首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
The peribacteroid membrane (pbm) of root nodules is derived from the plant cell plasma membrane but contains in addition several nodule-specific host proteins (nodulins). Antibodies raised against purified pbm of soybean were used to immunoprecipitate polysomes to isolate an RNA fraction that served as a template for the synthesis of a cDNA probe for screening a nodule-specific cDNA library. Clone p1B1 was found to encode a 26.5 kDa polypeptide (nodulin-26) which is immunoprecipitable specifically with the anti-pbm serum. Nodulin-26 has features of a transmembrane protein and its structure differs from that of nodulin-24 which appears to be a surface protein of pbm. The expression of these two pbm nodulins was examined in nodules induced by Bradyrhizobium japonicum Tn5 mutants that arrest nodule development at different stages of pbm biosynthesis. Nodules that do not show release of bacteria from the infection thread express nodulin-24 at a very low level. In contrast, the expression of nodulin-26 occurs fully in nodules that form infection threads only and is not affected by the release of bacteria from the threads.  相似文献   

2.
Infection of legume roots with Rhizobium species results in the development of a root nodule structure in which the bacteria form an intracellular symbiosis with the plant. We report here that the infection of soybean (Glycine max L.) roots with Rhizobium japonicum results in the synthesis by the plant of at least 18–20 polypeptides other than leghemoglobin during the development of root nodules. Identification of these “nodule-specific” host polypeptides (referred to as nodulins) was accomplished by two-dimensional gel analysis of the immunoprecipitates formed by a “nodule-specific” antiserum with in vitro translation products of root-nodule polysomes that are free of bacteroidal contaminations. Nodulins account for 7–11% of the total 35S-methionine-labeled protein synthesized in the host cell cytoplasm, and the majority of them are of 12,000–20,000 molecular weight. These proteins are absent from the uninfected roots, bacteroids and free-living Rhizobium, and appear to be coded for by the plant genes that may be obligatory for the development of symbiosis in the legume root nodules. Analysis of nodulins in ineffective (unable to fix nitrogen) nodules developed due to Rhizobium strains SM5 and 61A24 showed that their synthesis is reduced and their expression differentially influenced by mutations in rhizobia. Two polypeptides of bacterial origin were also found to be cross-reactive with the “nodule-specific” antiserum, suggesting that they are secreted by Rhizobium into the host cell cytoplasm during symbiotic nitrogen fixation.  相似文献   

3.
Summary Nodulins are organ-specific plant proteins induced during symbiotic nitrogen fixation. Nodulins play both metabolic and structural roles within infected and uninfected nodule cells. In soybean, several nodulin genes, coding for abundant nodulins, have been identified and isolated. Structural analysis of some of these genes has revealed their possible mode of regulation and the subcellar location of the protein product. Studies of ineffective symbiosis based on cultivar-strain genotype differences suggested that both partners influence the expression of nodulin genes. Concomitant with nodule organogenesis, the Rhizobium undergoes substantial differentiation leading to the accumulation of nodule-specific bacterial proteins, bacteroidins. The major structural alteration occuring in the infected cell is the formation of a membrane enclosing the bacteroid (peribacteroid membrane). A number of nodulins are specifically targetted to this membrane during endosymbiosis. The induction of nodulins and bacteroidins leads to the formation of an effective nodule. Nodulin genes can be induced in vitro by factors derived from nodules suggesting that trans-activators may be involved in derepression of the host genes necessary for Rhizobium-legume symbiosis.  相似文献   

4.
5.
Seventeen translation products from Glycine max root mRNA precipitated with antiserum prepared against a peribacteroid membrane preparation from effective root nodules. Messenger RNA from fix + nodules coded for these 17 products plus 7 other nodule-specific polypeptides which bound to the antiserum. Of these 7 nodulins only 4 were present when nodules were infected with Bradyrhizobium japonicum 110 rif 15 2960, which induces the plant to produce empty peribacteroid membranes. In nodules infected with B. japonicum strains inducing either very short-lived or defective peribacteroid membrane, only 5 or 6, respectively, of these nodulins could be detected.From these results we hypothesize that the microsymbiont is responsible for the production of at least 4 different signals leading to peribacteriod membrane formation by the plant.  相似文献   

6.
Root nodule development: origin, function and regulation of nodulin genes   总被引:3,自引:0,他引:3  
The symbiotic root nodule, an organ formed on leguminous plants, is a product of successful interactions between the host plant and the soil bacteria, Rhizobium spp. Plant hormones play an important role in the genesis of this organ. The hormonal balance appears to be modulated by the signals produced by bacteria. Many host genes induced during nodule organogenesis and the symbiotic state have been identified and characterized from several legumes. These genes encode nodule-specific proteins (nodulins) which perform diverse functions in root nodule development and metabolism. Formation of a subcellular compartment housing the bacteria is essential to sustain the symbiotic state, and several nodulins are involved in maintaining the integrity and function of this compartment. The bacteroid enclosed in the perbacteroid membrane behaves as an 'organelle,'completely dependent on the host for all its requirements for carbon, nitrogen and other essential elements. Thus it seems likely that the nodulins in the peribacteroid membrane perform specific transport functions. While the function of a few other nodulins is known (e.g. nodulin-100, nodulin-35), a group of uncharacterized nodulins exists in soybean root nodules. These nodulins share structural similarities and seem to have been derived from a common ancestor. Induction of nodulin genes occurs prior to and independent of nitrogen fixation, and thus is a prelude to symbiosis. Although some of the early nodulin genes are induced prior to or during infection, induction of late nodulins requires endocytotic release of bacteria.  相似文献   

7.
A group of root nodule-specific plant proteins (nodulins) has been isolated from yellow lupin (Lupinus luteus) by immunoaffinity chromatography. The cytoplasmic nodule protein extract was initially enriched in nodulins on a column with immobilized IgG fraction. It was then purified by chromatography on Sepharose 4B - bound IgG against uninfected root proteins and finally on Sepharose 4B - bound IgG against Rhizobium lupini proteins. Rocket immunoelectrophoresis showed that the nodulin preparation did not react with antibodies against root or bacterial proteins. SDS gel electrophoresis of lupin nodulins revealed at least 23 polypeptides ranging in Mr, from 7,000 to 70,000, probably representing protein subunits.  相似文献   

8.
9.
Rhizobium, Bradyrhizobium and Azorhizobium can elicit the formation of N2-fixing nodules on the roots or stems of their leguminous host plants. The nodule formation involves several developmental steps determined by different sets of genes from both partners, the gene expression being temporally and spatially coordinated. The plant proteins that are specifically synthesised during the formation and function of the nodule are called nodulins. The nodulins that are expressed before the onset of N2 fixation are termed early nodulins. These proteins are probably involved in the infection process as well as in nodule morphogenesis rather than in nodule function. The nodulins expressed just before or during N2 fixation are termed late nodulins and they participate in the function of the nodule by creating the physiological conditions required for nitrogen fixation, ammonium assimilation and transport. In this review we will describe nodulins, nodulin genes and the relationship between nodulin gene expression and nodule development. The study of nodulin gene expression may provide insight into root-nodule development and the mechanism of communication between bacteria and host plant.J.A. Muñoz and A.J. Palomares are with the Departamento de Microbiologia y Parasitología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain. P. Ratet is with the Institut des Sciences Végétales, CNRS, Avenue de la Terrasse, F-91198 Gif-sur-Yvette, Fance  相似文献   

10.
11.
Nodule-specific root proteins – so called nodulins – were identified in root nodules of pea plants by an immunological assay. Nodulin patterns were examined at different stages of nodule development. About 30 nodulins were detectable during development. Some were preferentially synthesized before nitrogen fixation started, whereas the majority were synthesized concomitantly with leghaemoglobin. Some of the nodulins were located within the peribacteroid membrane. Ineffective Rhizobium strains (a natural nod+fix- and a pop -fix-) appeared to be useful in studying the expression of nodulin genes. Synthesis of some nodulins was repressed in ineffective root nodules, indicating that nodulins are essential for the establishment of nitrogen fixation. In both types of ineffective root nodules, leghaemoglobin synthesis was not completely repressed. Low amounts of leghaemoglobin were always detected in young ineffective root nodules whereas in old nodules no leghaemoglobin was present.  相似文献   

12.
Legume nodules have specialized transport functions for the exchange of carbon and nitrogen compounds between bacteroids and root cells. Plasma membrane-type (vanadate-sensitive) H+-ATPase energizes secondary active transporters in plant cells and it could drive exchanges across peribacteroidal and plasmatic membranes. A nodule cDNA corresponding to a major isoform of Phaseolus vulgaris H+-ATPase (designated BHA1) has been cloned. BHA1 is a functional proton pump because after removal of its inhibitory domain and can complement a yeast mutant unable to synthesize a H+-ATPase. BHA1 is not nodule-specific, since it is also expressed in roots of uninfected plants. It belongs to the subfamily of plasma membrane H+-ATPases defined by the Arabidopsis AHA1, AHA2 and AHA3 genes and the tobacco PMA4 and corn MHA2 genes. In situ hybridization in nodule sections indicates high expression of BHA1 limited to uninfected cells. These results were confirmed by immunocytochemistry. The relatively low expression of plasma membrane-type H+-ATPase in Rhizobium-infected cells put a note of caution on the origin of the vanadate-sensitive ATPase described in preparations of peribacteroidal membranes. Also, our results indicate that active transport in symbiotic nodules is most intense at the plasma membrane of uninfected cells and support a specialized role of uninfected tissue for nitrogen transport.  相似文献   

13.
The Arabidopsis KNOLLE Protein Is a Cytokinesis-specific Syntaxin   总被引:11,自引:0,他引:11  
In higher plant cytokinesis, plasma membrane and cell wall originate by vesicle fusion in the plane of cell division. The Arabidopsis KNOLLE gene, which is required for cytokinesis, encodes a protein related to vesicle-docking syntaxins. We have raised specific rabbit antiserum against purified recombinant KNOLLE protein to show biochemically and by immunoelectron microscopy that KNOLLE protein is membrane associated. Using immunofluorescence microscopy, KNOLLE protein was found to be specifically expressed during mitosis and, unlike the plasma membrane H+-ATPase, to localize to the plane of division during cytokinesis. Arabidopsis dynamin-like protein ADL1 accumulates at the plane of cell plate formation in knolle mutant cells as in wild-type cells, suggesting that cytokinetic vesicle traffic is not affected. Furthermore, electron microscopic analysis indicates that vesicle fusion is impaired. KNOLLE protein was detected in mitotically dividing cells of various parts of the developing plant, including seedling root, inflorescence meristem, floral meristems and ovules, and the cellularizing endosperm, but not during cytokinesis after the male second meiotic division. Thus, KNOLLE is the first syntaxin-like protein that appears to be involved specifically in cytokinetic vesicle fusion.  相似文献   

14.
Nodulin gene expression was analyzed in effective and ineffective root nodules of alfalfa (Medicago sativa L. cv Iroquois) elicited by three different Rhizobium meliloti mutants: an exoB mutant having defective acidic exopolysaccharide that does not fluoresce on plates containing the fluorescent brightener Calcofluor; fix21, a spontaneous mutant that has defective lipopolysaccharide and is Calcofluor bright; and a Rhizobium mutant resulting from a Tn5 insertion in the nifH gene of the nif operon. The ineffective nodules elicited by these various mutant rhizobia are blocked at different stages of nodule development and have unique phenotypes. A distinctive pattern of nodulin gene expression as determined by in vitro translations of total nodule RNA characterizes each nodule phenotype. Seventeen nodulins are found in effective nodules including five leghemoglobins. Only one nodulin gene is expressed in the bacteria-free nodules elicited by the exoB mutant. Other nodulin genes (leghemoglobin and nine others) are expressed in fix21-induced nodules. The genes for nodule-enhanced glutamine synthetase as well as for all the other nodulins are expressed in nodules induced by the nifH mutant. The expression of genes for the nodulins, including leghemoglobin, is independent of the nitrogen-fixing ability of the nodule and appears to correlate with the differentiation of densely cytoplasmic host cells in the nodule and, to some extent, with bacterial release from infection threads.  相似文献   

15.
An antiserum raised against deglycosylated hydroxyproline-rich glycoproteins (HPGPs) from melon (Cucumis melo L.) was used to study the relationship between Rhizobium infection and induction of HRGPs in bean (Phaseolus vulgaris L.) root nodule cells infected with either the wild-type or a C4-dicarboxylic acid mutant strain of Rhizobium leguminosarum bv. phaseoli. In effective nodules, where fixation of atmospheric dinitrogen is taking place, HRGPs were found to accumulate mainly in the walls of infected cells and in peribacteroid membranes surrounding groups of bacteroids. Internal ramifications of the peribacteroid membrane were also enriched in HRGPs whereas the peribacteroid space as well as the bacteroids themselves were free of these glycoproteins. In mutant-induced root nodules, HRGPs were specifically associated with the electron-dense, laminated structures formed in plastids as a reaction to infection by this mutant. The presence of HRGPs was also detected in the host cytoplasm. The aberrant distribution of HRGPs in infected cells of mutant-induced nodules likely reflects one aspect of the altered host metabolism in relation to peribacteroid-membrane breakdown. The possibility that the antiserum used for HRGP localization may have cross-reacted with ENOD 2 gene products is discussed in relation to amino-acid sequences and sites of accumulation.  相似文献   

16.
Novikoff hepatocellular carcinoma cells possess cell-surface glycoproteins that bind the lectin, concanavalin A. A subset of Con A-binding plasma membrane glycoproteins was solubilized by addition of n-butanol to a suspension of Novikoff cells. Glycoproteins solubilized into the n-butanol-saturated aqueous phase of the two-phase mixture were purified by sequential chromatography on DEAE-cellulose and Sepharose-conjugated concanavalin A. Glycoproteins specifically bound to the Sepharose-conjugated Con A exhibited apparent Mr = 72,000 to 125,000. The plasma membrane localization of these components was inferred by their isolation from cells surface labeled with NaIO4/ NaB3H4. A xenoantiserum, raised against glycoproteins specifically bound to Sepharose-conjugated concanavalin A was employed to identify reactive components in nonionic detergent extracts of Novikoff tumor cells or rat hepatocytes surface labeled using lactoperoxidase-catalyzed iodination (125I). Major reactive peptides in extracts of Novikoff cells exhibited apparent Mr = 74,000, 82, 000, 110,000, and 135,000, while those in extracts of hepatocytes possessed apparent Mr = 98,000 and 105,000. The reactivity of the antiserum with extracts of 125I-labeled Novikoff cells was abolished by absorption of the antiserum with hepatocytes, indicating that the qualitative differences observed may result from structural modification of one or more cell-surface glycoproteins, rather than the expression of new or inappropriate glycoproteins. This antiserum will provide a useful probe to investigate alterations in the expression or structure of glycoproteins that occur as a consequence of malignant transformation or adaptation of malignant cells to growth in the ascitic form.  相似文献   

17.
Expression in mammalian COS cells and an efficient microtiter-based strategy for immunoselection was used in a novel approach to identify genes encoding plant membrane proteins. COS cells were transfected with an Arabidopsis thaliana root cDNA library constructed in a bacterial mammalian shuttle vector and screened with an antiserum raised against purified deglycosylated integral plasma membrane proteins from A. thaliana roots. Antibodies directed against a prominent 27 kDa antigen led to the identification of five different genes. They comprised two subfamilies related to the major intrinsic protein (MIP) superfamily and were named plasma membrane intrinsic proteins, PIP1 and PIP2, since the cellular localization of PIP1 and most probably PIP2 proteins in the plasma membrane was independently confirmed by their co-segregation with marker enzymes during aequeous two-phase partitioning. Surprisingly, expression in Xenopus laevis oocytes revealed that all five PIP mRNAs coded for Hg2+-sensitive water transport facilitating activities. There had been no previous evidence of the existence of water channels in the plasma membrane of plant cells and the high diffusional water permeability of the lipid bilayer was considered to be sufficient for water exchange. Nevertheless, Northern and Western analyses showed that the PIP genes are constitutively and possibly even redundantly expressed from the small A. thaliana genome.  相似文献   

18.
Developmental regulation of nodule-specific genes in alfalfa root nodules   总被引:12,自引:0,他引:12  
We have cloned alfalfa nodule-specific cDNAs that code for leghemoglobin (Lb), glutamine synthetase (GS), and three unidentified nodulins. Hybrid-select translation of nodule RNA followed by 2-D gel electrophoresis showed that the Lb-specific cDNA corresponded to at least four Lb species of 12 kDa. One of the unidentified cDNA clones (N-32/34) corresponded to at least five polypeptides of 32-34 kDa; a second unidentified cDNA clone (N-14) corresponded to an individual polypeptide of 14 kDa. The in vitro translation product(s) of the RNA hybrid selected by the third unidentified cDNA clone (N-22) formed a single band at 22 kDa on a one-dimensional gel. Northern and dot blot analyses of RNA isolated from wild-type nodules and from defective nodules elicited by a variety of Rhizobium meliloti mutants showed that 1) RNAs corresponding to the Lb, nodule-specific GS, and three unidentified nodulins were coordinately expressed during the course of nodule development, and 2) all five nodulins were expressed in Fix- nodules that contained infection threads and bacteroids but were not expressed in nodules that lacked infection threads and intracellular rhizobia.  相似文献   

19.
20.
In addition to leghemoglobin, at least nine nodule-specific polypeptides from the alfalfa (Medicago sativa L.)-Rhizobium meliloti symbiosis were identified by immune assay. Some of these polypeptides may be subunits of larger proteins but none appeared to be subunits of the same multimeric protein. All nine of the nodule-specific polypeptides were localized to within the plant cytosol; they were not found in extracts of bacteroids or in the peribacteroid space. At least one of these nodule-specific polypeptides was found to be antigenically related to nodule-specific polypeptides in pea and/or soybean. Ineffective nodules elicited by R. meliloti strains containing mutations in four different genes required for nitrogenase synthesis contained reduced concentrations of leghemoglobin and of several of the nodule-specific polypeptides. Other nodule-specific polypeptides were unaltered or actually enriched in the ineffective nodules. Many of the differences between the ineffective and effective nodules were apparent in nodules harvested shortly after the nodules became visible. These differences were greatly amplified in older nodules. When the four ineffective nodule types were compared to one another, there were clear quantitative differences in the concentrations of several of the nodule-specific polypeptides. These differences suggest that lack of a functional nitrogenase does not have a single direct effect on nodule development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号