首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了确定新城疫病毒融合蛋白(F)分子上活性位点中保守氨基酸在F蛋白的细胞融合作用,弄清F细胞融合的分子机理,采用基因定点突变法,创造一个酶切位点,用酶切反应初步筛选突变株,然后用DNA序列分析进一步确定,并于真核细胞内进行表达,Giemsa染色定性和指示基因法定量检测细胞融合功能,荧光强度分析(FACS)检测表达效率情况。结果表明,NDV F第117位苯丙氨酸(F)突变成亮氨酸(L)时对细胞融合作用没有显著影响。R112和K115同为保守序列,分别突变为G时,细胞融合活性只有原来的44%,下降了56%。细胞表面表达效率没有明显的改变。N147突变为K时,细胞融合活性明显下降,只有原来的15%,而细胞表面表达效率没有明显的改变。L154为保守序列,突变为K时,细胞融合活性消失,说明L154是一个非常关键的氨基酸,对维持F蛋白的细胞融合活性非常重要。细胞表面表达效率也有所下降(为原来的94%)。D462属于高度保守氨基酸,当突变为N时,细胞融合活性消失,但经细胞表面表达效率分析证明,此突变蛋白未表达于细胞表面,证明在细胞浆转运至细胞表面的过程中发生了问题。当突变为R和E时,细胞融合活性未发生改变,但细胞表面表达效率有所下降,分别为野毒株的63%和44%。说明NDV F分子上与HN相互作用的特异性区域中的某些保守氨基酸在细胞融合中发挥着重要作用,对F蛋白的折叠、加工、转运等,发挥着不同作用,从而影响F蛋白的细胞融合作用和/或在细胞表面的表达量。  相似文献   

2.
The paramyxovirus fusion proteins have a highly conserved leucine zipper motif immediately upstream from the transmembrane domain of the F1 subunit (R. Buckland and F. Wild, Nature [London] 338:547, 1989). To determine the role of the conserved leucines in the oligomeric structure and biological activity of the Newcastle disease virus (NDV) fusion protein, the heptadic leucines at amino acids 481, 488, and 495 were changed individually and in combination to an alanine residue. While single amino acid changes had little effect on fusion, substitution of two or three leucine residues abolished the fusogenic activity of the protein, although cell surface expression of the mutants was higher than that of the wild-type protein. Substitution of all three leucine residues with alanine did not alter the size of the fusion protein oligomer as determined by sedimentation in sucrose gradients. Furthermore, deletion of the C-terminal 91 amino acids, including the leucine zipper motif and transmembrane domain, resulted in secretion of an oligomeric polypeptide. These results indicate that the conserved leucines are not necessary for oligomer formation but are required for the fusogenic ability of the protein. When the polar face of the potential alpha helix was altered by nonconservative changes of serine to alanine (position 473), glutamic acid to lysine or alanine (position 482), asparagine to lysine (position 485), or aspartic acid to alanine (position 489), the fusogenic ability of the protein was not significantly disrupted. In addition, a double mutant (E482A,D489A) which removed negative charges along one side of the helix had negligible effects on fusion activity.  相似文献   

3.
新城疫病毒ZJ1毒株是近年来在我国水禽中流行并能引起水禽严重发病和死亡的强毒株,其F蛋白裂解位点有多个碱性氨基酸分布。将该毒株F蛋白裂解位点的112、115和117位碱性氨基酸突变成弱毒株特征的非碱性氨基酸,构建了重组表达质粒pCI-FT。分别将突变前后的F蛋白与该毒株的HN蛋白在COS-1细胞共表达,表明突变前后的F蛋白均有融合活性;分别将突变前后的F蛋白与该毒株的HN蛋白在CEF细胞共表达,表明突变后F蛋白被裂解的活性大大降低。以上研究为下一步在全长cDNA克隆水平上对F蛋白裂解位点氨基酸序列进行相应突变,研究毒力相关因素以及构建毒力致弱疫苗株等奠定基础。  相似文献   

4.
Hydrophobic fusion peptides (FPs) are the most highly conserved regions of class I viral fusion-mediating glycoproteins (vFGPs). FPs often contain conserved glycine residues thought to be critical for forming structures that destabilize target membranes. Unexpectedly, a mutation of glycine residues in the FP of the fusion (F) protein from the paramyxovirus simian parainfluenza virus 5 (SV5) resulted in mutant F proteins with hyperactive fusion phenotypes (C. M. Horvath and R. A. Lamb, J. Virol. 66:2443-2455, 1992). Here, we constructed G3A and G7A mutations into the F proteins of SV5 (W3A and WR isolates), Newcastle disease virus (NDV), and human parainfluenza virus type 3 (HPIV3). All of the mutant F proteins, except NDV G7A, caused increased cell-cell fusion despite having slight to moderate reductions in cell surface expression compared to those of wild-type F proteins. The G3A and G7A mutations cause SV5 WR F, but not NDV F or HPIV3 F, to be triggered to cause fusion in the absence of coexpression of its homotypic receptor-binding protein hemagglutinin-neuraminidase (HN), suggesting that NDV and HPIV3 F have stricter requirements for homotypic HN for fusion activation. Dye transfer assays show that the G3A and G7A mutations decrease the energy required to activate F at a step in the fusion cascade preceding prehairpin intermediate formation and hemifusion. Conserved glycine residues in the FP of paramyxovirus F appear to have a primary role in regulating the activation of the metastable native form of F. Glycine residues in the FPs of other class I vFGPs may also regulate fusion activation.  相似文献   

5.
The Newcastle disease virus (NDV) fusion protein (F) mediates fusion of viral and host cell membranes and is a major determinant of NDV pathogenicity. In the present study, we demonstrate the effects of functional properties of F cytoplasmic tail (CT) amino acids on virus replication and pathogenesis. Out of a series of C-terminal deletions in the CT, we were able to rescue mutant viruses lacking two or four residues (rΔ2 and rΔ4). We further rescued viral mutants with individual amino acid substitutions at each of these four terminal residues (rM553A, rK552A, rT551A, and rT550A). In addition, the NDV F CT has two conserved tyrosine residues (Y524 and Y527) and a dileucine motif (LL536-537). In other paramyxoviruses, these residues were shown to affect fusion activity and are central elements in basolateral targeting. The deletion of 2 and 4 CT amino acids and single tyrosine substitution resulted in hyperfusogenic phenotypes and increased viral replication and pathogenesis. We further found that in rY524A and rY527A viruses, disruption of the targeting signals did not reduce the expression on the apical or basolateral surface in polarized Madin-Darby canine kidney cells, whereas in double tyrosine mutant, it was reduced on both the apical and basolateral surfaces. Interestingly, in rL536A and rL537A mutants, the F protein expression was more on the apical than on the basolateral surface, and this effect was more pronounced in the rL537A mutant. We conclude that these wild-type residues in the NDV F CT have an effect on regulating F protein biological functions and thus modulating viral replication and pathogenesis.  相似文献   

6.
The fusion (F) protein precursor of virulent Newcastle disease virus (NDV) strains has two pairs of basic amino acids at the cleavage site, and its intracellular cleavage activation occurs in a variety of cells; therefore, the viruses cause systemic infections in poultry. To explore the protease responsible for the cleavage in the natural host, we examined detailed substrate specificity of the enzyme in chick embryo fibroblasts (CEF) using a panel of the F protein mutants at the cleavage site expressed by vaccinia virus vectors, and compared the specificity with those of mammalian subtilisin-like proteases such as furin, PC6 and PACE4 which are candidates for F protein processing enzymes. It was demonstrated in CEF cells that Arg residues at the -4, -2 and -1 positions upstream of the cleavage site were essential, and that at the -5 position was required for maximal cleavage. Phe at the +1 position was also important for efficient cleavage. On the other hand, furin and PC6 expressed by vaccinia virus vectors showed cleavage specificities against the F protein mutants consistent with that shown by the processing enzyme of CEF cells, but PACE4 hardly cleaved the F proteins including the wild type. These results indicate that the proteolytic processing enzymes of poultry for virulent NDV F proteins could be furin and/or PC6 but not PACE4. The significance of individual contribution of the three amino acids at the -5, -2 and +1 positions to cleavability was discussed in relation to the evolution of virulent and avirulent NDV strains.  相似文献   

7.
Highly virulent Newcastle disease virus (NDV) isolates are List A pathogens for commercial poultry, and reports of their isolation among member nations must be made to the Office of International Epizootes (OIE). The virus is classified as a member of the order Mononegavirales in the family Paramyxoviridae of the subfamily Paramyxovirinae. Two interactive surface glycoproteins, the fusion (F) and hemagglutinin-neuraminidase (HN) proteins, play essential roles in NDV attachment and fusion of cells during infection. Antibodies to the F or HN proteins are capable of virus neutralization; however, no full-length sequences are available for these genes from recently obtained virulent isolates. Therefore, nucleotide and predicted amino acid sequences of the F and HN protein genes from 16 NDV isolates representing highly virulent viruses from worldwide sources were obtained for comparison to older virulent isolates and vaccine strains. The F protein amino acid sequence was relatively conserved among isolates maintaining potential glycosylation sites and C residues for disulfide bonds. A dibasic amino acid motif was present at the cleavage site among more virulent isolates, while the low virulence viruses did not have this sequence. However, a Eurasian collared dove virus had a K114Q substitution at the F cleavage site unique among NDV isolates. The HN protein among NDV isolates maintained predicted catalytic and active site residues necessary for neuraminidase activity and hemagglutination. Length of the HN for the Eurasian collared dove isolate and a previously reported heat resistant virulent isolate were longer relative to other more recent virulent isolates. Phylogenetically NDV isolates separated into four groups with more recent virulent isolates forming a diverse branch, while all the avian paramyxoviruses formed their own clade distinct from other members of the Paramyxoviridae.  相似文献   

8.
Sinorhizobium meliloti strains lacking BacA function are impaired in symbiosis with alfalfa host plants and display altered sensitivities to a number of compounds relative to wild-type strains. With the goal of finding clues to the currently unknown biological function(s) of BacA, we carried out a genetic analysis to determine which amino acids are critical for protein function and to attempt to ascertain whether the multiple phenotypes that result from a bacA-null allele were the result of a common cause or whether BacA has multiple functions. We have created a set of 20 site-directed mutants in which selected individual amino acids in bacA were replaced with glycine residues. The resulting mutants were characterized to determine how the various amino acid changes affected a number of phenotypes associated with loss of BacA function. Mutants H165G, W182G, D198G, and R284G had null phenotypes for all functions assayed, while mutants W57G, S83G, S231G, and K350G were indistinguishable from wild-type strains. The remaining 12 site-directed mutants demonstrate mixed phenotypic characteristics and fall into a number of distinctly different groups. These observations may be consistent with a role for BacA in multiple, nonoverlapping functions.  相似文献   

9.
以人粒细胞-巨噬细胞集落刺激因子(GM-CSF)受体(GM-CSFR)为靶向的白喉毒素(DT)与GM-CSF免疫毒素DT386-GMCSF为急性髓系白血病提供了一种新的替代治疗途径,但该蛋白在E.coli中的表达量很低,难以进行工业化生产。为探索造成其低表达的关键影响因素,对DT386-GMCSF中的GM-CSF进行了C端的截短表达,发现GM-CSF中L114编码序列可明显影响融合蛋白的表达量。在此基础上,构建了一系列突变体,发现保留1-123位氨基酸且将L114L115V116突变为G114V115T116的突变体DF123GVT的表达量高于DT386-GMCSF,且对来源于高表达GM-CSF受体的HL60细胞的肿瘤单细胞具有相似的细胞毒作用。DF123GVT突变体的获得为GM-CSFR靶向的免疫毒素的开发应用打下了基础。  相似文献   

10.
Gravel KA  Morrison TG 《Journal of virology》2003,77(20):11040-11049
The activation of most paramyxovirus fusion proteins (F proteins) requires not only cleavage of F(0) to F(1) and F(2) but also coexpression of the homologous attachment protein, hemagglutinin-neuraminidase (HN) or hemagglutinin (H). The type specificity requirement for HN or H protein coexpression strongly suggests that an interaction between HN and F proteins is required for fusion, and studies of chimeric HN proteins have implicated the membrane-proximal ectodomain in this interaction. Using biotin-labeled peptides with sequences of the Newcastle disease virus (NDV) F protein heptad repeat 2 (HR2) domain, we detected a specific interaction with amino acids 124 to 152 from the NDV HN protein. Biotin-labeled HR2 peptides bound to glutathione S-transferase (GST) fusion proteins containing these HN protein sequences but not to GST or to GST containing HN protein sequences corresponding to amino acids 49 to 118. To verify the functional significance of the interaction, two point mutations in the HN protein gene, I133L and L140A, were made individually by site-specific mutagenesis to produce two mutant proteins. These mutations inhibited the fusion promotion activities of the proteins without significantly affecting their surface expression, attachment activities, or neuraminidase activities. Furthermore, these changes in the sequence of amino acids 124 to 152 in the GST-HN fusion protein that bound HR2 peptides affected the binding of the peptides. These results are consistent with the hypothesis that HN protein binds to the F protein HR2 domain, an interaction important for the fusion promotion activity of the HN protein.  相似文献   

11.
Fujimoto N  Tanaka K  Suzuki T 《FEBS letters》2005,579(7):1688-1692
The purpose of this study is to clarify the amino acid residues responsible for the synergism in substrate binding of arginine kinase (AK), a key enzyme in invertebrate energy metabolism. AKs contain a pair of highly conserved amino acids (D62 and R193) that form an ion pair, and replacement of these residues can cause a pronounced loss of activity. Interestingly, in the oyster Crassostrea AK, these residues are replaced by an N and a K, respectively. Despite this replacement, the enzyme retains high activity and moderate synergism in substrate binding (Kd/Km=2.3). We replaced the N62 by G or D and the K193 by G or R in Crassostrea AK, and also constructed the double mutants of N62G/K193G and N62D/K193R. All of the mutants retained 50-90% of the wild-type activity. In N62G and N62D mutants, the Kmarg for arginine binding was comparable to that of wild-type enzyme, but the Kdarg was increased 2-5-fold, resulting in a strong synergism (Kd/Km=4.9-11.3). On the other hand, in K193G and K193R mutants, the Kmarg was increased 4-fold, and synergism was lost almost completely (Kd/Km=1.0-1.4). The N62G/K193G double mutant showed similar characteristics to the K193G and K193R mutants. Another double mutant, N62D/K193R, similar to the amino acid pair in the wild-type enzyme, had characteristics similar to those of the wild-type enzyme. These results indicate that the amino acid residues 62 and 193 play the key role in mediating the synergism in substrate binding of oyster arginine kinase.  相似文献   

12.
SbmA protein has been proposed as a dimeric secondary transporter. The protein is involved in the transport of microcins B17 and J25, bleomycin, proline-rich antimicrobial peptides, antisense peptide phosphorodiamidate morpholino oligomers, and peptide nucleic acids into the Escherichia coli cytoplasm. The sbmA homologue is found in a variety of bacteria, though the physiological role of the protein is hitherto unknown. In this work, we carried out a functional and structural analysis to determine which amino acids are critical for the transport properties of SbmA. We created a set of 15 site-directed sbmA mutants in which single conserved amino acids were replaced by glycine residues. Our work demonstrated that strains carrying the site-directed mutants V102G, F219G, and E276G had a null phenotype for SbmA transport functions. In contrast, strains carrying the single point mutants W19G, W53G, F60G, S69G, N155G, R190, L233G, A344G, T255G, N308G, and R385G showed transport capacities indistinguishable from those of strains harboring a wild-type sbmA. The strain carrying the Y116G mutant exhibited mixed phenotypic characteristics. We also demonstrated that those sbmA mutants with severely impaired transport capacity showed a dominant negative phenotype. Electron microscopy data and in silico three-dimensional (3D) homology modeling support the idea that SbmA forms a homodimeric complex, closely resembling the membrane-spanning region of the ATP-binding cassette transporter family. Direct mapping of the sbmA single point mutants on the protein surface allowed us to explain the observed phenotypic differences in transport ability.  相似文献   

13.
Oligonucleotide-directed mutagenesis of a cDNA encoding the hemagglutinin of influenza virus has been used to introduce single base changes into the sequence that codes for the conserved apolar "fusion peptide" at the amino-terminus of the HA2 subunit. The mutant sequences replaced the wild-type gene in SV40-HA recombinant virus vectors, and the altered HA proteins were expressed in simian cells. Three mutants have been constructed that introduce single, nonconservative amino acid changes in the fusion peptide, and three fusion phenotypes were observed: substitution of glutamic acid for the glycine residue at the amino-terminus of HA2 abolished all fusion activity; substitution of glutamic acid for the glycine residue at position 4 in HA2 raised the threshold pH and decreased the efficiency of fusion; and, finally, extension of the hydrophobic stretch by replacement of the glutamic acid at position 11 with glycine yielded a mutant protein that induced fusion of erythrocytes with cells with the same efficiency and pH profile as the wild-type protein. However, the ability of this mutant to induce polykaryon formation was greatly impaired. Nevertheless, all the mutant proteins underwent a pH-dependent conformational change and bound to liposomes. These results are discussed in terms of the mechanism of HA-induced membrane fusion.  相似文献   

14.
For most paramyxoviruses, syncytium formation requires the expression of both surface glycoproteins (HN and F) in the same cell, and evidence suggests that fusion involves a specific interaction between the HN and F proteins (X. Hu et al., J. Virol. 66:1528-1534, 1992). The stalk region of the Newcastle disease virus (NDV) HN protein has been implicated in both fusion promotion and virus specificity of that activity. The NDV F protein contains two heptad repeat motifs which have been shown by site-directed mutagenesis to be critical for fusion (R. Buckland et al., J. Gen. Virol. 73:1703-1707, 1992; T. Sergel-Germano et al., J. Virol. 68:7654-7658, 1994; J. Reitter et al., J. Virol. 69:5995-6004, 1995). Heptad repeat motifs mediate protein-protein interactions by enabling the formation of coiled coils. Upon analysis of the stalk region of the NDV HN protein, we identified two heptad repeats. Secondary structure analysis of these repeats suggested the potential for these regions to form alpha helices. To investigate the importance of this sequence motif for fusion promotion, we mutated the hydrophobic a-position amino acids of each heptad repeat to alanine or methionine. In addition, hydrophobic amino acids in other positions were also changed to alanine. Every mutant protein retained levels of attachment activity that was greater than or equal to the wild-type protein activity and bound to conformation-specific monoclonal as well as polyclonal antisera. Neuraminidase activity was variably affected. Every mutation, however, showed a dramatic decrease in fusion promotion activity. The phenotypes of these mutant proteins indicate that individual amino acids within the heptad repeat region of the stalk domain of the HN protein are important for the fusion promotion activity of the protein. These data are consistent with the idea that the HN protein associates with the F protein via specific interactions between the heptad repeat regions of both proteins.  相似文献   

15.
The role of specific sequences in the transmembrane (TM) domain of Newcastle disease virus (NDV) fusion (F) protein in the structure and function of this protein was assessed by replacing this domain with the F protein TM domains from two other paramyxoviruses, Sendai virus (SV) and measles virus (MV), or the TM domain of the unrelated glycoprotein (G) of vesicular stomatitis virus (VSV). Mutant proteins with the SV or MV F protein TM domains were expressed, transported to cell surfaces, and proteolytically cleaved at levels comparable to that of the wild-type protein, while mutant proteins with the VSV G protein TM domain were less efficiently expressed on cell surfaces and proteolytically cleaved. All mutant proteins were defective in all steps of membrane fusion, including hemifusion. In contrast to the wild-type protein, the mutant proteins did not form detectable complexes with the NDV hemagglutinin-neuraminidase (HN) protein. As determined by binding of conformation-sensitive antibodies, the conformations of the ectodomains of the mutant proteins were altered. These results show that the specific sequence of the TM domain of the NDV F protein is important for the conformation of the preactivation form of the ectodomain, the interactions of the protein with HN protein, and fusion activity.  相似文献   

16.
The role of residues in the conserved hydrophobic N-terminal fusion peptide of the paramyxovirus fusion (F) protein in causing cell-cell fusion was examined. Mutations were introduced into the cDNA encoding the simian virus 5 (SV5) F protein, the altered F proteins were expressed by using an eukaryotic vector, and their ability to mediate syncytium formation was determined. The mutant F proteins contained both single- and multiple-amino-acid substitutions, and they exhibited a variety of intracellular transport properties and fusion phenotypes. The data indicate that many substitutions in the conserved amino acids of the simian virus 5 F fusion peptide can be tolerated without loss of biological activity. Mutant F proteins which were not transported to the cell surface did not cause cell-cell fusion, but all of the mutants which were transported to the cell surface were fusion competent, exhibiting fusion properties similar to or better than those of the wild-type F protein. Mutant F proteins containing glycine-to-alanine substitutions had altered intracellular transport characteristics, yet they exhibited a great increase in fusion activity. The potential structural implications of this substitution and the possible importance of these glycine residues in maintaining appropriate levels of fusion activity are discussed.  相似文献   

17.
Cell entry by paramyxoviruses requires fusion between viral and cellular membranes. Paramyxovirus infection also gives rise to the formation of multinuclear, fused cells (syncytia). Both types of fusion are mediated by the viral fusion (F) protein, which requires proteolytic processing at a basic cleavage site in order to be active for fusion. In common with most paramyxoviruses, fusion mediated by Sendai virus F protein (F(SeV)) requires coexpression of the homologous attachment (hemagglutinin-neuraminidase [HN]) protein, which binds to cell surface sialic acid receptors. In contrast, respiratory syncytial virus fusion protein (F(RSV)) is capable of fusing membranes in the absence of the viral attachment (G) protein. Moreover, F(RSV) is unique among paramyxovirus fusion proteins since F(RSV) possesses two multibasic cleavage sites, which are separated by an intervening region of 27 amino acids. We have previously shown that insertion of both F(RSV) cleavage sites in F(SeV) decreases dependency on the HN attachment protein for syncytium formation in transfected cells. We now describe recombinant Sendai viruses (rSeV) that express mutant F proteins containing one or both F(RSV) cleavage sites. All cleavage-site mutant viruses displayed reduced thermostability, with double-cleavage-site mutants exhibiting a hyperfusogenic phenotype in infected cells. Furthermore, insertion of both F(RSV) cleavage sites in F(SeV) reduced dependency on the interaction of HN with sialic acid for infection, thus mimicking the unique ability of RSV to fuse and infect cells in the absence of a separate attachment protein.  相似文献   

18.
The in vivo application of the protein streptavidin is limited by its propensity to localize to kidney, particularly when it is used as a carrier of radionuclides in Targeted Radionuclide Therapy. Our previous studies demonstrated that modification of recombinant "core" streptavidin (rSAv) by reaction of lysine residues with succinic anhydride and arginine residues with 1,2-cyclohexanedione dramatically decreases the kidney concentrations over that obtained with wild-type rSAv. In this investigation, we explored the role of lysine and arginine residues in kidney localization further by evaluating site-directed mutants of rSAv. In the five mutants studied, the four lysine residues found in each subunit of rSAv were replaced (independently) with an alanine (K80A, K121A, K132A, K134A), and a specific arginine was replaced with a histidine (R59H). The rSAv mutants were prepared from a "core" rSAv construct produced by expression in E. coli that had 124 amino acids (residues 13-136). Another rSAv construct that had 127 amino acids (residues 13-139), used in most of our previous studies, was also included for comparison. As an additional comparison, succinylated rSAv was prepared and evaluated. The rSAv proteins were radioiodinated and injected into athymic mice that were on a biotin-free diet for 5-7 days prior, and biodistribution data were obtained (for most proteins) at 1, 4, 24, and 48 h postinjection. The data obtained show large differences in kidney localizations of the wild-type rSAv and some rSAv mutants. The largest difference in the kidney concentration was noted for the rSAv-K134A mutant (1.90 +/- 0.22%ID/g; 24 h pi) as compared to the wild-type rSAv (31.83 +/-5.26%ID/g) at the same time point. The concentration of rSAv-K134A mutant in kidney was slightly lower than that obtained with succinylated rSAv. At the 24 h time point, the kidney concentrations of the rSAv-R59H mutant (8.95 +/- 2.94%ID/g) and the rSAv-K121A mutant (11.86 +/- 1.61%ID/g) were lower than wild-type rSAv, but the rSAv mutants rSAv-K80A (27.95 +/- 1.82%ID/g) and rSAv-K132A (32.50 +/- 10.09%ID/g) were essentially the same. The data suggests that specific lysine and arginine residues are involved in kidney localization. Possible mechanisms for the observed kidney localization are discussed.  相似文献   

19.
The guanine nucleotide-binding protein G(o alpha) has been implicated in the regulation of Ca2+ channels in neural tissues. Covalent modification of G(o alpha) by pertussis toxin-catalyzed ADP-ribosylation of a cysteine (position 351) four amino acids from the carboxyl terminus decouples G(o alpha) from receptor. To define the structural requirements for ADP-ribosylation, preparations of recombinant G(o alpha) with mutations within the five amino acids at the carboxyl terminus were evaluated for their ability to serve as pertussis toxin substrates. As expected, the mutant in which cysteine 351 was replaced by glycine (C351G) was not a toxin substrate. Other inactive mutants were G352D and L353 delta/Y354 delta. Mutations that had no significant effect on toxin-catalyzed ADP-ribosylation included G350D, G350R, Y354 delta, and L353V/Y354 delta. Less active mutants were L353G/Y354 delta, L353A/Y354 delta, and L353G. ADP-ribosylation of the active mutants, like that of wild-type G(o alpha), was enhanced by the beta gamma subunits of bovine transducin. It appears that three of the four terminal amino acids critically influence pertussis toxin-catalyzed ADP-ribosylation of G(o alpha).  相似文献   

20.
The purpose of this study is to clarify that the amino acid residues (Asp62 and Arg193) are responsible for the activity and stability of arginine kinase (AK). The amino acid residues Asp62 (D62) and Arg193 (R193) are strictly conserved in monomeric AKs and form an ion pair in the transition state analogue complex. In this research, we replaced D62 with glutamate (E) or glycine (G) and R193 with lysine (K) or glycine (G). The mutants of D62E and R193K retained almost 90% of the wild-type activity, whereas D62G and R193G had a pronounced loss in activity. A detailed comparison was made between the physic-chemical properties and conformational changes of wild-type AK and the mutants by means of ultraviolet (UV) difference and fluorescence spectra. The results indicated that the conformation of all of the mutants had been changed and the stability in a urea solution was also reduced. We speculated that the hydrogen bond and electrostatic interactions formed between residues 62 and 193 play a key role in stabilizing the structure and mediating the synergism in substrate binding of arginine kinase from greasyback shrimp (Metapenaeus ensis).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号