首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neurons process information via integration of synaptic inputs from dendrites. Many experimental results demonstrate dendritic integration could be highly nonlinear, yet few theoretical analyses have been performed to obtain a precise quantitative characterization analytically. Based on asymptotic analysis of a two-compartment passive cable model, given a pair of time-dependent synaptic conductance inputs, we derive a bilinear spatiotemporal dendritic integration rule. The summed somatic potential can be well approximated by the linear summation of the two postsynaptic potentials elicited separately, plus a third additional bilinear term proportional to their product with a proportionality coefficient . The rule is valid for a pair of synaptic inputs of all types, including excitation-inhibition, excitation-excitation, and inhibition-inhibition. In addition, the rule is valid during the whole dendritic integration process for a pair of synaptic inputs with arbitrary input time differences and input locations. The coefficient is demonstrated to be nearly independent of the input strengths but is dependent on input times and input locations. This rule is then verified through simulation of a realistic pyramidal neuron model and in electrophysiological experiments of rat hippocampal CA1 neurons. The rule is further generalized to describe the spatiotemporal dendritic integration of multiple excitatory and inhibitory synaptic inputs. The integration of multiple inputs can be decomposed into the sum of all possible pairwise integration, where each paired integration obeys the bilinear rule. This decomposition leads to a graph representation of dendritic integration, which can be viewed as functionally sparse.  相似文献   

2.
In vivo, cortical pyramidal cells are bombarded by asynchronous synaptic input arising from ongoing network activity. However, little is known about how such ‘background’ synaptic input interacts with nonlinear dendritic mechanisms. We have modified an existing model of a layer 5 (L5) pyramidal cell to explore how dendritic integration in the apical dendritic tuft could be altered by the levels of network activity observed in vivo. Here we show that asynchronous background excitatory input increases neuronal gain and extends both temporal and spatial integration of stimulus-evoked synaptic input onto the dendritic tuft. Addition of fast and slow inhibitory synaptic conductances, with properties similar to those from dendritic targeting interneurons, that provided a ‘balanced’ background configuration, partially counteracted these effects, suggesting that inhibition can tune spatio-temporal integration in the tuft. Excitatory background input lowered the threshold for NMDA receptor-mediated dendritic spikes, extended their duration and increased the probability of additional regenerative events occurring in neighbouring branches. These effects were also observed in a passive model where all the non-synaptic voltage-gated conductances were removed. Our results show that glutamate-bound NMDA receptors arising from ongoing network activity can provide a powerful spatially distributed nonlinear dendritic conductance. This may enable L5 pyramidal cells to change their integrative properties as a function of local network activity, potentially allowing both clustered and spatially distributed synaptic inputs to be integrated over extended timescales.  相似文献   

3.
Feedforward inhibition controls the time window for synaptic integration and ensures temporal precision in cortical circuits. There is little information whether feedforward inhibition affects neurons uniformly, or whether it contributes to computational refinement within the dendritic tree. Here we demonstrate that feedforward inhibition crucially shapes the integration of synaptic signals in pyramidal cell dendrites. Using voltage-sensitive dye imaging we studied the transmembrane voltage patterns in CA1 pyramidal neurons after Schaffer collateral stimulation in acute brain slices from mice. We observed a high degree of variability in the excitation-inhibition ratio between different branches of the dendritic tree. Many dendritic segments showed no depolarizing signal at all, especially the basal dendrites that received predominantly inhibitory signals. Application of the GABAA receptor antagonist bicuculline resulted in the spread of depolarizing signals throughout the dendritic tree. Tetanic stimulation of Schaffer collateral inputs induced significant alterations in the patterns of excitation/inhibition, indicating that they are modified by synaptic plasticity. In summary, we show that feedforward inhibition restricts the occurrence of depolarizing signals within the dendritic tree of CA1 pyramidal neurons and thus refines signal integration spatially.  相似文献   

4.
This paper studied the synaptic and dendritic integration with different spatial distributions of synapses on the dendrites of a biophysically-detailed layer 5 pyramidal neuron model. It has been observed that temporally synchronous and spatially clustered synaptic inputs make dendrites perform a highly nonlinear integration. The effect of clustering degree of synaptic distribution on neuronal responsiveness is investigated by changing the number of top apical dendrites where active synapses are allocated. The neuron shows maximum responsiveness to synaptic inputs which have an intermediate clustering degree of spatial distribution, indicating complex interactions among dendrites with the existence of nonlinear synaptic and dendritic integrations.  相似文献   

5.
Branco T  Häusser M 《Neuron》2011,69(5):885-892
Cortical pyramidal neurons receive thousands of synaptic inputs arriving at different dendritic locations with varying degrees of temporal synchrony. It is not known if different locations along single cortical dendrites integrate excitatory inputs in different ways. Here we have used two-photon glutamate uncaging and compartmental modeling to reveal a gradient of nonlinear synaptic integration in basal and apical oblique dendrites of cortical pyramidal neurons. Excitatory inputs to the proximal dendrite sum linearly and require precise temporal coincidence for effective summation, whereas distal inputs are amplified with high gain and integrated over broader time windows. This allows distal inputs to overcome their electrotonic disadvantage, and become surprisingly more effective than proximal inputs at influencing action potential output. Thus, single dendritic branches can already exhibit nonuniform synaptic integration, with the computational strategy shifting from temporal coding to rate coding along the dendrite.  相似文献   

6.
Despite the central position of CA3 pyramidal cells in the hippocampal circuit, the experimental investigation of their synaptic properties has been limited. Recent slice experiments from adult rats characterized AMPA and NMDA receptor unitary synaptic responses in CA3b pyramidal cells. Here, excitatory synaptic activation is modeled to infer biophysical parameters, aid analysis interpretation, explore mechanisms, and formulate predictions by contrasting simulated somatic recordings with experimental data. Reconstructed CA3b pyramidal cells from the public repository NeuroMorpho.Org were used to allow for cell-specific morphological variation. For each cell, synaptic responses were simulated for perforant pathway and associational/commissural synapses. Means and variability for peak amplitude, time-to-peak, and half-height width in these responses were compared with equivalent statistics from experimental recordings. Synaptic responses mediated by AMPA receptors are best fit with properties typical of previously characterized glutamatergic receptors where perforant path synapses have conductances twice that of associational/commissural synapses (0.9 vs. 0.5 nS) and more rapid peak times (1.0 vs. 3.3 ms). Reanalysis of passive-cell experimental traces using the model shows no evidence of a CA1-like increase of associational/commissural AMPA receptor conductance with increasing distance from the soma. Synaptic responses mediated by NMDA receptors are best fit with rapid kinetics, suggestive of NR2A subunits as expected in mature animals. Predictions were made for passive-cell current clamp recordings, combined AMPA and NMDA receptor responses, and local dendritic depolarization in response to unitary stimulations. Models of synaptic responses in active cells suggest altered axial resistivity and the presence of synaptically activated potassium channels in spines.  相似文献   

7.
The in vivo activity of CA1 pyramidal neurons alternates between regular spiking and bursting, but how these changes affect information processing remains unclear. Using a detailed CA1 pyramidal neuron model, we investigate how timing and spatial arrangement variations in synaptic inputs to the distal and proximal dendritic layers influence the information content of model responses. We find that the temporal delay between activation of the two layers acts as a switch between excitability modes: short delays induce bursting while long delays decrease firing. For long delays, the average firing frequency of the model response discriminates spatially clustered from diffused inputs to the distal dendritic tree. For short delays, the onset latency and inter-spike-interval succession of model responses can accurately classify input signals as temporally close or distant and spatially clustered or diffused across different stimulation protocols. These findings suggest that a CA1 pyramidal neuron may be capable of encoding and transmitting presynaptic spatiotemporal information about the activity of the entorhinal cortex-hippocampal network to higher brain regions via the selective use of either a temporal or a rate code.  相似文献   

8.
9.
The brain can learn new tasks without forgetting old ones. This memory retention is closely associated with the long-term stability of synaptic strength. To understand the capacity of pyramidal neurons to preserve memory under different tasks, we established a plasticity model based on the postsynaptic membrane energy state, in which the change in synaptic strength depends on the difference between the energy state after stimulation and the resting energy state. If the post-stimulation energy state is higher than the resting energy state, then synaptic depression occurs. On the contrary, the synapse is strengthened. Our model unifies homo- and heterosynaptic plasticity and can reproduce synaptic plasticity observed in multiple experiments, such as spike-timing-dependent plasticity, and cooperative plasticity with few and common parameters. Based on the proposed plasticity model, we conducted a simulation study on how the activation patterns of dendritic branches by different tasks affect the synaptic connection strength of pyramidal neurons. We further investigate the formation mechanism by which different tasks activate different dendritic branches. Simulation results show that compare to the classic plasticity model, the plasticity model we proposed can achieve a better spatial separation of different branches activated by different tasks in pyramidal neurons, which deepens our insight into the memory retention mechanism of brains.  相似文献   

10.
Most neurons have elaborate dendritic trees that receive tens of thousands of synaptic inputs. Because postsynaptic responses to individual synaptic events are usually small and transient, the integration of many synaptic responses is needed to depolarize most neurons to action potential threshold. Over the past decade, advances in electrical and optical recording techniques have led to new insights into how synaptic responses propagate and interact within dendritic trees. In addition to their passive electrical and morphological properties, dendrites express active conductances that shape individual synaptic responses and influence synaptic integration locally within dendrites. Dendritic voltage-gated Na(+) and Ca(2+) channels support action potential backpropagation into the dendritic tree and local initiation of dendritic spikes, whereas K(+) conductances act to dampen dendritic excitability. While all dendrites investigated to date express active conductances, different neuronal types show specific patterns of dendritic channel expression leading to cell-specific differences in the way synaptic responses are integrated within dendritic trees. This review explores the way active and passive dendritic properties shape synaptic responses in the dendrites of central neurons, and emphasizes their role in synaptic integration.  相似文献   

11.
The precise timing of events in the brain has consequences for intracellular processes, synaptic plasticity, integration and network behaviour. Pyramidal neurons, the most widespread excitatory neuron of the neocortex have multiple spike initiation zones, which interact via dendritic and somatic spikes actively propagating in all directions within the dendritic tree. For these neurons, therefore, both the location and timing of synaptic inputs are critical. The time window for which the backpropagating action potential can influence dendritic spike generation has been extensively studied in layer 5 neocortical pyramidal neurons of rat somatosensory cortex. Here, we re-examine this coincidence detection window for pyramidal cell types across the rat somatosensory cortex in layers 2/3, 5 and 6. We find that the time-window for optimal interaction is widest and shifted in layer 5 pyramidal neurons relative to cells in layers 6 and 2/3. Inputs arriving at the same time and locations will therefore differentially affect spike-timing dependent processes in the different classes of pyramidal neurons.  相似文献   

12.
Synaptic plasticity is believed to represent the neural correlate of mammalian learning and memory function. It has been demonstrated that changes in synaptic conductance can be induced by approximately synchronous pairings of pre- and post- synaptic action potentials delivered at low frequencies. It has also been established that NMDAr-dependent calcium influx into dendritic spines represents a critical signal for plasticity induction, and can account for this spike-timing dependent plasticity (STDP) as well as experimental data obtained using other stimulation protocols. However, subsequent empirical studies have delineated a more complex relationship between spike-timing, firing rate, stimulus duration and post-synaptic bursting in dictating changes in the conductance of hippocampal excitatory synapses. Here, we present a detailed biophysical model of single dendritic spines on a CA1 pyramidal neuron, describe the NMDAr-dependent calcium influx generated by different stimulation protocols, and construct a parsimonious model of calcium driven kinase and phosphatase dynamics that dictate the probability of stochastic transitions between binary synaptic weight states in a Markov model. We subsequently demonstrate that this approach can account for a range of empirical observations regarding the dynamics of synaptic plasticity induced by different stimulation protocols, under regimes of pharmacological blockade and metaplasticity. Finally, we highlight the strengths and weaknesses of this parsimonious, unified computational synaptic plasticity model, discuss differences between the properties of cortical and hippocampal plasticity highlighted by the experimental literature, and the manner in which further empirical and theoretical research might elucidate the cellular basis of mammalian learning and memory function.  相似文献   

13.
The importance of long-term synaptic plasticity as a cellular substrate for learning and memory is well established. By contrast, little is known about how learning and memory are regulated by voltage-gated ion channels that integrate synaptic information. We investigated this question using mice with general or forebrain-restricted knockout of the HCN1 gene, which we find encodes a major component of the hyperpolarization-activated inward current (Ih) and is an important determinant of dendritic integration in hippocampal CA1 pyramidal cells. Deletion of HCN1 from forebrain neurons enhances hippocampal-dependent learning and memory, augments the power of theta oscillations, and enhances long-term potentiation (LTP) at the direct perforant path input to the distal dendrites of CA1 pyramidal neurons, but has little effect on LTP at the more proximal Schaffer collateral inputs. We suggest that HCN1 channels constrain learning and memory by regulating dendritic integration of distal synaptic inputs to pyramidal cells.  相似文献   

14.
Do cortical neurons operate as integrators or as coincidence detectors? Despite the importance of this question, no definite answer has been given yet, because each of these two views can find its own experimental support. Here we investigated this question using models of morphologically-reconstructed neocortical pyramidal neurons under in vivo like conditions. In agreement with experiments we find that the cell is capable of operating in a continuum between coincidence detection and temporal integration, depending on the characteristics of the synaptic inputs. Moreover, the presence of synaptic background activity at a level comparable to intracellular measurements in vivo can modulate the operating mode of the cell, and act as a switch between temporal integration and coincidence detection. These results suggest that background activity can be viewed as an important determinant of the integrative mode of pyramidal neurons. Thus, background activity not only sharpens cortical responses but it can also be used to tune an entire network between integration and coincidence detection modes.  相似文献   

15.
Recent experimental and theoretical studies have found that active dendritic ionic currents can compensate for the effects of electrotonic attenuation. In particular, temporal summation, the percentage increase in peak somatic voltage responses invoked by a synaptic input train, is independent of location of the synaptic input in hippocampal CA1 pyramidal neurons under normal conditions. This independence, known as normalization of temporal summation, is destroyed when the hyperpolarization-activated current, I h, is blocked [Magee JC (1999a), Nature Neurosci. 2: 508–514]. Using a compartmental model derived from morphological recordings of hippocampal CA1 pyramidal neurons, we examined the hypothesis that I h was primarily responsible for normalization of temporal summation. We concluded that this hypothesis was incomplete. With a model that included I h, the persistent Na+ current (I NaP), and the transient A-type K+ current (I A), however, we observed normalization of temporal summation across a wide range of synaptic input frequencies, in keeping with experimental observations.  相似文献   

16.
Cortical information processing relies critically on the processing of electrical signals in pyramidal neurons. Electrical transients mainly arise when excitatory synaptic inputs impinge upon distal dendritic regions. To study the dendritic aspect of synaptic integration one must record electrical signals in distal dendrites. Since thin dendritic branches, such as oblique and basal dendrites, do not support routine glass electrode measurements, we turned our effort towards voltage-sensitive dye recordings. Using the optical imaging approach we found and reported previously that basal dendrites of neocortical pyramidal neurons show an elaborate repertoire of electrical signals, including backpropagating action potentials and glutamate-evoked plateau potentials. Here we report a novel form of electrical signal, qualitatively and quantitatively different from backpropagating action potentials and dendritic plateau potentials. Strong glutamatergic stimulation of an individual basal dendrite is capable of triggering a fast spike, which precedes the dendritic plateau potential. The amplitude of the fast initial spikelet was actually smaller that the amplitude of the backpropagating action potential in the same dendritic segment. Therefore, the fast initial spike was dubbed “spikelet”. Both the basal spikelet and plateau potential propagate decrementally towards the cell body, where they are reflected in the somatic whole-cell recordings. The low incidence of basal spikelets in the somatic intracellular recordings and the impact of basal spikelets on soma-axon action potential initiation are discussed.  相似文献   

17.
The output of neocortical layer 5 pyramidal cells (L5PCs) is expressed by a train of single spikes with intermittent bursts of multiple spikes at high frequencies. The bursts are the result of nonlinear dendritic properties, including Na+, Ca2+, and NMDA spikes, that interact with the ~10,000 synapses impinging on the neuron’s dendrites. Output spike bursts are thought to implement key dendritic computations, such as coincidence detection of bottom-up inputs (arriving mostly at the basal tree) and top-down inputs (arriving mostly at the apical tree). In this study we used a detailed nonlinear model of L5PC receiving excitatory and inhibitory synaptic inputs to explore the conditions for generating bursts and for modulating their properties. We established the excitatory input conditions on the basal versus the apical tree that favor burst and show that there are two distinct types of bursts. Bursts consisting of 3 or more spikes firing at < 200 Hz, which are generated by stronger excitatory input to the basal versus the apical tree, and bursts of ~2-spikes at ~250 Hz, generated by prominent apical tuft excitation. Localized and well-timed dendritic inhibition on the apical tree differentially modulates Na+, Ca2+, and NMDA spikes and, consequently, finely controls the burst output. Finally, we explored the implications of different burst classes and respective dendritic inhibition for regulating synaptic plasticity.  相似文献   

18.
Neurons in the mammalian brain receive thousands of synaptic inputs on their dendrites. In many types of neurons, such as cortical pyramidal neurons, excitatory synapses are formed on fine dendritic protrusions called spines. Usually, an individual spine forms a single synaptic contact with an afferent axon. In this protocol, we describe a recently established experimental procedure for measuring intracellular calcium signals from dendritic spines in cortical neurons in vivo by using a combination of two-photon microscopy and whole-cell patch-clamp recordings. We have used mice as an experimental model system, but the protocol may be readily adapted to other species. This method involves data acquisition at high frame rates and low-excitation laser power, and is termed low-power temporal oversampling (LOTOS). Because of its high sensitivity of fluorescence detection and reduced phototoxicity, LOTOS allows for prolonged and stable calcium imaging in vivo. Key aspects of the protocol, which can be completed in 5-6 h, include the use of a variant of high-speed two-photon imaging, refined surgery procedures and optimized tissue stabilization.  相似文献   

19.
Summary Cells in the visual cortex (area 17) of adult rats were impregnated by the rapid Golgi method and characterized by light microscopy. Selected cells were then sectioned for electron microscopy and their cytological characteristics and the pattern of synapses on their cell bodies and dendrites were studied Twelve classical pyramidal cells from layers II–VI, two pyramid-like cells from layer VI, two inverted pyramidal cells from layers V and VI, ten spine-free non-pyramidal cells from layers II–VI and two spinous non-pyramidal cells from layer IV were examined.The cytoplasmic features of the identified cells, where these could be discerned, corresponded to those previously reported for the different cell types in conventionally prepared tissue. Pyramidal Cells received exclusively type 2 synaptic contacts on their cell bodies, type 1 contacts on their dendritic spines and a mixture of synaptic types (type II predominating) on their shafts, where synaptic density was relatively low. This pattern of synaptic contacts was consistent for all portions of the dendritic tree; inverted pyramidal cells and pyramid-like cells showed the same synaptic organization as classical pyramids. The axon collaterals of pyramidal cells established type I contacts with dendritic spines (or, rarely, shafts) of unknown origin. Non-Pyramidal Cells received both type 1 and type 2 contacts (the former predominating) on their cell bodies and dendrites. The spinous variety also received type I contacts on their dendritic spines. Axon terminal of spine-free non-pyramidal cells established type II synaptic contacts with dendritic shafts of unknown origin. The similarity in synaptic organization between the spine-free and spinous non-pyramidal cells examined in this study suggest that the latter correspond to the sparsely spinous stellate cells rather than to the spinous stellate cells of cat and monkey visual cortex.We thank the Medical Research Council for financial support  相似文献   

20.
The precise mapping of how complex patterns of synaptic inputs are integrated into specific patterns of spiking output is an essential step in the characterization of the cellular basis of network dynamics and function. Relative to other principal neurons of the hippocampus, the electrophysiology of CA1 pyramidal cells has been extensively investigated. Yet, the precise input-output relationship is to date unknown even for this neuronal class. CA1 pyramidal neurons receive laminated excitatory inputs from three distinct pathways: recurrent CA1 collaterals on basal dendrites, CA3 Schaffer collaterals, mostly on oblique and proximal apical dendrites, and entorhinal perforant pathway on distal apical dendrites. We implemented detailed computer simulations of pyramidal cell electrophysiology based on three-dimensional anatomical reconstructions and compartmental models of available biophysical properties from the experimental literature. To investigate the effect of synaptic input on axosomatic firing, we stochastically distributed a realistic number of excitatory synapses in each of the three dendritic layers. We then recorded the spiking response to different stimulation patterns. For all dendritic layers, synchronous stimuli resulted in trains of spiking output and a linear relationship between input and output firing frequencies. In contrast, asynchronous stimuli evoked non-bursting spike patterns and the corresponding firing frequency input-output function was logarithmic. The regular/irregular nature of the input synaptic intervals was only reflected in the regularity of output inter-burst intervals in response to synchronous stimulation, and never affected firing frequency. Synaptic stimulations in the basal and proximal apical trees across individual neuronal morphologies yielded remarkably similar input-output relationships. Results were also robust with respect to the detailed distributions of dendritic and synaptic conductances within a plausible range constrained by experimental evidence. In contrast, the input-output relationship in response to distal apical stimuli showed dramatic differences from the other dendritic locations as well as among neurons, and was more sensible to the exact channel densities. Action Editor: Alain Destexhe  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号