and after a month. Among the most prominent results, the following should be indicated: (a) Within the herd, a clearly established, quite stable and linear hierarchic order exists. (b) The most aggressive animals are those that occupy the highest positions within the social hierarchy. (c) Age, large size and horns seem to be the physical factors that most favor dominance. (d) When more forage becomes available, differences appear in the diet chosen by dominant and subordinate animals, that is, they become more selective. In the months of greater shortage, these differences in feeding disappear, and they become more generalist. (e) The production of animals is affected by dominance. However, contrary to what might otherwise be thought, it is the middle range of goats that are the most productive.  相似文献   

17.
The competitiveness and sustainability of low input cost dairy production systems are generally supported by efficient use of pasture in the diets. Therefore, pasture intake directly affects overall efficiency of these systems. We aimed to assess feeding and grazing management main factors that affect pasture dry matter intake (DMI) in commercial dairy farms during the different seasons of the year. Fortnightly visits to 28 commercial dairies were carried out between June 2016 and May 2017 to record production and price, supplement offered and price, pasture access time (PAT), herbage mass (HM) and allowance (HA). Only farms with the most contrasting estimated pasture DMI per cow (eDMI) were compared as systems with high (HPI; N = 8) or low (LPI; N = 8) pasture DMI. Despite a lower individual milk production in HPI than LPI (19.0 v. 23.3 ± 0.7 l/cow, P < 0.01), daily margin over feeding cost was not different between groups (3.07 v. 2.93 ± 0.15 U$S/cow for HPI and LPI, respectively). During autumn and winter, HPI cows ingested more pasture than LPI cows (8.3 v. 4.6 and 5.9 v. 2.9 ± 0.55 kg DM/cow per day, respectively, P < 0.01) although PAT, HM and HA were similar between groups. Both groups offered high supplementation levels during these seasons, even though greater in LPI than HPI (14.7 v. 9.7 ± 0.7 kg DM supplement/cow per day, respectively, P < 0.01). On the other hand, differences between groups for both pasture and supplement DMI were more contrasting during spring and summer (13.1 v. 7.3 ± 0.5 and 4.0 v. 11.4 ± 0.4 kg DM/cow per day for HPI and LPI, respectively, P < 0.01), with higher PAT in both seasons (P < 0.05) and higher HA during summer in HPI than LPI (P < 0.01). Unlike LPI, during these seasons HPI adjusted offered supplement according to HA, achieving a higher pasture eDMI and making more efficient use of available pastoral resource than LPI. As there was no grazing limiting condition for pasture harvesting in either group, the main factor affecting pasture DMI was a pasture by supplement substitution effect. These results reinforce the importance of an efficient grazing management, and using supplements to nutritionally complement pasture intake rather than as a direct way to increase milk production.  相似文献   

18.
To test the hypothesis that the beneficial anthelmintic effect of consuming moderate amounts of tannins may not always be accompanied by anti-nutritional effects in goats, two experiments were conducted. In the first, 48 Cashmere goats were randomly assigned to two treatments: supplementation with tannin-containing heather (6.4% total tannins) and non-supplementation. All goats grazed continuously from May to September under farm conditions in a mountainous area of northern Spain. The mean percentage of heather incorporated into the diet of the supplemented animals was 29.1%. Supplementation reduced the mean number of nematode eggs in faeces (P < 0.001) and the goat mortality rate (P < 0.05). The rumen ammonia concentration was markedly reduced in the goats receiving the heather supplement (160 v. 209 mg/l; P < 0.01), while volatile fatty acid (VFA) concentrations were significantly greater (63.0 v. 53.6 mmol total VFA/l; P < 0.05). The heather-supplemented goats also showed a lower loss of live weight (P < 0.01) and body condition score (P < 0.001). In the second experiment, batch cultures of rumen microorganisms with rumen fluid from nine goats whose diet included 29% heather - or not, were used to incubate three substrates (pasture, pasture + heather and pasture + heather + polyethylene glycol) to investigate in vitro ruminal fermentation. Differences (P < 0.01) among substrates were observed in terms of dry matter disappearance (DMD), in vitro true substrate digestibility (ivTSD), gas production and ammonia concentration, the greatest values always associated with the pasture substrate. Cultures involving rumen inoculum derived from goats receiving the heather-containing diet showed slightly lower DMD (46.9 v. 48.5 g/100 g; P < 0.05), ivTSD (64.6 v. 65.9 g/100 g; P < 0.10) and gas production (105 v. 118 ml/g; P < 0.001) values, but much greater total VFA concentrations (48.5 v. 39.3 mmol/l; P < 0.05), and suggest that the efficiency of ruminal fermentation in these animals was probably improved. Together, the results support the absence of a clear nutritional cost counteracting the beneficial anthelmintic effect of supplementing the diet of grazing goats with tannin-containing heather.  相似文献   

19.
Low input legume-based agriculture exists in a continuum between subsistence farming and intensive arable and pastoral systems. This review covers this range, but with most emphasis on temperate legume/grass pastures under grazing by livestock. Key determinants of nitrogen (N) flows in grazed legume/grass pastures are: inputs of N from symbiotic N2 fixation which are constrained through self-regulation via grass/legume interactions; large quantities of N cycling through grazing animals with localised return in excreta; low direct conversion of pasture N into produce (typically 5–20%) but with N recycling under intensive grazing the farm efficiency of product N: fixed N can be up to 50%; and regulation of N flows by mineralisation/immobilisation reactions. Pastoral systems reliant solely on fixed N are capable of moderate-high production with modest N losses e.g. average denitrification and leaching losses from grazed pastures of 6 and 23 kg N ha–1 yr–1. Methods for improving efficiency of N cycling in legume-based cropping and legume/grass pasture systems are discussed. In legume/arable rotations, the utilisation of fixed N by crops is influenced greatly by the timing of management practices for synchrony of N supply via mineralisation and crop N uptake. In legume/grass pastures, the spatial return of excreta and the uptake of excreta N by pastures can potentially be improved through dietary manipulation and management strategies. Plant species selection and plant constituent modification also offer the potential to increase N efficiency through greater conversion into animal produce, improved N uptake from soil and manipulation of mineralisation/immobilisation/nitrification reactions.  相似文献   

20.
The slaughterhouse, whether it is seen as an institution, as an industry, or as a unique technological system, is arguably right at the heart of modernism. Human–animal relationships and more generally human–nature relationships bring about issues of rationalization, alienation, and commodity fetishism, while raising philosophical concerns of the human worldview. Current practices of animal slaughter in Iran challenge the core values of Islamic teachings. Slaughterhouses are hidden from the public, segregated into various sections, and follow the exact same models of industrial production as in other parts of the world. Since they must abide by Islamic ways of slaughter and therefore become Halal, these slaughterhouses are slightly modified accordingly. When meat, or what is recently referred to as protein, shows up in the market, it conceals any sign of its true origin—it is neatly packaged with layers of plastic and modern colorful labels showing animals happily grazing on open, green pasture. The findings of this research point to the subtle imbalance and alienation created between humans and animals in Iran.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号