首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protons activate the delta-subunit of the epithelial Na+ channel in humans   总被引:3,自引:0,他引:3  
The amiloride-sensitive epithelial Na(+) channel (ENaC) controls Na(+) transport into cells and across epithelia. So far, four homologous subunits of mammalian ENaC have been isolated and are denoted as alpha, beta, gamma, and delta. ENaCdelta can associate with beta and gamma subunits and generate a constitutive current that is 2 orders of magnitude larger than that of homomeric ENaCdelta. However, the distribution pattern of ENaCdelta is not consistent with that of the beta and gamma subunits. ENaCdelta is expressed mainly in the brain in contrast to beta and gamma subunits, which are expressed in non-neuronal tissues. To explain this discrepancy, we searched for novel functional properties of homomeric ENaCdelta and investigated the detailed tissue distribution in humans. When human ENaCdelta was expressed in Xenopus oocytes and Chinese hamster ovary cells, a reduction of extracellular pH activated this channel (half-maximal pH for an activation of 5.0), and the acid-induced current was abolished by amiloride. The most striking finding was that the desensitization of the acid-evoked current was much slower (by approximately 10% 120 s later), dissociating from the kinetics of acid-sensing ion channels in the degenerin/epithelial Na(+) channel family, which were rapidly desensitized during acidification. RNA dot-blot analyses showed that ENaCdelta mRNA was widely distributed throughout the brain and was also expressed in the heart, kidney, and pancreas in humans. Northern blotting confirmed that ENaCdelta was expressed in the cerebellum and the hippocampus. In conclusion, human ENaCdelta activity is regulated by protons, indicating that it may contribute to the pH sensation and/or pH regulation in the human brain.  相似文献   

2.
The regulation of the open probability of the epithelial Na(+) channel (ENaC) by the extracellular concentration of Na(+), a phenomenon called "Na(+) self inhibition," has been well described in several natural tight epithelia, but its molecular mechanism is not known. We have studied the kinetics of Na(+) self inhibition on human ENaC expressed in Xenopus oocytes. Rapid removal of amiloride or rapid increase in the extracellular Na(+) concentration from 1 to 100 mM resulted in a peak inward current followed by a decline to a lower quasi-steady-state current. The rate of current decline and the steady-state level were temperature dependent and the current transient could be well explained by a two-state (active-inactive) model with a weakly temperature-dependent (Q(10)act = 1.5) activation rate and a strongly temperature-dependant (Q(10)inact = 8.0) inactivation rate. The steep temperature dependence of the inactivation rate resulted in the paradoxical decrease in the steady-state amiloride-sensitive current at high temperature. Na(+) self inhibition depended only on the extracellular Na(+) concentration but not on the amplitude of the inward current, and it was observed as a decrease of the conductance at the reversal potential for Na(+) as well as a reduction of Na(+) outward current. Self inhibition could be prevented by exposure to extracellular protease, a treatment known to activate ENaC or by treatment with p-CMB. After protease treatment, the amiloride-sensitive current displayed the expected increase with rising temperature. These results indicate that Na(+) self inhibition is an intrinsic property of sodium channels resulting from the expression of the alpha, beta, and gamma subunits of human ENaC in Xenopus oocyte. The extracellular Na(+)-dependent inactivation has a large energy of activation and can be abolished by treatment with extracellular proteases.  相似文献   

3.
4.
The epithelial sodium channel (ENaC) is the prototype of a new class of ion channels known as the ENaC/Deg family. The hallmarks of ENaC are a high selectivity for Na(+), block by amiloride, small conductance, and slow kinetics that are voltage-independent. We have investigated the contribution of the second hydrophobic domain of each of the homologous subunits alpha, beta, and gamma to the kinetic properties of ENaC. Chimeric subunits were constructed between alpha and beta subunits (alpha-beta) and between gamma and beta subunits (gamma-beta). Chimeric and wild-type subunits were expressed in various combinations in Xenopus oocytes. Analysis of whole-cell and unitary currents made it possible to correlate functional properties with specific sequences in the subunits. Functional channels were generated without the second transmembrane domain from alpha subunits, indicating that it is not essential to form functional pores. The open probability and kinetics varied with the different channels and were influenced by the second hydrophobic domains. Amiloride affinity, Li(+)/Na(+) selectivity, and single channel conductance were also affected by this segment.  相似文献   

5.
We recently found that the metabolic sensor AMP-activated kinase (AMPK) inhibits the epithelial Na+ channel (ENaC) through decreased plasma membrane ENaC expression, an effect requiring the presence of a binding motif in the cytoplasmic tail of the beta-ENaC subunit for the ubiquitin ligase Nedd4-2. To further examine the role of Nedd4-2 in the regulation of ENaC by AMPK, we studied the effects of AMPK activation on ENaC currents in Xenopus oocytes co-expressing ENaC and wild-type (WT) or mutant forms of Nedd4-2. ENaC inhibition by AMPK was preserved in oocytes expressing WT Nedd4-2 but blocked in oocytes expressing either a dominant-negative (DN) or constitutively active (CA) Nedd4-2 mutant, suggesting that AMPK-dependent modulation of Nedd4-2 function is involved. Similar experiments utilizing WT or mutant forms of the serum- and glucocorticoid-regulated kinase (SGK1), modulators of protein kinase A (PKA), or extracellular-regulated kinase (ERK) did not affect ENaC inhibition by AMPK, suggesting that these pathways known to modulate the Nedd4-2-ENaC interaction are not responsible. AMPK-dependent phosphorylation of Nedd4-2 expressed in HEK-293 cells occurred both in vitro and in vivo, suggesting a potential mechanism for modulation of Nedd4-2 and thus cellular ENaC activity. Moreover, cellular AMPK activation significantly enhanced the interaction of the beta-ENaC subunit with Nedd4-2, as measured by co-immunoprecipitation assays in HEK-293 cells. In summary, these results suggest a novel mechanism for ENaC regulation in which AMPK promotes ENaC-Nedd4-2 interaction, thereby inhibiting ENaC by increasing Nedd4-2-dependent ENaC retrieval from the plasma membrane. AMPK-dependent ENaC inhibition may limit cellular Na+ loading under conditions of metabolic stress when AMPK becomes activated.  相似文献   

6.
Oocytes of the South African clawed toad Xenopus laevis possess in their plasma membrane a so-called stretch-activated cation channel (SAC) which is activated by gently applying positive or negative pressure (stretch) to the membrane patch containing the channels. We show here that this mechanosensitive channel acted as a spontaneously opening, stretch-independent non-selective cation channel (NSCC) in more than half of the oocytes that we investigated. In 55% of cell-attached patches (total number of patches, 58) on 30 oocytes from several different donors, we found NSCC opening events. These currents were increased by elevating the membrane voltage or raising the temperature. NSCC and SAC currents shared some properties regarding the relative conductances of Na+>Li+>Ca2+, gating behaviour and amiloride sensitivity. Stretch-independent currents could be clearly distinguished from stretch induced SAC currents by their voltage and temperature dependence. Open events of NSCC increased strongly when temperature was raised from 21 to 27 degrees C. NSCC currents could be partly inhibited by high concentrations of extracellular Gd3+ and amiloride (100 and 500 microM, respectively). We further show exemplarily that NSCC can seriously hamper investigations when oocytes are used for the expression of foreign ion channels. In particular, NSCC complicated investigations on cation channels with small conductance as we demonstrate for a 4 pS epithelial Na+ channel (ENaC) from guinea pig distal colon. Our studies on NSCCs suggest the involvement of these channels in oocyte temperature response and ion transport regulation. From our results we suggest that NSCC and SAC currents are carried by one protein operating in different modes.  相似文献   

7.
We examined the regulation of a cloned epithelial Na+ channel (alpha beta gamma-rENaC) by protein kinase A (PKA) and protein kinase C (PKC). Experiments were performed in Xenopus oocytes and in planar lipid bilayers. At a holding potential of -100 mV, amiloride-sensitive current averaged -1,279 +/- 111 nA (n = 7) in alpha beta gamma-rENaC- expressing oocytes. Currents in water-injected oocytes were essentially unresponsive to 10 microM amiloride. A 1-h stimulation of PKC with 100 nM of PMA inhibited whole-cell currents in Xenopus oocytes to 17.1 +/- 1.8, and 22.1 +/- 2.6% of control (n = 7), at holding potentials of - 100 and +40 mV, respectively. Direct injection of purified PKC resulted in similar inhibition to that observed with PMA. Additionally, the inactive phorbol ester, phorbol-12-myristate-13-acetate, 4-O-methyl, was without effect on alpha beta gamma-rENaC currents. Pretreatment with the microtubule inhibitor colchicine (100 microM) did not modify the inhibitory effect of PMA; however, pretreatment with 20 microM cytochalasin B decreased the inhibitory action of PMA to < 20% of that previously observed. In vitro-synthesized alpha beta gamma-rENaC formed an amiloride-sensitive Na(+)-selective channel when incorporated into planar lipid bilayers. Addition of PKC, diacyl-glycerol, and Mg-ATP to the side opposite that which amiloride blocked, decreased the channel''s open probability (Po) from 0.44 +/- 0.06 to 0.13 +/- 0.03 (n = 9). To study the effects of PKA on alpha beta gamma-rENaC expressed in Xenopus oocytes, cAMP levels were elevated with 10 microM forskolin and 1 mM isobutyl-methyl-xanthine. This cAMP-elevating cocktail did not cause any stimulation of alpha beta gamma-rENaC currents in either the inward or outward directions. This lack of activation was also observed in oocytes preinhibited with PMA and in oocytes pretreated with cytochalasin B and PMA. Neither alpha-rENaC nor alpha beta gamma-rENaC incorporated into planar lipid bilayers could be activated with PKA and Mg-ATP added to either side of the membrane, as Po remained at 0.63 +/- 0.06 (n = 7) and 0.45 +/- 0.05 (n = 9), respectively. We conclude that: alpha beta gamma-rENaC is inhibited by PKC, and that alpha beta gamma- rENaC is not activated by PKA.  相似文献   

8.
We examined the development of epithelial Na+ conductance in 6- and 7-day post coitus (p.c.) preimplantation rabbit embryos using the whole-cell patch-clamp technique on dissociated rabbit trophectodermal cells and by immunocytochemical localization using a polyclonal antibody directed against subunits of an apical epithelial Na+ channel on the intact blastocyst. In Day 6 and 7 p.c. trophectodermal cells, we observed an outwardly rectified whole-cell Na+ current. The current-voltage characteristics did not differ between the 6- and the 7-day p.c. cells. Replacement of Na+ with the impermeant cation N-methyl-D-glucamine in the pipette or bath reduced outward currents and inward currents, respectively, indicating that the current was Na(+)-dependent. Treatment of 7-day p.c. cells with 100 microM amiloride, benzamil, or ethylisopropyl amiloride (EIPA) blocked the whole-cell currents within 5 min. However, the current of the Day 6 p.c. embryo was not blocked by amiloride. The amiloride block at Day 7 p.c. was only partially reversible after 15 min of continuous perfusion of the bath with an amiloride-free solution. The apparent dissociation constant (Ki) for amiloride, benzamil, and EIPA was 12, 50, and 16 microM, respectively, when measured 5 min after drug addition. Immunolocalization studies of blastocysts with a polyclonal antibody raised against a high amiloride affinity Na+ channel isolated from bovine kidney revealed no specific binding to the trophectodermal cells at Day 6 p.c.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Epithelial sodium channels (ENaC) are regulated by various intracellular and extracellular factors including divalent cations. We studied the inhibitory effect and mechanism of external Ni(2+) on cloned mouse alpha-beta-gamma ENaC expressed in Xenopus oocytes. Ni(2+) reduced amiloride-sensitive Na(+) currents of the wild type mouse ENaC in a dose-dependent manner. The Ni(2+) block was fast and partially reversible at low concentrations and irreversible at high concentrations. ENaC inhibition by Ni(2+) was accompanied by moderate inward rectification at concentrations higher than 0.1 mm. ENaC currents were also blocked by the histidine-reactive reagent diethyl pyrocarbonate. Pretreatment of the oocytes with the reagent reduced Ni(2+) inhibition of the remaining current. Mutations at alphaHis(282) and gammaHis(239) located within the extracellular loops significantly decreased Ni(2+) inhibition of ENaC currents. The mutation alphaH282D or double mutations alphaH282R/gammaH239R eliminated Ni(2+) block. All mutations at gammaHis(239) eliminated Ni(2+)-induced inward current rectification. Ni(2+) block was significantly enhanced by introduction of a histidine at alphaArg(280). Lowering extracellular pH to 5.5 and 4.4 decreased or eliminated Ni(2+) block. Although alphaH282C-beta-gamma channels were partially inhibited by the sulfhydryl-reactive reagent [2-(trimethylammonium)ethyl] methanethiosulfonate bromide (MTSET), alpha-beta-gamma H239C channels were insensitive to MTSET. From patch clamp studies, Ni(2+) did not affect unitary current but decreased open probability when perfused into the recording pipette. Our results suggest that external Ni(2+) reduces ENaC open probability by binding to a site consisting of alphaHis(282) and gammaHis(239) and that these histidine residues may participate in ENaC gating.  相似文献   

10.
Bullfrog tadpoles respond to apical application of 100 microM amiloride, acetylcholine (ACh) or ATP with a sharp transient inward (apical to basolateral) cation current. In adult skin, amiloride blockable transepithelial Na+ transport is upregulated by the hormone aldosterone. Tadpoles were treated in vivo with aldosterone and changes in short circuit current (Isc) in response to apical application of ATP were determined. Bullfrog tadpoles were exposed to aldosterone (10(-6) M) for periods ranging from 3 h to 60 h. Skins from 60-h aldosterone-treated animals showed a two- to three-fold increase in apical ATP-activated short circuit current when compared to animals treated with vehicle alone. Sodium replacement with a large, nonpermeable cation resulted in no measurable increase in Isc after exposure to ligand, consistent with ATP activation of an inward cation current and not chloride efflux. Activation/desensitization time courses and treatment with blockers revealed no measurable differences between aldosterone-treated and non-treated skins. Activation by amiloride and ACh gave essentially identical results. Studies with RT/PCR showed significant increases over controls of levels of mRNA associated with P2X channels. Given these data, our working hypothesis is that all three ligands activate the same process that exhibits both purinergic and cholinergic characteristics. These data are consistent with aldosterone upregulation of ATP gated channels expressed in the apical membrane of larval frog skin.  相似文献   

11.
Epithelial Na+ channels were incorporated into the plasma membrane of Xenopus laevis oocytes after micro-injection of RNA from hen lower intestinal epithelium (colon and coprodeum). The animals were fed either a normal poultry food which contained NaCl (HS), or a similar food devoid of NaCl (LS). Oocytes were monitored for the expression of amiloride-sensitive sodium channels by measuring membrane potentials and currents. Oocytes injected with poly(A)+RNA prepared from HS animals or non-injected control oocytes showed no detectable sodium currents, whereas oocytes injected with LS-poly(A)+RNA had large amiloride-blockable sodium currents. These currents were almost completely saturated by sodium concentrations of 20 mM with a Km of about 2.6 mM sodium. Amiloride (10 microM) inhibits the expressed sodium channels entirely and examination of dose response relationships yielded a half-maximal inhibition concentration (Ki) of 120 nM amiloride. I-V difference curves in the presence or absence of sodium or amiloride (10 microM) indicate a potential dependence of the sodium transport which can be described by the Goldman equation. When Na+ is replaced by K+, no amiloride response was detected indicating a high selectivity for Na+ over K+. These results provide strong evidence that intestinal Na+ channels are regulated by dietary salt intake on the RNA level.  相似文献   

12.
13.
Local tissue acidosis frequently occurs in airway inflammatory and ischemic conditions. The effect of physiological/pathophysiological-relevant low pH (7.0-5.5) on isolated rat vagal pulmonary sensory neurons was investigated using whole cell perforated patch-clamp recordings. In voltage-clamp recordings, vagal pulmonary sensory neurons exhibited distinct pH sensitivities and different phenotypes of inward current in responding to acidic challenge. The current evoked by lowering the pH of extracellular solution to 7.0 consisted of only a transient, rapidly inactivating component with small amplitude. The amplitude of this transient current increased when the proton concentration was elevated. In addition, a slow, sustained inward current began to emerge when pH was reduced to <6.5. The current-voltage curve indicated that the transient component of acid-evoked current was carried predominantly by Na+. This transient component was dose-dependently inhibited by amiloride, a common blocker of acid-sensing ion channels (ASICs), whereas the sustained component was significantly attenuated by capsazepine, a selective antagonist of transient receptor potential vanilloid receptor subtype-1 (TRPV1). The two components of acid-evoked current also displayed distinct recovery kinetics from desensitization. Furthermore, in current-clamp recordings, transient extracellular acidification depolarized the membrane potential and generated action potentials in these isolated neurons. In summary, our results have demonstrated that low pH can stimulate rat vagal pulmonary sensory neurons through the activation of both ASICs and TRPV1. The relative roles of these two current species depend on the range of pH and vary between neurons.  相似文献   

14.
15.
Inhibition of epithelial Na(+) channel (ENaC) activity by high concentrations of extracellular Na(+) is referred to as Na(+) self-inhibition. We investigated the effects of external Zn(2+) on whole cell Na(+) currents and on the Na(+) self-inhibition response in Xenopus oocytes expressing mouse alphabetagamma ENaC. Na(+) self-inhibition was examined by analyzing inward current decay from a peak current to a steady-state current following a fast switching of a low Na(+) (1 mm) bath solution to a high Na(+) (110 mm) solution. Our results indicate that external Zn(2+) rapidly and reversibly activates ENaC in a dose-dependent manner with an estimated EC(50) of 2 microm. External Zn(2+) in the high Na(+) bath also prevents or reverses Na(+) self-inhibition with similar affinity. Zn(2+) activation is dependent on extracellular Na(+) concentration and is absent in ENaCs containing gammaH239 mutations that eliminate Na(+) self-inhibition and in alphaS580Cbetagamma following covalent modification by a sulfhydryl-reactive reagent that locks the channels in a fully open state. In contrast, external Ni(2+) inhibition of ENaC currents appears to be additive to Na(+) self-inhibition when Ni(2+) is present in the high Na(+) bath. Pretreatment of oocytes with Ni(2+) in a low Na(+) bath also prevents the current decay following a switch to a high Na(+) bath but rendered the currents below the control steady-state level measured in the absence of Ni(2+) pretreatment. Our results suggest that external Zn(2+) activates ENaC by relieving the channel from Na(+) self-inhibition, and that external Ni(2+) mimics or masks Na(+) self-inhibition.  相似文献   

16.
Epithelial sodium channels (ENaCs) mediate Na(+) entry across the apical membrane of high resistance epithelia that line the distal nephron, airway and alveoli, and distal colon. These channels are composed of three homologous subunits, termed alpha, beta, and gamma, which have intracellular amino and carboxyl termini and two membrane-spanning domains connected by large extracellular loops. Maturation of ENaC subunits involves furin-dependent cleavage of the extracellular loops at two sites within the alpha subunit and at a single site within the gamma subunit. The alpha subunits must be cleaved twice, immediately following Arg-205 and Arg-231, in order for channels to be fully active. Channels lacking alpha subunit cleavage are inactive with a very low open probability. In contrast, channels lacking both alpha subunit cleavage and the tract alphaAsp-206-Arg-231 are active when expressed in oocytes, suggesting that alphaAsp-206-Arg-231 functions as an inhibitor that stabilizes the channel in the closed conformation. A synthetic 26-mer peptide (alpha-26), corresponding to alphaAsp-206-Arg-231, reversibly inhibits wild-type mouse ENaCs expressed in Xenopus oocytes, as well as endogenous Na(+) channels expressed in either a mouse collecting duct cell line or primary cultures of human airway epithelial cells. The IC(50) for amiloride block of ENaC was not affected by the presence of alpha-26, indicating that alpha-26 does not bind to or interact with the amiloride binding site. Substitution of Arg residues within alpha-26 with Glu, or substitution of Pro residues with Ala, significantly reduced the efficacy of alpha-26. The peptide inhibits ENaC by reducing channel open probability. Our results suggest that proteolysis of the alpha subunit activates ENaC by disassociating an inhibitory domain (alphaAsp-206-Arg-231) from its effector site within the channel complex.  相似文献   

17.
Isolated human blood platelets, loaded with the pH-sensitive fluorescence dye 2',7'-bis(carboxyethyl)-5,6-carboxyfluorescein show cytoplasmic alkalinization upon stimulation with thrombin but acidification with ADP stimulation. In both cases a Na+/H+ exchange is activated. This can be revealed by the sensitivity of the induced pH changes to amiloride and to 5-N-(3-aminophenyl)amiloride (APA), known inhibitors of the Na+/H+ exchanger, and by a dependence on sodium in the external medium. ADP-induced platelet aggregation is not affected by omission of sodium from the external medium. Furthermore, aggregation is barely inhibited (less than 10%) by amiloride or APA at concentrations up to 50 microM while the Ki values in affecting the Na+/H+ exchange are 5.9 and 1.6 microM for amiloride and APA, respectively. Platelet aggregation is inhibited by amiloride or APA at concentrations higher than 50 microM, but this inhibition is apparently due to a secondary effect of the agents. It is concluded that platelet aggregation induced by ADP is not dependent on activation of Na+/H+ exchange.  相似文献   

18.
The epithelial sodium channel (ENaC) is a key factor in the transepithelial movement of sodium, and consequently salt and water homeostasis in various organs. Dysregulated activity of ENaC is associated with human diseases such as hypertension, the salt-wasting syndrome pseudohypoaldosteronism type 1, cystic fibrosis, pulmonary oedema or intestinal disorders. Therefore it is important to identify novel compounds that affect ENaC activity. This study investigated if garlic (Allium sativum) and its characteristic organosulfur compounds have impact on ENaCs. Human ENaCs were heterologously expressed in Xenopus oocytes and their activity was measured as transmembrane currents by the two-electrode voltage-clamp technique. The application of freshly prepared extract from 5g of fresh garlic (1% final concentration) decreased transmembrane currents of ENaC-expressing oocytes within 10 min. This effect was dose-dependent and irreversible. It was fully sensitive to the ENaC-inhibitor amiloride and was not apparent on native control oocytes. The effect of garlic was blocked by dithiothreitol and l-cysteine indicating involvement of thiol-reactive compounds. The garlic organosulsur compounds S-allylcysteine, alliin and diallyl sulfides had no effect on ENaC. By contrast, the thiol-reactive garlic compound allicin significantly inhibited ENaC to a similar extent as garlic extract. These data indicate that thiol-reactive compounds which are present in garlic inhibit ENaC.  相似文献   

19.
On the molecular basis of ion permeation in the epithelial Na+ channel.   总被引:3,自引:0,他引:3  
The epithelial Na+ channel (ENaC) is highly selective for Na+ and Li+ over K+ and is blocked by the diuretic amiloride. ENaC is a heterotetramer made of two alpha, one beta, and one gamma homologous subunits, each subunit comprising two transmembrane segments. Amino acid residues involved in binding of the pore blocker amiloride are located in the pre-M2 segment of beta and gamma subunits, which precedes the second putative transmembrane alpha helix (M2). A residue in the alpha subunit (alphaS589) at the NH2 terminus of M2 is critical for the molecular sieving properties of ENaC. ENaC is more permeable to Li+ than Na+ ions. The concentration of half-maximal unitary conductance is 38 mM for Na+ and 118 mM for Li+, a kinetic property that can account for the differences in Li+ and Na+ permeability. We show here that mutation of amino acid residues at homologous positions in the pre-M2 segment of alpha, beta, and gamma subunits (alphaG587, betaG529, gammaS541) decreases the Li+/Na+ selectivity by changing the apparent channel affinity for Li+ and Na+. Fitting single-channel data of the Li+ permeation to a discrete-state model including three barriers and two binding sites revealed that these mutations increased the energy needed for the translocation of Li+ from an outer ion binding site through the selectivity filter. Mutation of betaG529 to Ser, Cys, or Asp made ENaC partially permeable to K+ and larger ions, similar to the previously reported alphaS589 mutations. We conclude that the residues alphaG587 to alphaS589 and homologous residues in the beta and gamma subunits form the selectivity filter, which tightly accommodates Na+ and Li+ ions and excludes larger ions like K+.  相似文献   

20.
Extracellular ATP has been shown to increase the Na+ permeability of human lymphocytes by 3 to 12-fold. The kinetics of this ATP-induced response were studied by measuring 22Na+ influx into chronic lymphocytic leukemic lymphocytes incubated in low-sodium media without divalent cations. ATP-stimulated uptake of 22Na-ions was linear over 4 min incubation and this influx component showed a sigmoid dependence on ATP concentration. Hill analysis yielded a K1/2 of 160 microM and a n value of 2.5. The nucleotide ATP-gamma-S (1-2 mM) gave 30% of the permeability increase produced by ATP, but UTP (2 mM) and dTTP (2 mM) had no effect on 22Na influx. The amiloride analogs 5-(N-ethyl-N-isopropyl) amiloride and 5-(N,N-hexamethylene) amiloride, which are potent inhibitors of Na(+)-H+ countertransport, abolished 72-95% of the ATP-stimulated 22Na+ influx. However, the involvement of Na(+)-H+ countertransport in the ATP-stimulated Na+ influx was excluded by three lines of evidence. Sodium influx was stimulated 7-fold by extracellular ATP but only 2.4-fold by hypertonic conditions which are known to activate Na(+)-H+ countertransport. Addition of ATP to lymphocytes produced no change in intracellular pH when these cells were suspended in isotonic NaCl media. Finally ATP caused a membrane depolarization of lymphocytes which is inconsistent with stimulation of electroneutral Na(+)-H+ exchange. These data suggest that ATP acts cooperatively to induce the formation of membrane channels which allow increased Na+ influx by a pathway which is partially inhibited by amiloride and its analogs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号