首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many experiments in the past have demonstrated the requirement of de novo gene expression during memory formation. In contrast to the initial reductionistic view that genes relevant to learning and memory would be easily found and would provide a simple key to understand this brain function, it is becoming apparent that the genetic contribution to memory is complex. Previous approaches have been focused on individual genes or genetic pathways and failed to address the massively parallel nature of genome activities and collective behavior of the genes that ultimately control the molecular mechanisms underlying brain function. In view of the broad variety of genes and the cross talk of genetic pathways involved in this regulation, only gene expression profiles may reflect the complete behavior of regulatory pathways. In this review we illustrate how DNA microarray-based gene expression profiling may help to dissect and analyze the complex mechanisms involved in gene regulation during the acquisition and storage of memory in the mammalian brain.  相似文献   

2.
Cellular and molecular mechanisms of memory: the LTP connection.   总被引:9,自引:0,他引:9  
Studies of the cellular and molecular mechanisms of memory formation have focused on the role of long-lasting forms of synaptic plasticity such as long-term potentiation (LTP). A combination of genetic, electrophysiological and behavioral techniques have been used to examine the possibility that LTP is a cellular mechanism of memory storage in the mammalian brain. Although a definitive answer remains elusive, it is clear that in many cases manipulations that alter LTP alter memory, and training regimens that produce memory can produce LTP-like potentiation of synaptic transmission.  相似文献   

3.
Wiltgen BJ  Brown RA  Talton LE  Silva AJ 《Neuron》2004,44(1):101-108
Studies of learning and memory have provided a great deal of evidence implicating hippocampal mechanisms in the initial storage of facts and events. However, until recently, there were few hints as to how and where this information was permanently stored. A recent series of rodent molecular and cellular cognition studies provide compelling evidence for the involvement of specific neocortical regions in the storage of information initially processed in the hippocampus. Areas of the prefrontal cortex, including the anterior cingulate and prelimbic cortices, and the temporal cortex show robust increases in activity specifically following remote memory retrieval. Importantly, damage to or inactivation of these areas produces selective remote memory deficits. Additionally, transgenic studies provide glimpses into the molecular and cellular mechanisms underlying cortical memory consolidation. The studies reviewed here represent the first exciting steps toward the understanding of the molecular, cellular, and systems mechanisms of how the brain stores our oldest and perhaps most defining memories.  相似文献   

4.
Loss of brain function is one of the most negative and feared aspects of aging. Studies of invertebrates have taught us much about the physiology of aging and how this progression may be slowed. Yet, how aging affects complex brain functions, e.g., the ability to acquire new memory when previous experience is no longer valid, is an almost exclusive question of studies in humans and mammalian models. In these systems, age related cognitive disorders are assessed through composite paradigms that test different performance tasks in the same individual. Such studies could demonstrate that afflicted individuals show the loss of several and often-diverse memory faculties, and that performance usually varies more between aged individuals, as compared to conspecifics from younger groups. No comparable composite surveying approaches are established yet for invertebrate models in aging research. Here we test whether an insect can share patterns of decline similar to those that are commonly observed during mammalian brain aging. Using honey bees, we combine restrained learning with free-flight assays. We demonstrate that reduced olfactory learning performance correlates with a reduced ability to extinguish the spatial memory of an abandoned nest location (spatial memory extinction). Adding to this, we show that learning performance is more variable in old honey bees. Taken together, our findings point to generic features of brain aging and provide the prerequisites to model individual aspects of learning dysfunction with insect models.  相似文献   

5.
Memory, defined as the storage and use of learned information in the brain, is necessary to modulate behavior and critical for animals to adapt to their environments and survive. Despite being a cornerstone of brain function, questions surrounding the molecular and cellular mechanisms of how information is encoded, stored, and recalled remain largely unanswered. One widely held theory is that an engram is formed by a group of neurons that are active during learning, which undergoes biochemical and physical changes to store information in a stable state, and that are later reactivated during recall of the memory. In the past decade, the development of engram labeling methodologies has proven useful to investigate the biology of memory at the molecular and cellular levels. Engram technology allows the study of individual memories associated with particular experiences and their evolution over time, with enough experimental resolution to discriminate between different memory processes: learning (encoding), consolidation (the passage from short-term to long-term memories), and storage (the maintenance of memory in the brain). Here, we review the current understanding of memory formation at a molecular and cellular level by focusing on insights provided using engram technology.  相似文献   

6.
The neurobiological substrate of learning process and persistent memory storage involves multiple brain areas. The neocortex and hippocampal formation are known as processing and storage sites for explicit memory, whereas the striatum, amygdala, neocortex and cerebellum support implicit memory. Synaptic plasticity, long-term changes in synaptic transmission efficacy and transient recruitment of intracellular signaling pathways in these brain areas have been proposed as possible mechanisms underlying short- and long-term memory retention. In addition to the classical neurotransmitters (glutamate, GABA), experimental evidence supports a role for neuropeptides in modulating memory processes. This review focuses on the role of the Melanin-Concentrating Hormone (MCH) and receptors on memory formation in animal studies. Possible mechanisms may involve direct MCH modulation of neural circuit activity that support memory storage and cognitive functions, as well as indirect effect on arousal.  相似文献   

7.
The subcellular processes that correlate with early learning and memory formation in the chick and sensitive periods for this learning are discussed. Imprinting and passive avoidance learning are followed by a number of cellular processes, each of which persists for a characteristic time in certain brain regions, and may culminate in synaptic structure modification. In the chick brain, the NMDA subtype of glutamate receptor appears to play an important role in both memory formation and sensitive periods during development, similar to its demonstrated role in neural plasticity in the mammalian brain. Two important findings have emerged from the studies using chickens. First, memory formation appears to occur at multiple sites in the forebrain and, most importantly, it appears to “flow” from one site to another, leaving neurochemical traces in each as it moves on. Second, the memory is laid down either in different sites or in different subcellular events in the left and right forebrain hemispheres. Hence, we are alerted to the possibility of similar asymmetrical processes occurring in memory consolidation in the mammalian brain. The similarities between early memory formation and experience-dependent plasticity of the brain during development are discussed.  相似文献   

8.
The amygdala modulates memory consolidation and the storage of emotionally relevant information in other brain areas, and itself comprises a site of neural plasticity during aversive learning. These processes have been intensively studied in Pavlovian fear conditioning, a leading aversive learning paradigm that is dependent on the structural and functional integrity of the amygdala. The rapidness and persistence, and the relative ease, with which this conditioning paradigm can be applied to a great variety of species have made it an attractive model for neurochemical and electrophysiological investigations on memory formation. In this review we summarise recent studies which have begun to unravel cellular processes in the amygdala that are critical for the formation of long-term fear memory and have identified molecular factors and mechanisms of neural plasticity in this brain area.  相似文献   

9.
The characterization of the molecular mechanisms whereby our brain codes, stores and retrieves memories remains a fundamental puzzle in neuroscience. Despite the knowledge that memory storage involves gene induction, the identification and characterization of the effector genes has remained elusive. The completion of the Human Genome Project and a variety of new technologies are revolutionizing the way these mechanisms can be explored. This review will examine how a genomic approach can be used to dissect and analyze the complex dynamic interactions involved in gene regulation during learning and memory. This innovative approach is providing information on a new class of genes associated with learning and memory in health and disease and is elucidating new molecular targets and pathways whose pharmacological modulation may allow new therapeutic approaches for improving cognition.  相似文献   

10.
This review describes the advantages of adopting a molluscan complementary model, the freshwater snail Lymnaea stagnalis, to study the neural basis of learning and memory in appetitive and avoidance classical conditioning; as well as operant conditioning of its aerial respiratory and escape behaviour. We firstly explored ‘what we can teach Lymnaea’ by discussing a variety of sensitive, solid, easily reproducible and simple behavioural tests that have been used to uncover the memory abilities of this model system. Answering this question will allow us to open new frontiers in neuroscience and behavioural research to enhance our understanding of how the nervous system mediates learning and memory. In fact, from a translational perspective, Lymnaea and its nervous system can help to understand the neural transformation pathways from behavioural output to sensory coding in more complex systems like the mammalian brain. Moving on to the second question: ‘what can Lymnaea teach us?’, it is now known that Lymnaea shares important associative learning characteristics with vertebrates, including stimulus generalization, generalization of extinction and discriminative learning, opening the possibility to use snails as animal models for neuroscience translational research.  相似文献   

11.
Memory retrieval is a fundamental component or stage of memory processing. In fact, retrieval is the only possible measure of memory. The ability to recall past events is a major determinant of survival strategies in all species and is of paramount importance in determining our uniqueness as individuals. Most biological studies of memory using brain lesion and/or gene manipulation techniques cannot distinguish between effects on the molecular mechanisms of the encoding or consolidation of memories and those responsible for their retrieval from storage. Here we examine recent findings indicating the major molecular steps involved in memory retrieval in selected brain regions of the mammalian brain. Together the findings strongly suggest that memory formation and retrieval may share some molecular mechanisms in the hippocampus and that retrieval initiates extinction requiring activation of several signaling cascades and protein synthesis.  相似文献   

12.
Memory consolidation, which converts acquired information into long-term storage, is new protein synthesis-dependent. As protein synthesis is a dynamic process that is under the control of multiple translational mechanisms, however, it is still elusive how these mechanisms are recruited in response to learning for memory consolidation. Here we found that eukaryotic elongation factor-2 (eEF-2) was dramatically dephosphorylated within 0.5–2 hr in the hippocampus and amygdala of mice following training in a fear-conditioning test, whereas genome-wide microarrays did not reveal any significant change in the expression level of the mRNAs for translational machineries or their related molecules. Moreover, blockade of NMDA receptors with MK-801 immediately following the training significantly impeded both the post-training eEF-2 dephosphorylation and memory retention. Notably, with an elegant sophisticated transgenic strategy, we demonstrated that hippocampus-specific overexpression of eEF-2 kinase, a kinase that specifically phosphorylates and hence inactivates eEF-2, significantly inhibited protein synthesis in the hippocampus, and this effects was more robust during an “ongoing” protein synthesis process. As a result, late phase long-term potentiation (L-LTP) in the hippocampus and long-term hippocampus-dependent memory in the mice were significantly impaired, whereas short-term memory and long-term hippocampus-independent memory remained intact. These results reveal a novel translational underpinning for protein synthesis pertinent to memory consolidation in the mammalian brain.  相似文献   

13.
There has been nearly a century of interest in the idea that information is encoded in the brain as specific spatio-temporal patterns of activity in distributed networks and stored as changes in the efficacy of synaptic connections on neurons that are activated during learning. The discovery and detailed report of the phenomenon generally known as long-term potentiation opened a new chapter in the study of synaptic plasticity in the vertebrate brain, and this form of synaptic plasticity has now become the dominant model in the search for the cellular bases of learning and memory. To date, the key events in the cellular and molecular mechanisms underlying synaptic plasticity are starting to be identified. They require the activation of specific receptors and of several molecular cascades to convert extracellular signals into persistent functional changes in neuronal connectivity. Accumulating evidence suggests that the rapid activation of the genetic machinery is a key mechanism underlying the enduring modification of neural networks required for the laying down of memory. The recent developments in the search for the cellular and molecular mechanisms of memory storage are reviewed.  相似文献   

14.
Successful learning of a motor skill requires repetitive training. Once the skill is mastered, it can be remembered for a long period of time. The durable memory makes motor skill learning an interesting paradigm for the study of learning and memory mechanisms. To gain better understanding, one scientific approach is to dissect the process into stages and to study these as well as their interactions. This article covers the growing evidence that motor skill learning advances through stages, in which different storage mechanisms predominate. The acquisition phase is characterized by fast (within session) and slow learning (between sessions). For a short period following the initial training sessions, the skill is labile to interference by other skills and by protein synthesis inhibition, indicating that consolidation processes occur during rest periods between training sessions. During training as well as rest periods, activation in different brain regions changes dynamically. Evidence for stages in motor skill learning is provided by experiments using behavioral, electrophysiological, functional imaging, and cellular/molecular methods.  相似文献   

15.
The past, the future and the biology of memory storage   总被引:8,自引:0,他引:8  
We here briefly review a century of accomplishments in studying memory storage and delineate the two major questions that have dominated thinking in this area: the systems question of memory, which concerns where in the brain storage occurs; and the molecular question of memory, which concerns the mechanisms whereby memories are stored and maintained. We go on to consider the themes that memory research may be able to address in the 21st century. Finally, we reflect on the clinical and societal import of our increasing understanding of the mechanisms of memory, discussing possible therapeutic approaches to diseases that manifest with disruptions of learning and possible ethical implication of the ability, which is on the horizon, to ameliorate or even enhance human memory.  相似文献   

16.
After accumulation of data showing that resident brain cells (neurons, astrocytes, and microglia) produce mediators of the immune system, such as cytokines and their receptors under normal physiological conditions, a critical need emerged for investigating the role of these mediators in cognitive processes. The major problem for understanding the functional role of cytokines in the mechanisms of synaptic plasticity, de novo neurogenesis, and learning and memory is the small number of investigated cytokines. Existing concepts are based on data from just three proinflammatory cytokines: interleukin-1 beta, interleukin-6, and tumor necrosis factor-alpha. The amount of information in the literature on the functional role of antiinflammatory cytokines in the mechanisms of synaptic plasticity and cognitive functions of mature mammalian brain is dismally low. However, they are of principle importance for understanding the mechanisms of local information processing in the brain, since they modulate the activity of individual cells and local neural networks, being able to reconstruct the processes of synaptic plasticity and intercellular communication, in general, depending on the local ratio of the levels of different cytokines in certain areas of the brain. Understanding the functional role of cytokines in cellular mechanisms of information processing and storage in the brain would allow developing preventive and therapeutic means for the treatment of neuropathologies related to impairment of these mechanisms.  相似文献   

17.
18.
Most of the molecular mechanisms contributing to long-term memory have been found to consolidate information within a brief time window after learning, but not to maintain information during memory storage. However, with the discovery that synaptic long-term potentiation is maintained by the persistently active protein kinase, protein kinase Mζ (PKMζ), a possible mechanism of memory storage has been identified. Recent research shows how PKMζ might perpetuate information both at synapses and during long-term memory.  相似文献   

19.
Many cellular functions require the synthesis of a specific protein or functional cohort of proteins at a specific time and place in the cell. Local protein synthesis in neuronal dendrites is essential for understanding how neural activity patterns are transduced into persistent changes in synaptic connectivity during cortical development, memory storage and other long-term adaptive brain responses. Regional and temporal changes in protein levels are commonly coordinated by an asymmetric distribution of mRNAs. This Review attempts to integrate current knowledge of dendritic mRNA transport, storage and translation, placing particular emphasis on the coordination of regulation and function during activity-dependent synaptic plasticity in the adult mammalian brain.  相似文献   

20.
Memory storage in the brain relies on mechanisms acting on time scales from minutes, for long-term synaptic potentiation, to days, for memory consolidation. During such processes, neural circuits distinguish synapses relevant for forming a long-term storage, which are consolidated, from synapses of short-term storage, which fade. How time scale integration and synaptic differentiation is simultaneously achieved remains unclear. Here we show that synaptic scaling – a slow process usually associated with the maintenance of activity homeostasis – combined with synaptic plasticity may simultaneously achieve both, thereby providing a natural separation of short- from long-term storage. The interaction between plasticity and scaling provides also an explanation for an established paradox where memory consolidation critically depends on the exact order of learning and recall. These results indicate that scaling may be fundamental for stabilizing memories, providing a dynamic link between early and late memory formation processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号