首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent evidence implicates a central role for PI3K signalling in mediating cell survival during the process of neuronal differentiation. Although PI3K activity is stimulated by a wide range of growth factors and cytokines in different cell lines and tissues, activation of this pathway by insulin-like growth factor I (IGF-I) most likely represents the main survival signal during neuronal differentiation. IGF-I is highly expressed during development of the central nervous system, and thus is a critical factor for the development and maturation of the cerebellum. Upon ligand binding, the IGF-I receptor phosphorylates tyrosine residues in SHC and insulin receptor substrates (IRSs) initiating two main signalling cascades, the MAP kinase and the phosphatidylinositol 3-kinase (PI3K) pathways. Activated PI3K is composed of a catalytic subunit (p110alpha or beta) associated with one of a large family of regulatory subunits (p85alpha, p85beta, p55gamma, p55alpha, and p50alpha). To evaluate the contributions of these various regulatory subunits to neuronal differentiation, we have used antibodies specific for each of the PI3K subunits. Using these antisera, we now demonstrate that PI3K subunits are differentially regulated in cerebellar development, and that the expression level of the p55gamma regulatory subunit reaches a maximum during postnatal development, decreasing thereafter to low levels in the adult cerebellum. Furthermore, our studies reveal that the distribution of the various PI3K regulatory subunits varies during development of the cerebellum. Interestingly, p55gamma is expressed in both glial and neuronal cells; moreover, in Purkinje neurones, this subunit colocalises with the IGF-IR.  相似文献   

2.
Modulation of the Na,K-pump function by beta subunit isoforms   总被引:4,自引:0,他引:4       下载免费PDF全文
To study the role of the Na,K-ATPase beta subunit in the ion transport activity, we have coexpressed the Bufo alpha 1 subunit (alpha 1) with three different isotypes of beta subunits, the Bufo Na,K-ATPase beta 1 (beta 1NaK) or beta 3 (beta 3NaK) subunit or the beta subunit of the rabbit gastric H,K-ATPase (beta HK), by cRNA injection in Xenopus oocyte. We studied the K+ activation kinetics by measuring the Na,K- pump current induced by external K+ under voltage clamp conditions. The endogenous oocyte Na,K-ATPase was selectively inhibited, taking advantage of the large difference in ouabain sensitivity between Xenopus and Bufo Na,K pumps. The K+ half-activation constant (K1/2) was higher in the alpha 1 beta 3NaK than in the alpha 1 beta 1NaK groups in the presence of external Na+, but there was no significant difference in the absence of external Na+. Association of alpha 1 and beta HK subunits produced active Na,K pumps with a much lower apparent affinity for K+ both in the presence and in the absence of external Na+. The voltage dependence of the K1/2 for external K+ was similar with the three beta subunits. Our results indicate that the beta subunit has a significant influence on the ion transport activity of the Na,K pump. The small structural differences between the beta 1NaK and beta 3NaK subunits results in a difference of the apparent affinity for K+ that is measurable only in the presence of external Na+, and thus appears not to be directly related to the K+ binding site. In contrast, association of an alpha 1 subunit with a beta HK subunit results in a Na,K pump in which the K+ binding or translocating mechanisms are altered since the apparent affinity for external K+ is affected even in the absence of external Na+.  相似文献   

3.
4.
5.
6.
Endogenous insulin-like growth factor-1 (IGF-I) stimulates growth of cultured human intestinal smooth muscle by activating distinct mitogen-activated protein (MAP) kinase-dependent and phosphatidylinositol 3-kinase-dependent signaling pathways. In Rat1 and Balb/c3T3 fibroblasts and in neurons the IGF-I receptor is coupled to an inhibitory G protein, G(i), which mediates G(beta)gamma-dependent MAP kinase activation. The present study determined whether in normal human intestinal smooth muscle cells the IGF-I receptor activates a heterotrimeric G protein and the role of G protein activation in mediating IGF-I-induced growth. IGF-I elicited IGF-I receptor tyrosine phosphorylation, resulting in the specific activation of G(i2). G(beta)gamma subunits selectively mediated IGF-I-dependent MAP kinase activation; G(alpha)i2 subunits selectively mediated IGF-I-dependent inhibition of adenylyl cyclase activity. IGF-I-stimulated MAP kinase activation and growth were inhibited by pertussis toxin, an inhibitor of G(i)/G(o) activation. Cyclic AMP inhibits growth of human intestinal muscle cells. IGF-I inhibited both basal and forskolin-stimulated cAMP levels. This inhibition was attenuated in the presence of pertussis toxin. IGF-I stimulated phosphatidylinositol 3-kinase activation, in contrast to MAP kinase activation, occurred independently of G(i2) activation. These data suggest that IGF-I specifically activates G(i2), resulting in concurrent G(beta)gamma-dependent stimulation of MAP kinase activity and growth, and G(alpha)i2-dependent inhibition of cAMP levels resulting in disinhibition of cAMP-mediated growth suppression.  相似文献   

7.
8.
Unlike glucose transport, where translocation of the insulin-responsive glucose transporter (GLUT4) from an intracellular compartment to the plasma membrane is the principal mechanism underlying insulin stimulation, no consensus exists presently for the mechanism by which insulin activates the Na+/K(+)-ATPase. We have investigated (i) the subunit isoforms expressed and (ii) the effect of insulin on the subcellular distribution of the alpha beta isoforms of the Na+/K(+)-ATPase in plasma membranes (PM) and internal membranes (IM) from rat skeletal muscle. Western blot analysis, using isoform-specific antibodies to the various subunits of the Na+/K(+)-ATPase, revealed that skeletal muscle PM contains the alpha 1 and alpha 2 catalytic subunits and the beta 1 and beta 2 subunits of the Na+ pump. Skeletal muscle IM were enriched in alpha 2, beta 1, and beta 2; alpha 1 was barely detectable in this fraction. After insulin treatment, alpha 2 content in the PM increased, with a parallel decrease in its abundance in the IM pool; insulin did not have any effect on alpha 1 isoform amount or subcellular distribution. The beta 1 subunit, but not beta 2, was also elevated in the PM after insulin treatment, but this increase originated from a sucrose gradient fraction different from that of the alpha 2 subunit. Our findings suggest that insulin induces an isoform-specific translocation of Na+ pump subunits from different intracellular sources to the PM and that the hormone-responsive enzyme in rat skeletal muscle is an alpha 2:beta 1 dimer.  相似文献   

9.
Na(v)1.6 is the main sodium channel isoform at adult nodes of Ranvier. Here, we show that Na(v)1.2 and its beta2 subunit, but not Na(v)1.6 or beta1, are clustered in developing central nervous system nodes and that clustering of Na(v)1.2 and Na(v)1.6 is differentially controlled. Oligodendrocyte-conditioned medium is sufficient to induce clustering of Na(v)1.2 alpha and beta2 subunits along central nervous system axons in vitro. This clustering is regulated by electrical activity and requires an intact actin cytoskeleton and synthesis of a non-sodium channel protein. Neither soluble- or contact-mediated glial signals induce clustering of Na(v)1.6 or beta1 in a nonmyelinating culture system. These data reveal that the sequential clustering of Na(v)1.2 and Na(v)1.6 channels is differentially controlled and suggest that myelination induces Na(v)1.6 clustering.  相似文献   

10.
A dynamic equilibrium between multiple sorting pathways maintains polarized distribution of plasma membrane proteins in epithelia. To identify sorting pathways for plasma membrane delivery of the gastric H,K-ATPase beta subunit in polarized cells, the protein was expressed as a yellow fluorescent protein N-terminal construct in Madin-Darby canine kidney (MDCK) and LLC-PK1 cells. Confocal microscopy and surface-selective biotinylation showed that 80% of the surface amount of the beta subunit was present on the apical membrane in LLC-PK1 cells, but only 40% was present in MDCK cells. Nondenaturing gel electrophoresis of the isolated membranes showed that a significant fraction of the H,K-ATPase beta subunits associate with the endogenous Na,K-ATPase alpha(1) subunits in MDCK but not in LLC-PK cells. Hence, co-sorting of the H,K-ATPase beta subunit with the Na,K-ATPase alpha(1) subunit to the basolateral membrane in MDCK cells may determine the differential distribution of the beta subunit in these two cell types. The major fraction of unassociated monomeric H,K-ATPase beta subunits is detected in the apical membrane. Quantitative analysis showed that half of the apical pool of the beta subunit originates directly from the trans-Golgi network and the other half from transcytosis via the basolateral membrane in MDCK cells. A minor fraction of monomeric beta subunits detected in the basolateral membrane represents a transient pool of the protein that undergoes transcytosis to the apical membrane. Hence, the steady state distribution of the H,K-ATPase beta subunit in polarized cells depends on the balance between (a) direct sorting from the trans-Golgi network, (b) secondary associative sorting with a partner protein, and (c) transcytosis.  相似文献   

11.
The (Na+ + K+)-ATPase of cultured chick sensory neurons was studied with the aid of antibodies specific for this enzyme. Immunofluorescent labeling indicated the (Na+ + K+)-ATPase is evenly distributed on the neuronal cell surface; cell bodies, neurites, and growth cones were labeled with comparable intensity. Pulse-chase experiments with [35S]methionine, followed by immunoprecipitation, indicated concurrent synthesis and rapid association of the alpha (Mr = 105,000) and beta (Mr = 47,000) subunits. The alpha subunit is oligosaccharide-free while the beta subunit contains three Asn-linked oligosaccharide chains attached to a core peptide of 32,000 molecular weight. The time required for oligosaccharide processing of the newly synthesized beta subunit to endoglycosidase H-resistance suggests the (Na+ + K+)-ATPase takes 45-60 min to move from the site of polypeptide synthesis to the Golgi apparatus. Significantly less time was required for transport through the Golgi apparatus and insertion in the plasma membrane. From 30% to 55% of the newly synthesized (Na+ + K+)-ATPase did not appear on the cell surface but accumulated intracellularly. When tunicamycin was used to inhibit glycosylation of the beta subunit, there was no effect upon subunit assembly, intracellular transport, or degradation rate (t1/2 = 40 h).  相似文献   

12.
Fibronectin, an extracellular matrix protein, acts as an early signal in initiating cell proliferation. Results have indicated that platelet-derived growth factor BB (PDGF-BB) and insulin-like growth factor-I (IGF-I) both enhance fibronectin gene expression. Genistein inhibits PDGF-BB-induced fibronectin levels without inhibiting IGF-I-induced fibronectin levels. It indicates that PDGF-BB and IGF-I utilize separate signaling pathways to induce the synthesis of fibronectin.  相似文献   

13.
A W Shyjan  R Levenson 《Biochemistry》1989,28(11):4531-4535
We have developed a panel of antibodies specific for the alpha 1, alpha 2, alpha 3, and beta subunits of the rat Na,K-ATPase. TrpE-alpha subunit isoform fusion proteins were used to generate three antisera, each of which reacted specifically with a distinct alpha subunit isotype. Western blot analysis of rat tissue microsomes revealed that alpha 1 subunits were expressed in all tissues while alpha 2 subunits were expressed in brain, heart, and lung. The alpha 3 subunit, a protein whose existence had been inferred from cDNA cloning, was expressed primarily in brain and copurified with ouabain-inhibitable Na,K-ATPase activity. An antiserum specific for the rat Na,K-ATPase beta subunit was generated from a TrpE-beta subunit fusion protein. Western blot analysis showed that beta subunits were present in kidney, brain, and heart. However, no beta subunits were detected in liver, lung, spleen, thymus, or lactating mammary gland. The distinct tissue distributions of alpha and beta subunits suggest that different members of the Na,K-ATPase family may have specialized functions.  相似文献   

14.
Cell adhesion to extracellular matrices is mediated by a set of heterodimeric cell surface receptors called integrins that might be the subject of regulation by growth and differentiation factors. We have examined the effect of transforming growth factor-beta 1 (TGF-beta 1) on the expression of the very late antigens or alpha beta 1 group of integrins in human cell lines. The six known members of this family share a common beta 1 subunit but have distinct alpha subunits that confer selective affinity toward type I collagen, fibronectin, laminin, and other as yet unknown cell adhesion proteins. Using a panel of specific antibodies and cDNA probes, we show that in WI-38 lung fibroblasts TGF-beta 1 elevates concomitantly the expression of alpha 1, alpha 2, alpha 3, alpha 5, and beta 1 integrin subunits at the protein and/or mRNA level, their assembly into the corresponding alpha beta 1 complexes, and their exposure on the cell surface. The rate of synthesis of total alpha subunits relative to beta 1 subunit is higher in TGF-beta 1-treated cells than in control cells. The characteristically slow (t1/2 approximately 10 h) rate of beta 1 conversion from precursor form to mature glycoprotein in untreated cells increases markedly (to t1/2 approximately 3 h) in response to TGF-beta 1. The results suggest that in WI-38 fibroblasts the beta 1 subunit is synthesized in excess over alpha subunits, and assembly of beta 1 subunits with rate-limiting alpha subunits is required for transit through the Golgi and exposure of alpha beta 1 complex on the cell surface. TGF-beta 1 does not induce the synthesis of integrin subunits that are not expressed in unstimulated cells, such as alpha 4 and alpha 6 subunits in WI-38 fibroblasts. However, alpha 4 and alpha 6 subunits can be regulated by TGF-beta in those cells that express them. The results suggest that TGF-beta regulates the expression of individual integrin subunits by parallel but independent mechanisms. By modifying the balance of individual alpha beta 1 integrins, TGF-beta 1 might modulate those aspects of cell migration, positioning, and development that are guided by adhesion to extracellular matrices.  相似文献   

15.
16.
In this paper we establish the response of LLC-PK1/Cl4 cells, a pig kidney cell line, to incubation in medium containing 0.25 mM K+. The amounts of the Na,K-ATPase alpha and beta subunits, determined by Western blot, increase coordinately to greater than 2-fold over control by 24 h in low K+ and remained elevated for the duration of the study period (48 h). Na,K-ATPase activity, measured enzymatically, increased 1.4-fold by 24 h and remained elevated. In order to determine if this response was initiated pretranslationally, alpha and beta subunit mRNA levels were determined by Northern blot analysis. While there was no change in alpha-mRNA levels, beta levels increased significantly, to 1.9-fold over control by 6 h of treatment and remained elevated. This selective increase in beta-mRNA was accompanied by 1.6- and 3.1-fold increases in the respective rates of accumulation of newly synthesized alpha and beta subunits, assessed by immunoprecipitating subunits from pulse-labeled cells. The degradation rates of mature Na,K-ATPase subunits did not change during 16 h of exposure to low K+, but after 16 h there was a selective decrease in the alpha degradation rate, relative to control. These results suggest that increased pretranslational regulation of the beta subunit alone is sufficient to increase accumulation of both alpha and beta subunits. These findings support the notion that in LLC-PK1 cells newly synthesized beta is rate-limiting and thus regulates, through alpha beta assembly, the number of pumps transported to the plasma membrane.  相似文献   

17.
We have characterized the physiological and biochemical properties of the Na(+)/K(+) pump and its molecular expression in L8 rat muscle cells. Pump properties were measured by [(3)H]ouabain binding and (86)Rb uptake. Scatchard plot analysis of specific ouabain binding indicated the presence of a single family of binding sites with a B(max) of approximately 135 fmol/ mg P and a K(D) of 3.3 x 10(-8). (86)Rb uptake due to specific pump activity was found to be 20% of the total in L8 cells. The results indicated lower affinity of L8 cells for ouabain and lower activity of the pump than that reported for chick or rat skeletal muscle in primary culture. Both the alpha(1) and beta(1) protein and mRNA isoforms were expressed in myoblasts and in myotubes, while the alpha(2), alpha(3), and beta(2) isoforms were not detectable. We attempted to overcome low physiological expression of the Na(+)/K(+) pump by employing a vector expressing an avian high affinity alpha subunit. This allowed identification of the transfected subunit separate from that endogenously expressed in L8 cells. Successful transfection into L8 myoblasts and myotubes was recognized by anti-avian alpha subunit monoclonal antibodies. Fusion index, Na(+)/K(+) pump activity, and the level of the transmembrane resting potential were all significantly greater in transfected L8 (tL8) cells than in non-tL8. The total amount of alpha subunit (avian and rat) in tL8 cells was greater than that (only rat) in non-tL8 cells. This relatively high abundance of the Na(+)/K(+) pump in transfected cells may indicate that avian and rat alpha subunits hybridize to form functional pump complexes.  相似文献   

18.
Presynaptic Ca2+ channels are inhibited by metabotropic receptors. A possible mechanism for this inhibition is that G protein betagamma subunits modulate the binding of the Ca2+ channel beta subunit on the Ca2+ channel complex and induce a conformational state from which channel opening is more reluctant. To test this hypothesis, we analyzed the binding of Ca2+ channel beta and G protein beta subunits on the two separate binding sites, i.e. the loopI-II and the C terminus, and on the full-length P/Q-type alpha12.1 subunit by using a modified mammalian two-hybrid system and fluorescence resonance energy transfer (FRET) measurements. Analysis of the interactions on the isolated bindings sites revealed that the Ca2+ channel beta1b subunit induces a strong fluorescent signal when interacting with the loopI-II but not with the C terminus. In contrast, the G protein beta subunit induces FRET signals on both the C terminus and loopI-II. Analysis of the interactions on the full-length channel indicates that Ca2+ channel beta1b and G protein beta subunits bind to the alpha1 subunit at the same time. Coexpression of the G protein increases the FRET signal between alpha1/beta1b FRET pairs but not for alpha1/beta1b FRET pairs where the C terminus was deleted from the alpha1 subunit. The results suggest that the G protein alters the orientation and/or association between the Ca2+ channel beta and alpha12.1 subunits, which involves the C terminus of the alpha1 subunit and may corresponds to a new conformational state of the channel.  相似文献   

19.
Na+/K+-ATPase during diabetes may be regulated by synthesis of its alpha and beta subunits and by changes in membrane fluidity and lipid composition. As these mechanisms were unknown in liver, we studied in rats the effect of streptozotocin-induced diabetes on liver Na+/K+-ATPase. We then evaluated whether fish oil treatment prevented the diabetes-induced changes. Diabetes mellitus induced an increased Na+/K+-ATPase activity and an enhanced expression of the beta1 subunit; there was no change in the amount of the alpha1 and beta3 isoenzymes. Biphasic ouabain inhibition curves were obtained for diabetic groups indicating the presence of low and high affinity sites. No alpha2 and alpha3 isoenzymes could be detected. Diabetes mellitus led to a decrease in membrane fluidity and a change in membrane lipid composition. The diabetes-induced changes are not prevented by fish oil treatment. The results suggest that the increase of Na+/K+-ATPase activity can be associated with the enhanced expression of the beta1 subunit in the diabetic state, but cannot be attributed to changes in membrane fluidity as typically this enzyme will increase in response to an enhancement of membrane fluidity. The presence of a high-affinity site for ouabain (IC50 = 10-7 M) could be explained by the presence of (alphabeta)2 diprotomeric structure of Na+/K+-ATPase or an as yet unknown alpha subunit isoform that may exist in diabetes mellitus. These stimulations might be related, in part, to the modification of fatty acid content during diabetes.  相似文献   

20.
Methionine adenosyltransferase (MAT) catalyzes the synthesis of S-adenosylmethionine (AdoMet). The mammalian MAT II isozyme consists of catalytic alpha(2) and regulatory beta subunits. The aim of this study was to investigate the interaction and kinetic behavior of the human MAT II subunit proteins in mammalian cells. COS-1 cells were transiently transfected with pTargeT vector harboring full-length cDNA that encodes for the MAT II alpha(2) or beta subunits. Expression of the His-tagged recombinant alpha(2) (ralpha(2)) subunit in COS-1 cells markedly increased MAT II activity and resulted in a shift in the K(m) for L-methionine (L-Met) from 15 microM (endogenous MAT II) to 75 microM (ralpha(2)), and with the apparent existence of two kinetic forms of MAT in the transfected COS-1 cell extracts. By contrast, expression of the recombinant beta (rbeta) subunit had no effect on the K(m) for L-Met of the endogenous MAT II, while it did cause an increase in both the V(max) and the specific activity of endogenous MAT. Co-expression of both ralpha(2) and rbeta subunits resulted in a significant increase of MAT specific activity with the appearance of a single kinetic form of MAT (K(m) = 20 microM). The recombinant MAT II alpha(2) and rbeta subunit associated spontaneously either in cell-free system or in COS-1 cells co-expressing both subunits. Analysis of nickel-agarose-purified His-tagged ralpha(2) subunit from COS-1 cell extracts showed that the beta subunit co-purified with the alpha(2) subunit. Furthermore, the alpha(2) and beta subunits co-migrated in native polyacrylamide gels. Together, the data provide evidence for alpha(2) and beta MAT subunit association. In addition, the beta subunit regulated MAT II activity by reducing its K(m) for L-Met and by rendering the enzyme more susceptible to feedback inhibition by AdoMet. We believe that the previously described differential expression of MAT II beta subunit may be an important mechanism by which MAT activity can be modulated to provide different levels of AdoMet that may be required at different stages of cell growth and differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号