首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Nitrogen fixation associated with non-legumes in agriculture   总被引:1,自引:0,他引:1  
P. J. Dart 《Plant and Soil》1986,90(1-3):303-334
Summary This review examines the nitrogen cycle in upland agricultural situations where nonlegume N2-fixation is likely to be important for crop growth. Evidence for associative fixation is adduced from accumulation of N in the top 15 cm soil under grasses, from N balances for crop production obtained from both pot and field experiments, in tropical and temperate environments, measurements of nitrogen (C2H2 reduction) activity, uptake of15N2 by plants and15N isotope dilution. Factors influencing the activity such as the provision of carbon substrate by the plant and the efficiency of its utilisation by the bacteria, plant cultivar, soil moisture and N levels, and inoculation with N2-fixing bacteria are discussed. Crop responses to inoculation withAzospirillum are detailed. The breakdown of crop residues, particularly straw, can support large levels of N2-fixation. Cyanobacteria as crusts on the soil surface also fix nitrogen actively in many environments. Fixation by the nodulated, non-legume treesCasuarina andParasponia has beneficial effects in some cropping systems in Asia. I conclude that nonlegume N2-fixation makes a significant contribution to the production of some major cereal crops in both temperate and tropical environments.  相似文献   

2.
A recently developed oxygen gradient system and a complex medium were used to isolate a microaerobically N2-fixing heterotrophic bacterium from the rhizosphere of a high fixing Sorghum nutans cultivar. The isolate was identified as nif(+) phenotype of Pseudomonas stutzeri on the basis of cultural, physiological and biochemical characteristics, including DNA/DNA hybridization. N2 fixation was demonstrated by assimilation of 15N2 into cellular protein; the physiology of nitrogen fixation was studied. The isolate contains one 30 MD plasmid and can be cured with associated loss of N2 fixation capability.Dedicated to Prof. Dr. W. Nultsch on the occasion of his 60th birthday  相似文献   

3.
The fixation of molecular nitrogen (N2fix) by cyanobacteria in situ and in PO4-P enrichment experiments was investigated in large shallow Lake Võrtsjärv in 1998–2000. In this lake, N2fix started when TN/TP mass ratio was about 20, which is much higher than Redfield mass ratio 7. The rate of N2fix varied between 0.81 and 2.61 gN l–1 d–1 and maximum rate (2.61 gN l–1 d–1) was measured in 15.08.2000. In L. Võrtsjärv a lag period of a couple of weaks occurred between the set-up of favourable conditions for N2fix as the appearance of N2-fixing species and depletion of mineral nitrogen, and the real N2fix itself. However, if the favorable conditions for N2fix occurred in the lake, N2fix started after enrichment with PO4-P in mesocosms even then when no N2fix was detected in the lake. N2fix in mesocosms was also more intensive than in lake water. In our experiments PO4-P concentrations higher than 100 gP l–1started to inhibit N2fix.  相似文献   

4.
The nitrogen fixation response to copper nutrition in faba bean, yellow lupin and soybean was studied. Copper nutrition significantly increased the pod yields of all tested grain legumes but faba bean gave the greatest Cu-use efficiency for pod and grain production. The accumulation of dry matter in vegetative parts, nodules, N and leghemoglobin concentration in nodules and nitrogen accumulation in the whole plants were increased by copper supply in faba bean and yellow lupin in contrast with soybean. Cu nutrition significantly increased the Cu concentrations in nodules of all cultivated plants. The differential sensitivity of N2 fixation in tested grain legume species to copper nutrition could be connected with the level of phenols in nodules and depended on both the host plants and strains of rhizobia, which differ in their ability to produce catechol-like siderophores. Copper requirements by symbiotic N2 fixation could also depend on the nature of phenols in nodules (presence of o-dihydroxyphenols or number of hydroxyls in molecule).  相似文献   

5.
Kucey  R. M. N.  Snitwongse  P.  Chaiwanakupt  P.  Wadisirisuk  P.  Siripaibool  C.  Arayangkool  T.  Boonkerd  N.  Rennie  R. J. 《Plant and Soil》1988,108(1):33-41
Controlled environment and field studies were conducted to determine relationships between various measurements of N2 fixation using soybeans and to use these measures to evaluate a number ofBradyrhizobium japonicum strains for effectiveness in N2 fixation in Thai soils.15N dilution measurements of N2 fixation showed levels of fixation ranging from 32 to 161 kg N ha−1 depending on bacterial strain, host cultivar and location. Midseason measures of N2 fixation were correlated with each other, but not related measures taken at maturity. Ranking ofB. japonicum strains based on performance under controlled conditions in N-free media were highly correlated with rankings based on soybean seed yields and N2 fixation under field conditions. This study showed that inoculation of soybeans with effectiveB. japonicum strains can result in significant increases in yield and uptake of N through fixation. The most effective strains tested for use in Thai conditions were those isolated from Thai soils; however, effective strains from other locations were also of benefit.  相似文献   

6.
A mixed pasture comprising of buffel grass and a legume siratro was studied under field condition for a two-year period to know the fodder yield increase, nitrogen fixation and nitrogen balance with and without the inoculation of VA mycorrhiza to grass and Rhizobium to legume component.15N dilution technique was followed using labelled ammonium sulphate. The data showed that during the first year of the above study combined inoculation of VA mycorrhiza and Rhizobium to grass and legume respectively significantly increased the total dry matter (DM) (23,900 kg ha–1 yr–1) and total N content (308 kg ha–1 yr–1) of the mixed pasture over the uninoculated mixture. However, the above increase due to combined inoculation was maximum during second year with respect to DM yield (28,200 kg ha–1 yr–1), but the total N harvested through grass-legume mixture was comparatively lower than the first year (297 kg ha–1 yr–1). The amount of biologically fixed N was highest in the first year (79 kg ha–1 yr–1) and showed a very drastic reduction at the end of second year (39 kg ha–1 yr–1). A positive nitrogen balance was observed in the grass-legume mixture irrespective of inoculation of VA mycorrhiza and/or Rhizobium.  相似文献   

7.
I. Watanabe 《Plant and Soil》1986,90(1-3):343-357
Summary Of the 143 million hectares of cultivated rice land in the world, 75% are planted to wetland rice. Wet or flooded conditions favour biological nitrogen fixation by providing (1) photic-oxic floodwater and surface soil for phototrophic, free-living or symbiotic blue-green algae (BGA), and (2) aphotic-anoxic soil for anaerobic or microaerobic, heterotrophic bacteria. TheAzolla-Anabaena symbiosis can accumulate as much as 200 kg N ha–1 in biomass. In tropical flooded fields, biomass production from a singleAzolla crop is about 15 t fresh weight ha–1 or 35 kg N ha–1. Low tolerance for high temperature, insect damage, phosphorus requirement, and maintenance of inoculum, limit application in the tropics. Basic work on taxonomy, sporulation, and breeding ofAzolla is needed. Although there are many reports of the positive effect of BGA inoculation on rice yield, the mechanisms of yield increase are not known. Efficient ways to increase N2-fixation by field-grown BGA are not well exploited. Studies on the ecology of floodwater communities are needed to understand the principles of manipulating BGA. Bacteria associated with rice roots and the basal portion of the shoot also fix nitrogen. The system is known as a rhizocoenosis. N2-fixation in rhizocoenosis in wetland rice is lower than that ofAzolla or BGA. Ways of manipulating this process are not known. Screening rice varieties that greatly stimulate N2-fixation may be the most efficient way of manipulating the rhizocoenosis. Stimulation of N2-fixation by bacterial inoculation needs to be quantified.  相似文献   

8.
Nitrogen fixation in perennial forage legumes in the field   总被引:13,自引:0,他引:13  
Nitrogen acquisition is one of the most important factors for plant production, and N contribution from biological N2 fixation can reduce the need for industrial N fertilizers. Perennial forages are widespread in temperate and boreal areas, where much of the agriculture is based on livestock production. Due to the symbiosis with N2-fixing rhizobia, perennial forage legumes have great potential to increase sustainability in such grassland farming systems. The present work is a summary of a large number of studies investigating N2 fixation in three perennial forage legumes primarily relating to ungrazed northern temperate/boreal areas. Reported rates of N2 fixation in above-ground plant tissues were in the range of up to 373 kg N ha–1 year–1 in red clover (Trifolium pratense L.), 545 kg N ha–1 year–1 in white clover (T. repens L.) and 350 kg N ha–1 year–1 in alfalfa (Medicago sativa L.). When grown in mixtures with grasses, these species took a large fraction of their nitrogen from N2 fixation (average around 80%), regardless of management, dry matter yield and location. There was a large variation in N2 fixation data and part of this variation was ascribed to differences in plant production between years. Studies with experiments at more than one site showed that also geographic location was an important source of variation. On the other hand, when all data were plotted against latitude, there was no simple correlation. Climatic conditions seem therefore to give as high N2 fixation per ha and year in northern areas (around 60°N) as in areas with a milder climate (around 40°N). Analyzing whole plants or just above-ground plant parts influenced the estimate of N2 fixation, and most reported values were underestimated since roots were not included. Despite large differences in environmental conditions, such as N fertilization and geographic location, N2 fixation (Nfix; kg N per ha and year) was significantly (P<0.001) correlated to legume dry matter yield (DM; kg per ha and year). Very rough, but nevertheless valuable estimations of Nfix in legume/grass mixtures (roots not considered) are given by Nfix = 0.026DM + 7 for T. pratense, Nfix = 0.031DM + 24 for T. repens, and Nfix = 0.021DM + 17 for M. sativa.  相似文献   

9.
Summary Accurate estimates of N2 fixation by legumes are requisite to determine their net contribution of fixed N2 to the soil N pool. However, estimates of N2 fixation derived with the traditional15N methods of isotope dilution and AN value are costly.Field experiments utilizing15N-enriched (NH4)2SO4 were conducted to evaluate a modified difference method for determining N2 fixation by fababean, lentil, Alaska pea, Austrian winter pea, blue lupin and chickpea, and to quantify their net contribution of fixed N2 to the soil N pool. Spring wheat and non-nodulated chickpea, each fertilized with two N rates, were utilized as non-fixing controls.Estimates of N2 fixation based on the two control crops were similar. Increasing the N rate to the controls reduced AN values 32, 18 and 43% respectively in 1981, 1982 and 1983 resulting in greater N2 fixation estimates. Mean seasonal N2 fixation by fababean, lentil and Austrian winter pea was near 80 kg N ha–1, pea and blue lupin near 60 kg N ha–1, and chickpea less than 10 kg N ha–1. The net effects of the legume crops on the soil N pool ranged from a 70 kg N ha–1 input by lentil in 1982, to a removal of 48 kg N ha–1 by chickpea in 1983.Estimates of N2 fixation obtained by the proposed modified difference method approximate those derived by the isotope dilution technique, are determined with less cost, and are more reliable than the total plant N procedure.Scientific paper No. 6605. College of Agriculture and Home Economics Research Center, Washington State University, Pullman, WA 99164, U.S.A.  相似文献   

10.
Inputs of biologically fixed N into agricultural systems may be derived from symbiotic relationships involving legumes and Rhizobium spp., partnerships between plants and Frankia spp. or cyanobacteria, or from non-symbiotic associations between free-living diazotrophs and plant roots. It is assumed that these N2-fixing systems will satisfy a large portion of their own N requirements from atmospheric N2, and that additional fixed N will be contributed to soil reserves for the benefit of other crops or forage species. This paper reviews the actual levels of N2 fixation attained by legume and non-legume associations and assesses their role as a source of N in tropical and sub-tropical agriculture. We discuss factors influencing N2 fixation and identify possible strategies for improving the amount of N2 fixed.  相似文献   

11.
Much of the crop residues, including cereal straw, that are produced worldwide are lost by burning. Plant residues, and in particular straw, contain large amounts of carbon (cellulose and hemicellulose) which can serve as substrates for the production of microbial biomass and for biological N2 fixation by a range of free-living, diazotrophic bacteria. Microorganisms with the dual ability to utilise cellulose and fix N2 are rate, but some strains that utilize hemicellulose and fix N2 have been found. Generally, cellulolysis and diazotrophy are carried out by a mixed microbial community in which N2-fixing bacteria utilise cellobiose and glucose produced from straw by cellulolytic microorganisms. N2-fixing bacteria include heterotrophic and phototrophic organisms and the latter are apparently more prominent in flooded soils such as rice paddies than in dryland soils. The relative contributions of N2 fixed by heterotrophic diazotrophic bacteria compared with cyanobacteria and other phototrophic bacteria depend on the availability of substrates from straw decomposition and on environmental pressures. Measurements of asymbiotic N2 fixation are limited and variable but, in rice paddy systems, rates of 25 kg N ha-1 over 30 days have been found, whereas in dryland systems with wheat straw, in situ measurements have indicated up to 12 kg N ha-1 over 22 days. Straw-associated N2 fixation is directly affected by environmental factors such as temperature, moisture, oxygen concentration, soil pH and clay content as well as farm management practices. Modification of managements and use of inoculants offer ways of improving asymbiotic N2 fixation.In laboratory culture systems, inoculation of straws with cellulolytic and diazotrophic microorganisms has resulted in significant increases in N2 fixation in comparison to uninoculated controls and gains of N of up to 72 mg N fixed g-1 straw consumed have been obtained, indicating the potential of inoculation to improve N gains in composts that can then be used as biofertilisers. Soils, on the other hand, contain established, indigenous microbial populations which tend to exclude inoculant microorganisms by competition. As a consequence, improvements in straw-associated N2 fixation in soils have been achieved mostly by specific straw-management practices which encourage microbial activity by straw-decomposing and N2-fixing microorganisms.Further research is needed to quantify more accurately the contribution of asymbiotic N2 fixation to cropping systems. New strains of inoculants, including those capable of both cellulolytic and N2-fixing activity, are needed to improve the N content of biofertilisers produced from composts. Developments of management practices in farming systems may result in further improvements in N2 fixation in the field.  相似文献   

12.
Under diurnal 16/8-h light-dark cycles, ethyleneglycol-bis-(-aminoethyl ether)-N,N,N,N-tetraacetic acid (EGTA) at 1 mM completely blocked the appearance of rhythmic N2-fixing activity in Synechococcus RF-1. Ca2+ at 2 mM, when supplied either together with or several hours after the EGTA application, restored the nitrogenase activity, whereas, when Ca2+ was supplied several hours later, the peak of nitrogenase activity was shifted from the dark to the light period in which the activity is normally suppressed. Sr2+ also reversed the inhibition by EGTA, but only partially. When O2 in the gas phase above the culture was below 1%, the inhibition of nitrogenase activity by EGTA was reduced to less than 20% of the control value without EGTA. Thus Ca2+ appears to be required by the cell to protect its nitrogenase from inactivation by O2. In media without EGTA, a close correlation between nitrogenase activity and concentrations of Ca2+ was also observed.Abbreviation EGTA ethyleneglycol-bis-(-aminoethyl ether)-N,N,N,N-tetraacetic acid  相似文献   

13.
Abstract

Nitrogen fixation was measured in a Corsican pine (Pinus laricio Poiret) forest in Calabria (Southern Italy). Acetylene reduction activity (ARA) and CO2 production levels were determined by incubation of litter and superficial (0–5 cm) soil layer samples in the field, at monthly intervals. ARA variations were not correlated to those of substrate moisture, air temperature and microbial respiration. In fact N2 fixation presented phases of different intensity which irregularly followed each other. Both litter and soil showed similar rates of N2 fixation. Based on a C2H2:N2 ratio of 3:1 0.8 Kg N ha–1 y–1 in each layer are fixed in the Pinus laricio forest, thus contributing to the N status of the soil in this nutrient–poor forest.  相似文献   

14.
Cereal-legume mixtures are frequently the best management decision for forage production instead of growing crops in pure stands. Nitrogen fertilization of cereal-legume mixtures is questionable since combined nitrogen could depress N2 fixation by legumes. The objectives of this study were (1) to examine the effect of N fertilization on N2 fixation by vetch and field peas in pure and in mixed stands with oats, and (2) to examine if there is any transfer of N from legumes to associated cereals. The field experiment was conducted for two growing seasons. The treatments were pure stands of vetch, pea and oats, and the mixtures of the two legumes with oats at the seeding ratios 90:10 and 75:25, fertilized with labelled15N at the rates of 15 and 90 kg N ha−1. Nitrogen fertilization of 90 kg N ha−1 suppressed N2 fixation in both legumes grown in pure and in mixed stands. Crops grown in mixtures in many instances had lower atom %15N excess. Whether this was due to high N2 fixation in the case of legume and transfer in the case of oat or the differences were due to practical problems of the15N technique is not clearly shown by the results, so based on the literature the aspect is discussed as well as the precautions which should be considered in using the15N technique in such studies.  相似文献   

15.
An increasing amount of evidence indicates that N can be transferred between plants. Nonetheless, a number of fundamental questions remain. A series of experiments was initiated in the field to examine N transfer between N2-fixing soybean (Glycine max [L.] Merr.) varieties and a non-nodulating soybean, and between N2-fixing peanut (Arachis hypogaea L.) or soybean and neighboring weed species. The experiments were conducted in soils with low N fertilities and used differences in N accumulation and/or 15N natural abundance to estimate N transfer. Mixtures of N2-fixing and non-nod soybean indicated that substantial inter-plant N transfer occurred. Amounts were variable, ranging from negligible levels to 48% of the N found in the non-nod at maturity. Transfer did not appear to strongly penalize the N2-fixing donor plants. But, in cases where high amounts of N were transferred, N content of donors was noticeably lowered. Differences were evident in the amount of N transferred from different N2-fixing donor genotypes. Results of experiments with N2-fixing crops and the weed species prickly sida (Sida spinosa L.) and sicklepod (Senna obtusifolia [L.] Irwin & Barneby) also indicated substantial N transfer occurred over a 60-day period, with amounts accounting for 30–80% of the N present in the weeds. Transfer of N, however, was generally very low in weed species that are known to be non-hosts for arbuscular mycorrhizae (yellow nutsedge, Cyperus esculentus L. and Palmer amaranth, Amaranthus palmeri [S.] Watson). The results are consistent with the view that N transfer occurs primarily through mycorrhizal hyphal networks, and they reveal that N transfer may be a contributing factor to weed problems in N2-fixing crops in low N fertility conditions.  相似文献   

16.
Methods for partitioning the nitrogen assimilated by nodulated legumes, between nitrogen derived from soil sources and from N2 fixation, are described as applied in peninsular Malaysia. The analysis of nitrogenous components translocated from the roots to the shoots of nodulated plants in the xylem sap is outlined, with some precautions to be observed for applications in the tropics. Some examples of the use of the technique in surverying apparent N2 fixation by tropical legumes, in studying interrow cropping in plantation systems and in assessing effects of experimental treatments on N2 fixation by food legumes, are described. Techniques for assesing N2 fixation by means of15N abundance have been used to show that applications of nitrogenous fertilizers commonly used in Malaysia for soybeans depress N2 fixation, that similar results are obtained with natural abundance and15N-enrichment methods and that, in at least two locations in Malaysia, differences between the natural abundance of15N in plant-available soil nitrogen and in atmospheric N2 are great enough to permit application to measurement of N2 fixation by leguminous crops.  相似文献   

17.
Summary The productivity of three species of Azolla (A. pinnata, A. filiculoides andA. caroliniana) in outdoor culture has been evaluated at different planting densities. The highest yields were obtained with biomass concentration ranging from 40 to 70g d.w. m–2. The mean productivity over a 90 days period (from May 10th to August 10th) ranged from 10g d.w. m–2 day–1 forA. filiculoides up to 11.5 g d.w. m–2 day–1 forA. caroliniana. The nitrogen content of the dried biomasses was 48.3 mg (g d.w.)–1 forA. pinnata, 51.5mg (g d.w.)–1 forA. filiculoides and 52.3 mg (g d.w.)–1 forA. caroliniana. Very little variations of the nitrogen content of the ferns during the experimental period were observed.The nitrogen-fixing efficiency of the Azolla-Anabaena azollae symbiosis grown in outdoor conditions was evaluated both by direct measurement of the amount of N2 fixed by the culture and by the C2H2-reduction and H2-evolution tests in an air atmosphere. These tests were performed outdoor under the same environmental conditions as the growing cultures. For all the species the ratios of C2H2-reduced to N2-fixed were unexpectedly low, ranging from 2.04 (A. pinnata) to 1.50 (A. caroliniana).The results suggest that the reliability of the C2H2-reduction assay, particularly when applied to complex biological N2-fixing systems, must be re-examined.  相似文献   

18.
Atmospheric N2 fixed symbiotically by associations between Rhizobium spp. and legumes represents a renewable source of N for agriculture. Contribution of legume N2 fixation to the N-economy of any ecosystem is mediated by: (i) legume reliance upon N2 fixation for growth, and (ii) the total amount of legume-N accumulated. Strategies that change the numbers of effective rhizobia present in soil, reduce the inhibitory effects of soil nitrate, or influence legume biomass all have potential to alter net inputs of fixed N. A range of management options can be applied to legumes growing in farming systems to manipulate N2 fixation and improve the N benefits to agriculture and agroforestry.  相似文献   

19.
Soluble Organic Nitrogen Pools in Forest soils of Subtropical Australia   总被引:15,自引:0,他引:15  
Soil soluble organic N (SON) plays an important role in N biogeochemical cycling. In this study, 22 surface forest soils (0–10 cm) were collected from southeast Queensland, Australia, to investigate the size of SON pools extracted by water and salt solutions. Approximately 5–45 mg SON kg−1, 2–42 mg SON kg−1 and 1–24 SON mg kg−1 were extracted by 2 M KCl, 0.5 M K2SO4 and water, on average, corresponding to about 21.1, 13.5 and 7.0 kg SON ha−1 at the 0–10 cm forest soils, respectively. These SON pools, on average, accounted for 39% (KCl extracts), 42% (K2SO4 extracts) and 43% (water extracts) of total soluble N (TSN), and 2.3% (KCl extracts), 1.3% (K2SO4 extracts) and 0.7% (water extracts) of soil total N, respectively. Large variation in SON pools observed across the sites in the present study may be attributed to a combination of factors including soil types, tree species, management practices and environmental conditions. Significant relationships were observed among the SON pools extracted by water, KCl and K2SO4 and microbial biomass N (MBN). In general, KCl and K2SO4 extracted more SON than water from the forest soils, while KCl extracted more SON than K2SO4. The SON and soluble organic C (SOC) in KCl, K2SO4 and water extracts were all positively related to soil organic C, total N and clay contents. This indicates that clay and soil organic matter play a key role in the retention of SON in soil.  相似文献   

20.
Pot-grown alfalfa (Medicago sativa L. ) were experimented in the open top chambers in which natural air (350 × 10-6, 1 × CO2) and doubled CO2 air (700 × 10-6, 2 × CO2) were continuous blown through bottom respectively. Results showed that the biomass in both shoot and root was increased by the 2 × CO2 treatment. The root/shoot ratio was nearly unchange in the short term treatment and slightly decreased in the longer term treatment. The results differed from those reported in literatures that was attributed to the potgrown condition in this experiment. The nitrogen fixation activities (acetylene reduction) per plant were obviously promoted under the 2 × CO2 condition but the difference of the specific nitrogen-fixing activities between 1 × CO2 and 2 × CO2 treatment was small. It implied that supplement of ATP, NADP or carbon skeleton under the 2 × CO2 condition was not more than that under the 1 × CO2 condition. C/N ratio in the shoot increased in the doubled CO2 treatment group, similar to the reports from other authors; but the ratio increased in the root in the 2 × CO2 treatment group was ascribed to the higher nitrogen absorption from the soil and (or) N-fixing activity of the nodules as compared with that in the 1 × CO2 treatment. The results demonstrated that assimilation and allocation of carbon and nitrogen in legume plant were deeply influenced by the elevated CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号