首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although ontogenetic changes in resource use within species are common in animals, these changes have not been widely considered in studies of guild structure within communities. The occurrence of one or more shifts in resource use in an individual of a given species during its life should mean that it would also belong to different guilds at different life stages. We specifically addressed this issue by describing the feeding habits of ten species of carnivorous fishes occurring in tidepools in rocky intertidal areas along the coast of central Chile. Most of these species undergo clear ontogenetic dietary shifts and a feeding guild structure of this group of fishes was established that takes these dietary shifts into account. Each species was divided into a number of size classes. Dietary overlap values between both intraspecific and interspecific size-class pairs in the entire group of ten species were used to construct a phenogram of dietary similarity through an UPGMA cluster analysis. Numbers of guilds and their memberships were established objectively by applying a bootstrapping procedure. Four “ontogenetic” feeding guilds (OFGs), each consisting of size-classes of species, were recognized. The majority of species belonged to more that one guild. Interestingly, when the bootstrapping procedure was applied to a phenogram based on the diets of “taxonomic” or complete species, only one significant guild was found. The implications of these ontogenetic dietary shifts for interspecific interactions are substantial because the identity of the species with which each fish species shares resources change through their lives. The usefulness of taxonomic species for investigating potential competitive interactions in this assemblage is greatly undermined. Received: 26 September 1997 / Accepted: 15 December 1997  相似文献   

2.
Understanding trophic relationships of fish in estuarine ecosystem is an important element for sustainable resource management. This study examined the feeding habits of 29 dominant fish species, characterized the trophic guilds, assessed the impact of season and clarified the role of diets in structuring the fish community in the mouth region of Pattani Bay, Thailand. Samples of 5792 fishes collected monthly by gillnets from March 2019 to February 2020 were used for stomach content analyses. It was found that the number of food types and fullness index differed between fish taxa (P < 0.001). Most fishes were specialist feeders feeding on specific food components and were categorized into five trophic guilds: piscivore, shrimp-fish feeder, polychaete feeder, zooplanktivore and planktivore. Six species were piscivorous, considered as apex predators, that fed almost entirely on fishes. High diet overlaps among some species (>0.6) were recorded. Not much variation in seasonal guilds was observed: four guilds in the dry season, three in the moderate rainy season and four in the rainy season. Some species remained in the same guild the whole year round, but some fishes changed seasonally. Two fish communities from different regions of the bay were segregated based on feeding habits. The inner bay community comprised mainly copepod and plankton feeders, but there were more piscivores in the deeper bay mouth area. Results from this study help us to understand the feeding habits and trophic guilds of dominant fish species at the mouth of this tropical estuarine bay.  相似文献   

3.
Ontogenetic diet patterns and trophic guild structure of a 15 species temperate lake fish assemblage were analysed over wide size intervals (up to seven orders of magnitude in body mass), representing practically the whole life span in most species. A two-step objective clustering technique supplemented with other multivariate statistical tools proved that size-related diet changes clearly played an important role in structuring trophic organization of fishes inhabiting Lake Balaton. As many as 13 out of the 15 fish species showed marked size-related dietary changes with two to four ontogenetic feeding stages. At the assemblage level, 11 trophic guilds were separated. Guild membership was size-dependent in 11 fish species that participated in two to four trophic guilds during their life span. The most complex trophic ontogeny was observed in roach Rutilus rutilus and asp Aspius aspius with four guild memberships. This study showed that trophic status of fishes may be very size-sensitive and thus a universal classification of fish species to general trophic guilds, such as 'planktivore', 'benthivore', 'piscivore' or 'herbivore', should be applied very carefully even in environmental monitoring and fisheries management applications, unless it is supported by relevant results of life span diet analyses.  相似文献   

4.
A study on seasonal and spatial variations of feeding habits and trophic guilds of dominant fish species in Pattani Bay during March 2003 to February 2004 was aimed at classifying diet composition, identifying dominant food components of each species, categorizing trophic guilds of the community and evaluating effects of habitat characteristics and seasonality on guild organization. Most fishes showed high food intake, fed on a diverse range of food items but relied heavily on calanoid copepods and shrimps. All species, with the exception of Epinephelus coioides, were classified as specialist feeders. Four main dietary guilds were classified. Three of these were classified as the guilds dominated by at least two major food items. Significant variations in trophic guilds of 28 fish species based on habitat types and seasons were also identified. They could be divided into three seasonal groups and three site-groups and a single site. Trophic organization for each season and habitat ranged from two to four groups. This information identifies groups of fishes that seasonally and spatially utilize different food resources within a semi-enclosed estuarine bay ecosystem.  相似文献   

5.
It has been suggested that variation in the proportion of species in guilds (=guild proportionality) indicates community structuring by guilds in biotic communities. This hypothesis was tested on a subthermophilous grassland and a mesotrophic meadow at a scale of 0.09 m2 based on a five-year data set. Further, variation in the total number of species, variation in the number of species belonging to a guild and non-randomness in species composition of guilds were studied. A number of criteria for guild definition were used, such as life form, Grime's C-S-R strategy, phenology, plant height, pollination and dispersal syndromes, leaf shape and anatomy and taxonomy at the family level. The observed variation in the number of guild species corresponded to the null model in which species assemblages with fixed species richness per square were randomly generated from the species pool. The observed variation in the number of guild species was often higher than the variation calculated for randomly distributed species whereas the variation in the proportion of guild species was in some cases lower than the variation calculated for randomly distributed species with fixed frequencies. Possible reasons for the discrepancy in the results based on different models are discussed. It is concluded that there is little evidence of guilds in the organization of grasslands. *** DIRECT SUPPORT *** A02DO006 00012  相似文献   

6.
The diets and trophic guilds of small fishes were examined along marine sandy beaches and in estuaries at depths <1·5 m in western Taiwan, Republic of China. Copepods were the most frequently identified item in fish guts, indicating they are key prey for the fish assemblages studied. Piscivore, crustacivore, detritivore, omnivore, zooplanktivore and terrestrial invertivore trophic guilds were identified. The zooplanktivore guild contained the most fish species. Maximum prey size consumption was positively correlated with standard length (LS) in seven species and at the assemblage level and negatively correlated with LS in a single detritivorous species. The diet data and trophic guild scheme produced by this study contribute to an understanding of coastal marine food webs and can inform ecosystem‐based fisheries management.  相似文献   

7.
It is common in community ecology to use the species as the taxonomic category of interest, yet in rich tropical assemblages containing guilds of very similar species this may not be appropriate. Such assemblages may be organized at the level of guilds rather than at the finer species level. In a ten-year study of assemblages of fish at One Tree Reef, Great Barrier Reef, we found species composition and the number of fish on a given lagoonal patch reef vary greatly across time (Sale and Douglas 1984; Sale et al. in preparation). The mean average proportional similarity of a reef's assemblage to itself at different times (censuses) is usually low at a value of around 0.5. This apparent variability may be ecologically irrelevant noise if organization is at the higher guild level. We have recast our database at the guild level to test this possibility. Thirteen guilds were defined by the diets, foraging habitats and times of the individual species comprising them. Similarity of an assemblage to itself at successive censuses was re-calculated using the number of individuals in each guild instead of the numbers in each species. This analysis yielded significantly higher levels of similarity (P<0.01) among censuses. To test whether this increase in similarity was due solely to the smaller number of categories used to calculate the similarity indices, 5 sets of randomly generated guilds were constructed using a Monte Carlo approach. No significant difference (P>0.05) was found between the average similarity among censuses when assemblages were classified into these null guilds and when they were classified according to the real guilds. These results indicate that shifting to the larger taxonomic scale of guilds does not reveal a significantly more persistent assemblage structure than that revealed when analysis is at the smaller scale of species. There is no evidence of an underlying organization of these assemblages at the guild level.  相似文献   

8.
The original definition of the guild is reiterated and the concept discussed and placed in the context of related concepts such as resources and competition. From this conceptual framework the current use of guilds in studies of plant community ecology is evaluated. We discuss the criteria with which species are assigned to guilds, the association of guilds with specific communities, the resource classes on which guilds are based, and the competitive relationships between species of a guild. We conclude that the guild is presently applied in a much more loose way as compared to its original definition. In particular, the a priori assignment of species to guilds on the basis of the use of well-defined resource classes is often relaxed. This obscures the insight that the guild structure may provide in the role of resource partitioning and competition in structuring the community. A more strict use of the concept is advocated.  相似文献   

9.
G. L. Miller 《Oecologia》1984,63(1):106-109
Summary The ecomorphological model which attempts to identify important variation in the total morphology of groups of animals has been used with some success in communities of fishes. The applicability of the model to subsets of the community, such as guilds of ecologically similar species, is uncertain, and the effects of the possible changes in correlations among morphological variables caused by demographic changes across seasons is unknown. An ecomorphological model is applied to a guild of benthic stream fishes from the Tombigbee River, Mississippi. The model is found to describe structuring in the guild based on aspects of the trophic morphology and the length of the body. Morphologically distinct groups of species are described by the model. The effect of indeterminate growth seems not to be of sufficient magnitude to change groupings across seasons. However, species associations within morphological groups change seasonally. I conclude that ecomorphological models may be properly applied to community subsets, but the interpretation of the model must consider the nature of the data set with respect of seasonality.  相似文献   

10.
Theoretical and empirical ecologists have long acknowledged that information about the intensity or strength of the interaction between species is crucial for an understanding of community dynamics. In communities in which predation is an important structuring process, and some predator species are commercially exploited, quantitative estimates of predation by different predator species within a guild are necessary to make even the simplest recommendations about conservation and resource management. Here, we evaluated per capita and population level components of predation intensity of three intertidal predators that feed on monospecific stands of barnacles and mussels at wave exposed sites in the rocky intertidal zone of central Chile. These prey species represent the two most distinctive stages of the mid-intertidal seascape, with mussels being competitively dominant. Our results showed that the commercially exploited gastropod Concholepas concholepas and the sea star Heliaster helianthus have similarly large per capita and population effects on the competitively dominant mussel Perumytilus purpuratus . Their per capita (by average size individual) and population effects on mussels were more than two orders of magnitude larger than those of Acanthocyclus gayi crabs and likely even larger than the effect of other predator species in this system (other crabs, whelks, birds, fish). The overall pattern of predation on barnacles was similar to that on mussels, but some differences occurred in the way different components of predation intensity were distributed across predator species. Despite the roughly similar pattern of population predation intensity between prey species, the expected consequences for the prey population, and hence the rest of the community, were acutely different for mussels and barnacles.  相似文献   

11.
A combination of dietary guild analysis and nitrogen (δ15N) and carbon (δ13C) stable‐isotope analysis was used to assess the trophic structure of the fish community in Rhode Island and Block Island Sounds, an area off southern New England identified for offshore wind energy development. In the autumn of 2009, 2010 and 2011, stomach and tissue samples were taken from 20 fish and invertebrate species for analysis of diet composition and δ15N and δ13C signatures. The food chain in Rhode Island and Block Island Sounds comprises approximately four trophic levels within which the fish community is divided into distinct dietary guilds, including planktivores, benthivores, crustacivores and piscivores. Within these guilds, inter‐species isotopic and dietary overlap is high, suggesting that resource partitioning or competitive interactions play a major role in structuring the fish community. Carbon isotopes indicate that most fishes are supported by pelagic phytoplankton, although there is evidence that benthic production also plays a role, particularly for obligate benthivores such as skates Leucoraja spp. This type of analysis is useful for developing an ecosystem‐based approach to management, as it identifies species that act as direct links to basal resources as well as species groups that share trophic roles.  相似文献   

12.
The structure and components of European estuarine fish assemblages   总被引:8,自引:0,他引:8  
This paper discusses the structure of fish assemblages using information from 17 European estuarine areas (in the British Isles, Portugal, Belgium, France, the Netherlands, Germany, Norway and Spain). Binary (presence/absence) and quantitative data for each assemblage have been used to assess the assemblage structure according to taxonomy (i.e. species identity). Following this, a total of 29 functional guilds were created in order to describe the use made of an estuarine area for each taxon encountered: feeding preferences, reproduction type, substratum preferences (for bottom dwelling fish) and position within the water column (vertical preference guild). The paper focuses on the designation and determination of the proportions of the guild members of the fish assemblage within each estuary. Ecological guilds within the assemblage include estuarine residents, marine juvenile migrants, catadromous and anadromous migrants, marine seasonal users, and freshwater and marine adventitious species. Feeding guilds include detritivores, planktonic feeders, infaunal croppers and sediment ingesters, piscivores, and active predators of mobile crustaceans. Reproduction guilds include planktonic and demersal spawners and those using brood-protection. The substratum preference indicates the proportions of sand, mud, rock and vegetation dwellers, and the vertical preference denotes benthic, demersal or pelagic species. The analysis has allowed both the estuaries to be grouped according to taxonomic and guild similarity and the characterisation of a typical European estuarine fish assemblage. Within the limits posed by differing sampling methods, times of sampling and survey rationale, there is a high similarity between estuaries. The data indicate common patterns of estuarine usage irrespective of the differences between the estuaries although such patterns cannot be interpreted fully given the incomplete knowledge of their physical and anthropogenic characteristics.  相似文献   

13.
Effect of siltation on stream fish communities   总被引:10,自引:0,他引:10  
Synopsis The effect of siltation on stream fish in northeast Missouri was evaluated using community structural measurements and a functional approach that emphasized feeding and reproductive guilds. As the percentage of fine substrate increased, the distinction among riffle, run, and pool communities decreased, primarily because the number of individuals of typical riffle species decreased. Within the riffle communities the abundance of fish of two feeding guilds — benthic insectivores and herbivores — was reduced as the percent of fine substrate increased. The abundance of fish in other feeding guilds was not affected. The only reproductive guild to be similarly affected was the simple and lithophilous, whose members require a clean gravel substrate for spawning. Species within each guild affected by siltation had significantly similar trends in abundance. The guild analysis indicated that species with similar ecological requirements had a common response to habitat degradation by siltation.  相似文献   

14.
Climate change is expected to cause geographic redistributions of species. To the extent that species within assemblages have different niche requirements, assemblages may no longer remain intact and dis‐ and reassemble at current or new geographic locations. We explored how climate change projected by 2100 may transform the world's avian assemblages (characterized at a 110 km spatial grain) by modeling environmental niche‐based changes to their dietary guild structure under 0, 500, and 2000 km‐dispersal distances. We examined guild structure changes at coarse (primary, high‐level, and mixed consumers) and fine (frugivores, nectarivores, insectivores, herbivores, granivores, scavengers, omnivores, and carnivores) ecological resolutions to determine whether or not geographic co‐occurrence patterns among guilds were associated with the magnitude to which guilds are functionally resolved. Dietary guilds vary considerably in their global geographic prevalence, and under broad‐scale niche‐based redistribution of species, these are projected to change very heterogeneously. A nondispersal assumption results in the smallest projected changes to guild assemblages, but with significant losses for some regions and guilds, such as South American insectivores. Longer dispersal distances are projected to cause greater degrees of disassembly, and lead to greater homogenization of guild composition, especially in northern Asia and Africa. This arises because projected range gains and losses result in geographically heterogeneous patterns of guild compensation. Projected decreases especially of primary and mixed consumers most often are compensated by increases in high‐level consumers, with increasing uncertainty about these outcomes as dispersal distance and degree of guild functional resolution increase. Further exploration into the consequences of these significant broad‐scale ecological functional changes at the community or ecosystem level should be increasingly on the agenda for conservation science.  相似文献   

15.
Abstract The vertical stratification of insect species assemblages inhabiting tropical rainforests is well established but few have examined whether these patterns are reflected in vertical stratification of body size or feeding guilds. We used Malaise and Flight Interception Traps to sample beetle assemblages from five locations, at both canopy and ground zones of a tropical lowland rainforest site near Cape Tribulation, Australia. Beetles from 4 years of sampling were sorted to Family and morphospecies, and allocated to one of five feeding guilds. Within feeding guilds the number of species and individuals, from canopy‐ and ground‐caught traps were compared. The body lengths of species were measure and compared within feeding guilds and families. Herbivores was the dominant guild but was not the majority of all species or individuals. Most beetle species (69%) were less than 5 mm in length and the mean size of canopy‐caught species was greater than that for ground‐caught species. This was probably due to slightly more species of plant feeders (herbivores and xylophages) present in the canopy, which were significantly larger than saprophages, fungivores and predators. Among feeding guilds, there were few overall canopy–ground differences. These results contrast with species composition results presented elsewhere where strong differences between the canopy and the ground were evident. We suggest that our guild groupings may have been too coarse to detect fine‐scale differences and that resource partitioning may have also masked faunal stratification. We propose that fine‐scale differences in resources between the canopy and the ground, together with strong microclimate gradients, are likely to be important in structuring the vertical stratification of insect assemblages at the level of species, but not with respect to functional groups.  相似文献   

16.
The present study was aimed to determine dietary composition and feeding guild structure of the fishes inhabiting mudflat habitat of Indian Sundarbans. In addition, partitioning of food resources by the fish species belonging to the carnivorous feeding guild was also performed to understand the survival strategies of fish in a mudflat estuarine habitat. Seventeen prey categories were isolated from the stomachs of 31 studied fish species. Overall, five feeding guilds (viz. plankti-benthivore: 12 species, herbivore: one species, detritivore: three species, omnivore: one species and carnivore: 14 species) were identified on the basis of the prey abundance within their stomachs, considering 64 % Bray–Curtis similarity. Among the carnivorous, maximum trophic richness was obtained for Uroconger lepturus followed by Ophichthus apicalis. Teleost and decapods were the main animal prey items preferred by majority of the carnivorous fishes. However, O. apicalis and Terapon jarbua showed their preference toward maximum number of prey categories among carnivores, which was also ratified by the high values for standardized niche breadth presented by them. The maximum degree of interspecific dietary overlap was found between Uropterygius marmoratus and Pseudapocryptes elongatus as both of them were recognized as cranci-piscivore. The lowest was observed between Hyporhamphus limbatus and Coilia neglecta. As food resources are not limiting in the mudflats of Indian Sundarbans, the general patterns of resource partitioning and niche differentiation in resident ecological communities will improve the understanding of the mechanisms underlying species coexistence and community structure.  相似文献   

17.
Anuradha Bhat 《Hydrobiologia》2004,529(1-3):83-97
The community ecology of freshwater fishes in four river systems (Sharavati, Aghanashini, Bedti and Kali) of the central Western Ghats (India) has been studied for the first time. Patterns of fish species distributions were analysed and important stream and environmental parameters determining the species richness and composition of this region were identified. Upstream--downstream trends in species richness and diversity as well as changes in stream characteristics were studied using univariate correlation analyses. Preliminary analyses on changes in species composition and feeding guilds showed the presence of a gradual species turnover along the stream gradient. There were associated changes in the major feeding guild compositions, with a higher proportion of insectivore and algivore/herbivore composition in the upper reaches shifting to a predominance of omnivores and carnivores downstream. Pearsons product--moment correlation analyses along with stepwise multiple regression analyses identified stream depth and altitude as the important parameters determining species richness. Canonical correspondence analysis was performed to study species associations with environmental parameters. The analysis showed a strong species environmental correlation to the CCA axes, a high significance for the CCA axis 1 as well as for the overall test. The plots of the species and site scores on the CCA axes showed a clear segregation of species based on their relations with environmental and stream properties. This study is an important step in our understanding of the community structure of fish species of these rivers and would be helpful in future efforts on the conservation of aquatic communities and their habitats.  相似文献   

18.
陈兵  孟雪晨  张东  储玲  严云志 《生态学报》2019,39(15):5730-5745
确定鱼类群落的空间格局是保护和管理河流鱼类多样性的基础。尽管河流鱼类分类群(基于物种组成)的纵向梯度格局已得到大量报道,但其功能群(基于功能特征)的空间格局研究较少。以皖南山区新安江为研究流域,沿其"正源-下游"梯度共设置27个调查样点,分别于2017年5月和10月完成2次调查取样,着重研究了鱼类分类群和功能群结构的纵向梯度格局及其形成机制。共采集鱼类44种,可分为5个运动功能群和4个营养功能群,构成14个"营养-运动"复合功能群。双因素交互相似性分析结果显示,鱼类分类群和功能群均随河流级别显著变化,但两者均无显著的季节变化;根据相似性百分比分析,由1级至3级河流,数量优势物种和功能群的空间变化主要呈嵌套格局,而由3级至5级河流其变化主要呈周转格局。方差分解结果显示,局域栖息地、陆地景观和支流空间位置3类解释变量对分类群和功能群空间变化的解释率分别为33.6%和38.5%,其中,分类群受局域栖息地和支流空间位置变量的显著影响,而功能群受局域栖息地和陆地景观变量的显著影响。研究表明,沿着新安江的"上游-下游"纵向梯度,鱼类分类群和功能群的空间格局基本一致,但两者的形成机制不同:分类群的纵向梯度变化受环境过滤和扩散过程的联合影响,而功能群则主要受环境过滤影响。  相似文献   

19.
We evaluated the existence of trophic guild structure, considering seasonal and annual variation, in two terrestrial carnivore assemblages: one from Santa Cruz province (Argentinean Patagonia, composed by six carnivore species), and the other from Doñana National Park (SW Spain, composed by five carnivore species). To identify trophic guilds, we first studied seasonal and annual diets of predators, calculated trophic overlap among species pairs, and then constructed overlap matrices (similarity matrices). We determined guild membership objectively by entering the similarity matrices into the clustering technique unweighted pair-group method with arithmetic averaging. Carnivores from both assemblages were grouped, respectively, into four feeding guilds. Lagomorphs and rodents promoted the formation of two feeding guilds in both study sites, although the taxonomic composition of predator species that composed them was different. The ungulates-edentates feeding guild was only present at Santa Cruz, whereas the birds and reptiles feeding guild was only present at Doñana. Invertebrates and fruits were the base for the formation of a guild composed by species of the same taxonomic origin both in Santa Cruz and Doñana. Guild structure of Santa Cruz and Doñana assemblages did not exhibit seasonal or annual variation, although the specific guild composition changed over the two studied periods for both assemblages. This structure probably responded to discontinuities in resource spectra in Santa Cruz and fluctuations in rabbit abundance in Doñana. Our results support the hypothesis that establishes that guilds are originated by opportunistic convergence of species on abundant and energetically rewarding resources.  相似文献   

20.
The study of functional structure in species assemblages emphasizes the detection of significant guild aggregation patterns. Thus, protocols based on intensive resampling of empirical data have been proposed to assess guild structure. Such protocols obtain the frequency distribution of a given functional similarity metric, and identify a threshold value (often the 95th percentile) beyond which clusters in a functional dendrogram are considered as significant guilds (using one-tailed tests). An alternative approach sequentially searches for significant differences between clusters at decreasing levels of similarity in a dendrogram until one is detected, then assumes that all subsequent nodes should also be significant. Nevertheless, these protocols do not test both the significance and sign of deviations from random at all levels of functional similarity within a dendrogram. Here, we propose a new bootstrapping approach that: (1) overcomes such pitfalls by performing two-tailed tests for each node in a dendrogram of functional similarity after separately determining their respective sample distributions, and (2) enables the quantification of the relative contribution of guild aggregation and functional divergence to the overall functional structure of the entire assemblage. We exemplify this approach by using long-term data on guild dynamics in a vertebrate predator assemblage of central Chile. Finally, we illustrate how the interpretation of functional structure is improved by applying this new approach to the data set available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号