首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
ABSTRACT: BACKGROUND: Cell-free fetal DNA (cffDNA) can be detected in maternal blood during pregnancy, opening the possibility of early non-invasive prenatal diagnosis for a variety of genetic conditions. Since 1997, many studies have examined the accuracy of prenatal fetal sex determination using cffDNA, particularly for pregnancies at risk of an X-linked condition. Here we report a review and meta-analysis of the published literature to evaluate the use of cffDNA for prenatal determination (diagnosis) of fetal sex. We applied a sensitive search of multiple bibliographic databases including PubMed (MEDLINE), EMBASE, the Cochrane library and Web of Science. RESULTS: Ninety studies, incorporating 9,965 pregnancies and 10,587 fetal sex results met our inclusion criteria. Overall mean sensitivity was 96.6% (95% credible interval 95.2% to 97.7%) and mean specificity was 98.9% (95% CI = 98.1% to 99.4%). These results vary very little with trimester or week of testing, indicating that the performance of the test is reliably high. CONCLUSIONS: Based on this review and meta-analysis we conclude that fetal sex can be determined with a high level of accuracy by analyzing cffDNA. Using cffDNA in prenatal diagnosis to replace or complement existing invasive methods can remove or reduce the risk of miscarriage. Future work should concentrate on the economic and ethical considerations of implementing an early non-invasive test for fetal sex.  相似文献   

2.

AIM:

The presence of circulatory cell-free fetal DNA in maternal plasma has found new applications in non-invasive risk-free prenatal diagnosis.

MATERIALS AND METHODS:

We made use of a size separation approach along with real time polymerase chain reaction (PCR) to evaluate the use of fetal DNA in the detection of the sex of the fetus. Cell-free fetal DNA was isolated from the plasma of 30 women (10–20 weeks gestation) using a size separation approach. We made use of Taq Man Chemistry and real time PCR using primers and probes for GAPDH and SRY.

RESULTS:

Only 24 cases could be studied as there was no amplification in six cases. Fetal sex was accurately determined in all of the 24 cases wherein 19 women were carrying male fetuses and five women were carrying female fetuses. An increase in the amount of fetal DNA was observed with an increase in the gestational age.

CONCLUSIONS:

Real time PCR analysis is a highly sensitive and accurate tool for non-invasive prenatal diagnosis, allowing detection of the sex of the fetus as early as 10 weeks of gestation. Non-invasive prenatal diagnosis eliminates the risk of fetal loss associated with the invasive procedure.  相似文献   

3.
Fetal DNA in maternal serum: does it persist after pregnancy?   总被引:8,自引:0,他引:8  
Fetal DNA and cells present in maternal blood have previously been used for non-invasive prenatal diagnosis. However, some fetal cells can persist in maternal blood after a previous pregnancy. Fetal rhesus status and sex determination have been performed by using amplification by real-time polymerase chain reaction (PCR) of fetal DNA sequences present in maternal circulation; no false-positive results related to persistent fetal DNA from a previous pregnancy have been reported. This idea has recently been challenged. An SRY real-time PCR assay was performed on the serum of 67 pregnant women carrying a female fetus but having previously given birth to at least one boy and on the serum of 30 healthy non-pregnant women with a past male pregnancy. In all cases, serum was negative for the SRY gene. These data suggest that fetal DNA from a previous pregnancy cannot be detected in maternal serum, even by using a highly sensitive technique. Therefore, non-invasive prenatal diagnosis by fetal sex determination for women at risk of producing children with X-linked disorders, and fetal RHD genotyping is reliable and secure as previously demonstrated.  相似文献   

4.
Fetal DNA detection in maternal plasma throughout gestation   总被引:12,自引:0,他引:12  
The presence of fetal DNA in maternal plasma may represent a source of genetic material which can be obtained noninvasively. We wanted to assess whether fetal DNA is detectable in all pregnant women, to define the range and distribution of fetal DNA concentration at different gestational ages, to identify the optimal period to obtain a maternal blood sample yielding an adequate amount of fetal DNA for prenatal diagnosis, and to evaluate accuracy and predictive values of this approach. This information is crucial to develop safe and reliable non-invasive genetic testing in early pregnancy and monitoring of pregnancy complications in late gestation. Fetal DNA quantification in maternal plasma was carried out by real-time PCR on the SRY gene in male-bearing pregnancies to distinguish between maternal and fetal DNA. A cohort of 1,837 pregnant women was investigated. Fetal DNA could be detected from the sixth week and could be retrieved at any gestational week. No false-positive results were obtained in 163 women with previous embryo loss or previous male babies. Fetal DNA analysis performed blindly on a subset of 464 women displayed 99.4, 97.8 and 100% accuracy in fetal gender determination during the first, second, and third trimester of pregnancy, respectively. No SRY amplification was obtained in seven out of the 246 (2.8%) male-bearing pregnancies. Fetal DNA from maternal plasma seems to be an adequate and reliable source of genetic material for a noninvasive prenatal diagnostic approach.  相似文献   

5.
Recent advances in fetal nucleic acids in maternal plasma.   总被引:7,自引:0,他引:7  
The discovery of cell-free fetal DNA in maternal plasma in 1997 has opened up new possibilities for noninvasive prenatal diagnosis. Circulating fetal DNA molecules have been detected in maternal plasma from the first trimester onwards and can be robustly detected using a variety of molecular methods. This approach has been used for the prenatal investigation of sex-linked diseases, fetal RhD status, and prenatal exclusion of beta-thalassemia major. Recently, fetal RNA has also been found in maternal plasma. Such fetal RNA has been shown to originate from the placenta and to be remarkably stable. The use of microarray-based approaches has made it feasible to rapidly generate new circulating RNA markers. It is hoped that further developments in this field will make the routine and widespread practice of noninvasive nucleic acid-based prenatal diagnosis for common pregnancy-associated disorders feasible in the near future.  相似文献   

6.
The provision of prenatal diagnosis requires the highest standards in laboratory practice to ensure an accurate result. In preimplantation genetic diagnosis protocols additionally have to address the need to achieve an accurate result from 1 to 2 cells within a limited time. Emerging protocols of "non-invasive" prenatal diagnosis, which are based on analysis of free fetal DNA in the circulation of the pregnant mother, also have to achieve a result from a limited quantity of fetal DNA against a high background of maternal free DNA. Real-time PCR uses fluorescent probes or dyes and dedicated instruments to monitor the accumulation of amplicons produced throughout the progress of a PCR reaction. Real-time PCR can be used for quantitative or qualitative evaluation of PCR products and is ideally suited for analysis of nucleotide sequence variations (point mutations) and gene dosage changes (locus deletions or insertions/duplications) that cause human monogenic diseases. Real-time PCR offers a means for more rapid and potentially higher throughput assays, without compromising accuracy and has several advantages over end-point PCR analysis, including the elimination of post-PCR processing steps and a wide dynamic range of detection with a high degree of sensitivity. This review will focus on real-time PCR protocols that are suitable for genotyping monogenic diseases with particular emphasis on applications to prenatal diagnosis, non-invasive prenatal diagnosis and preimplantation genetic diagnosis.  相似文献   

7.
目的探讨并分析产前超声筛查胎儿先天性心脏病临床应用中存在的问题。方法回顾性分析本院近三年来599例胎儿先天性心脏病超声检查情况。结果确诊49例先天性心脏病,43例于产前确诊,产前心超敏感性为87.7%。漏诊5例,漏诊率10.2%。误诊1例,误诊率2.04%。49例先心病者中,产前确诊后失访的32例,失访率高达65%。检查孕周为17周-39.5周,平均28.4周。结论虽然超声筛查胎儿先天性心脏病具有无创性、敏感性高等优点,但仍存在漏诊、误诊、诊断时间过晚等问题,值得引起注意。  相似文献   

8.

BACKGROUND:

Circulating fetal cells and cell free DNA in the maternal blood has been shown to help in prenatal diagnosis of genetic disorders without relying on invasive procedures leading to significant risk of pregnancy loss.

AIM:

The current study was undertaken to detect the male fetal population using Y STR markers DYS 19, DYS 385 and DYS 392 and also to study the extent of persistence of fetal DNA in the mother following delivery.

MATERIALS AND METHODS:

Blinded study was conducted on 50 mothers delivering male and female babies. Cellular and cell free DNA was extracted from maternal and fetal cord blood and amplified for Y STR markers by PCR.

RESULTS:

The amplification sensitivity of Y specific STR, DYS19 was 100% (22/22) in the male fetal DNA samples. The incidence of other STRs, i.e., DYS385 and DYS392 were 91% (20/22) each. Analysis of results revealed that thirteen of the twenty six women had detectable male fetal DNA at the time of delivery. However fetal DNA was not detectable twenty four hours after delivery.

CONCLUSION:

Preliminary results show that the separation of fetal cell-free DNA in the maternal circulation is a good low-cost approach for the future development of novel strategies to provide non-invasive techniques for early prenatal diagnosis.  相似文献   

9.
We have developed a method that allows the prenatal DNA diagnosis of ornithine transcarbamylase (OTC) deficiency by using a single fetal nucleated erythrocyte (NRBC) isolated from maternal blood. OTC gene analysis of a male patient (TF) with early onset OTC deficiency was performed by single-strand conformation polymorphism (PCR-SSCP) and DNA sequencing. To investigate the possible prenatal diagnosis of OTC deficiency, maternal blood was obtained at 13 weeks of gestation of a subsequent pregnancy, from the mother of patient TF. NRBCs in the maternal blood were separated by using the density gradient method and then collected with a micromanipulator. The entire genome of a single NRBC was amplified by primer extension preamplification (PEP). The human leukocyte antigen (HLA)-DQ alpha genotype and sex were determined from small aliquots of the PEP product. The HLA-DQ alpha genotype of each of the parents of the male patient was also determined. Once a single NRBC had been identified as being of fetal origin, the OTC gene was analyzed by using the restriction fragment length polymorphism (RFLP) method. DNA analysis revealed a point mutation in exon 9 of the OTC gene in the OTC-deficient patient (TF). All NRBCs retrieved from maternal blood were successfully identified as being of fetal origin by HLA-DQ alpha genotyping and sex determination. RFLP analysis demonstrated that the fetal OTC gene was normal. This is the first study to successfully diagnose OTC deficiency prenatally, by using a single fetal NRBC from the maternal circulation. Such prenatal DNA diagnosis is non-invasive and can be applied to other genetic diseases, including autosomal and X-linked diseases. Received: 19 December 1997 / Accepted: 14 February 1998  相似文献   

10.
Direct analysis of fetal DNA using restriction endonucleases constitutes a major area of progress in prenatal diagnosis. This recent technology may permit the precise identification of a mutant allele for some diseases, whereas in others it allows the familial segregation of a pathogenic allele to be followed by its linkage to a DNA sequence polymorphism. This type of analysis, available in a few centers, is currently used, among others, for the prenatal diagnosis of hemoglobinopathies such as sickle cell anemia. After fetal cells have been obtained by choriocentesis or amniocentesis, the extracted DNA is exposed to selected restriction enzymes. In the diagnosis of sickle cell anemia the mutant codon responsible for the substitution of glutamic acid by valine in the beta hemoglobin chain is no longer cut by the enzyme Mst II, due to its variance with the normal codon; this difference in fragment length is detected by DNA electrophoresis, and the particular fragments are identified by molecular hybridization with appropriate radioactive probes. Utilizing these methods the genotype of a homozygous normal fetus can be distinguished from that of a homozygote affected or a heterozygote for the sickle mutation of the beta hemoglobin chain. We have recently applied this prenatal methodology to the pregnancies of two couples from Zaire, in which each member was a proven sickle cell carrier. Fetal material was obtained in both cases by amniocentesis at the 16th week of gestation and followed by cell culture. In the first case, a 46, XX fetus, DNA (10 mcg) revealed a heterozygous sickle cell carrier genotype.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
From experiments with prenatal undernutrition in the rat, it is clear that fetal exposure to glucocorticoids of maternal origin is a key first step in the programming of hypertension and perhaps coronary heart disease. The chain of events leading from glucocorticoid action in the fetal tissues to hypertension in adulthood involves the development of hypersensitivity to glucocorticoids in adult life (Scheme 1). This has the effect of activating the RAS through induction of key genes such as ACE, which, in turn, may increase sensitivity of the blood vessels to the actions of ANGII. Another consequence of prenatal undernutrition, which may or may not involve glucocorticoids, is the abnormal development of the kidney [35]. Impaired nephrogenesis must surely have an impact upon lifelong renal function and cardiovascular control. Progress has been made in demonstrating that hypertension can be prenatally programmed through maternal dietary manipulation and some of the putative mechanisms involved have been identified. The priorities in this field of research must now be to clarify the role of maternal diet as a programming stimulus in order to generate an effective series of public health guidelines for pregnant women. Although the identification of metabolic mechanisms might suggest possible pharmacological interventions in early life as a means of reducing cardiovascular risk in adult life [49], it will always be more desirable to optimize maternal diet.  相似文献   

12.
No evidence of fetal DNA persistence in maternal plasma after pregnancy   总被引:8,自引:0,他引:8  
Short- and long-term persistence of fetal DNA in maternal plasma has been investigated. Short-term persistence at very low concentration was detected in 47 out of 105 women within two days after delivery. Twelve out of 13 samples re-tested within three days scored negative. No long-term persistence was detected in 172 women who had previous sons or abortions. Molecular microchimerism due to circulating fetal DNA persisting from previous pregnancies should not hamper non-invasive plasma-based prenatal testing.  相似文献   

13.
Prenatal diagnosis based on rare fetal cells in maternal blood is currently not a feasible option. An effort was made to improve cell yields by targeting trophoblast cells. After sorting, the HLA-G-positive cell fraction was analyzed directly or after culture. In situ hybridization technology was applied to prove fetal cell source in samples from women carrying a male fetus and to predict gender in samples without previous knowledge of fetal sex. In vitro culture led to a significant increase in fetal cells and accurate gender prediction in 93% of these samples. This approach might be useful for non-invasive prenatal diagnosis.  相似文献   

14.
Prenatal diagnosis (PD) is available for pregnancies at risk of monogenic disorders. However, PD requires the use of invasive obstetric techniques for fetal-sample collection and therefore, involves a risk of fetal loss. Circulating fetal DNA in the maternal bloodstream is being used to perform non-invasive prenatal diagnosis (NIPD). NIPD is a challenging discipline because of the biological features of the maternal blood sample. Maternal blood is an unequal mixture of small (and fragmented) amounts of fetal DNA within a wide background of maternal DNA. For this reason, initial NIPD studies have been based on the analysis of specific paternally inherited fetal tracts not present in the maternal genome so as to ensure their fetal origin. Following this strategy, different NIPD studies have been carried out, such as fetal-sex assessment for pregnancies at risk of X-linked disorders, RhD determination, and analysis of single-gene disorders with a paternal origin. The study of the paternal mutation can be used for fetal diagnosis of dominant disorders or to more accurately assess the risk of an affected child in case of recessive diseases. Huntington's disease, cystic fibrosis, or achondroplasia are some examples of diseases studied using NIPD. New technologies are opening NIPD to the analysis of maternally inherited fetal tracts. NIPD of trisomy 21 is the latest study derived from the use of next-generation sequencing (NGS).  相似文献   

15.
Stem cells have been isolated at all stages of development from the early developing embryo to the post-reproductive adult organism. However, the fetal environment is unique as it is the only time in ontogeny that there is migration of stem cells in large numbers into different organ compartments. While fetal neural and haemopoietic stem cells (HSC) have been well characterised, only recently have mesenchymal stem cells from the human fetus been isolated and evaluated. Our group have characterised in human fetal blood, liver and bone marrow a population of non-haemopoietic, non-endothelial cells with an immunophenotype similar to adult bone marrow-derived mesenchymal stem cells (MSC). These cells, human fetal mesenchymal stem cells (hfMSC), are true multipotent stem cells with greater self-renewal and differentiation capacity than their adult counterparts. They circulate in first trimester fetal blood and have been found to traffic into the maternal circulation, engrafting in bone marrow, where they remain microchimeric for decades after pregnancy. Though fetal microchimerism has been implicated in the pathogenesis of autoimmune disease, the biological role of hfMSC microchimerism is unknown. Potential downstream applications of hfMSC include their use as a target cell for non-invasive pre-natal diagnosis from maternal blood, and for fetal cellular and gene therapy. Using hfMSC in fetal therapy offers the theoretical advantages of avoidance of immune rejection, increased engraftment, and treatment before disease pathology sets in. Aside from allogeneic hfMSC in utero transplantation, the use of autologous hfMSC has been brought a step forward with the development of early blood sampling techniques, efficient viral transduction and clonal expansion. Work is ongoing to determine hfMSC fate post-transplantation in murine models of genetic disease. In this review we will examine what is known about hfMSC biology, as well as discussing areas for future research. The implications of hfMSC trafficking in pregnancy will be explored and the potential clinical applications of hfMSC in prenatal diagnosis and fetal therapy discussed.  相似文献   

16.
YM Lo 《Open biology》2012,2(6):120086
The presence of foetal DNA in the plasma of pregnant women has opened up new possibilities for non-invasive prenatal diagnosis. The use of circulating foetal DNA for the non-invasive prenatal detection of foetal chromosomal aneuploidies is challenging as foetal DNA represents a minor fraction of maternal plasma DNA. In 2007, it was shown that single molecule counting methods would allow the detection of the presence of a trisomic foetus, as long as enough molecules were counted. With the advent of massively parallel sequencing, millions or billions of DNA molecules can be readily counted. Using massively parallel sequencing, foetal trisomies 21, 13 and 18 have been detected from maternal plasma. Recently, large-scale clinical studies have validated the robustness of this approach for the prenatal detection of foetal chromosomal aneuploidies. A proof-of-concept study has also shown that a genome-wide genetic and mutational map of a foetus can be constructed from the maternal plasma DNA sequencing data. These developments suggest that the analysis of foetal DNA in maternal plasma would play an increasingly important role in future obstetrics practice. It is thus a priority that the ethical, social and legal issues regarding this technology be systematically studied.  相似文献   

17.

Background

Continuing efforts in development of non-invasive prenatal genetic tests have focused on the isolation of fetal nucleated red blood cells (NRBCs) from maternal blood for decades. Because no fetal cell-specific antibody has been described so far, the present study focused on the development of monoclonal antibodies (mAbs) to antigens that are expressed exclusively on fetal NRBCs.Methods: Mice were immunized with fetal erythroid cell membranes and hybridomas screened for Abs using a multi-parameter fluorescence-activated cell sorting (FACS). Selected mAbs were evaluated by comparative FACS analysis involving Abs known to bind erythroid cell surface markers (CD71, CD36, CD34), antigen-i, galactose, or glycophorin-A (GPA). Specificity was further confirmed by extensive immunohistological and immunocytological analyses of NRBCs from umbilical cord blood and fetal and adult cells from liver, bone marrow, peripheral blood, and lymphoid tissues.Results: Screening of 690 hybridomas yielded three clones of which Abs from 4B8 and 4B9 clones demonstrated the desired specificity for a novel antigenic structure expressed on fetal erythroblast cell membranes. The antigenic structure identified is different from known surface markers (CD36, CD71, GPA, antigen-i, and galactose), and is not present on circulating adult erythroid cells, except for occasional detectability in adult bone marrow cells.Conclusions:The new mAbs specifically bind the same or highly overlapping epitopes of a surface antigen that is almost exclusively expressed on fetal erythroid cells. The high specificity of the mAbs should facilitate development of simple methods for reliable isolation of fetal NRBCs and their use in non-invasive prenatal diagnosis of fetal genetic status.  相似文献   

18.
PCR using sequence-specific primers (PCR-SSP) is widely employed for the genotyping of single nucleotide polymorphisms (SNPs) in both routine diagnosis and medical research. The human platelet alloantigens (HPAs) represent SNPs in platelet-specific glycoproteins, and HPA-1, -2, -3, and -5 are the most relevant in immunohematology. In most protocols, the respective HPA-SNPs are analyzed in allele-specific reactions, each with at least 100 ng DNA. In many cases, prenatal HPA typing in the diagnosis of neonatal alloimmune thrombocytopenia is often limited by the restricted amounts of fetal DNA that are obtainable. We developed a novel PCR-SSP technique to achieve accurate HPA genotypes using only 1 ng DNA per reaction. The concentration of HPA-specific primers was increased to 1 microM each and exhibited a higher sensitivity compared to a commercial PCR-SSP kit. The modified PCR-SSP technique enabled the identification of fetal HPA genotypes using only 0.5 mL amniotic fluid (from week 16 of gestation) and from a maternal plasma sample (from week 38 of gestation). The principle of the modified PCR-SSP technique may also be applied for the genotyping of other SNPs from limited amounts of DNA.  相似文献   

19.
Cytogenetic analysis of amniotic fluid cells or chorionic villi are standard methods in invasive prenatal diagnosis. In certain cases, analyzing fetal blood cells or fetal cells of other origin represents an excellent supplementary investigation to disclose a fetal chromosomal aberration. At the microscopic level, chromosome analysis allows an examination of the complete genome. In the case of molecular analysis of monogenic disorders, native chorionic villi are the preferred tissue for targeted examination. Rapid advances in molecular non-invasive prenatal diagnosis will broaden parents?? options to exclude certain relevant genetic changes and will have an important impact on the field of invasive prenatal diagnosis.  相似文献   

20.
Fetal DNA is present in the plasma of pregnant women. Massively parallel sequencing of maternal plasma DNA has been used to detect fetal trisomies 21, 18, 13 and selected sex chromosomal aneuploidies noninvasively. Case reports describing the detection of fetal microdeletions from maternal plasma using massively parallel sequencing have been reported. However, these previous reports were either polymorphism-dependent or used statistical analyses which were confined to one or a small number of selected parts of the genome. In this report, we reported a procedure for performing noninvasive prenatal karyotyping at 3 Mb resolution across the whole genome through the massively parallel sequencing of maternal plasma DNA. This method has been used to analyze the plasma obtained from 6 cases. In three cases, fetal microdeletions have been detected successfully from maternal plasma. In two cases, fetal microduplications have been detected successfully from maternal plasma. In the remaining case, the plasma DNA sequencing result was consistent with the pregnant mother being a carrier of a microduplication. Simulation analyses were performed for determining the number of plasma DNA molecules that would need to be sequenced and aligned for enhancing the diagnostic resolution of noninvasive prenatal karyotyping to 2 Mb and 1 Mb. In conclusion, noninvasive prenatal molecular karyotyping from maternal plasma by massively parallel sequencing is feasible and would enhance the diagnostic spectrum of noninvasive prenatal testing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号