首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Here we describe the role of the Cladosporium fulvum nitrogen response factor 1 (Nrf1) gene in regulation of the expression of avirulence gene Avr9 and virulence on tomato. The Nrf1 gene, which was isolated by a polymerase chain reaction-based strategy, is predicted to encode a protein of 918 amino acid residues. The protein contains a putative zinc finger DNA-binding domain that shares 98% amino acid identity with the zinc finger of the major nitrogen regulatory proteins AREA and NIT2 of Aspergillus nidulans and Neurospora crassa, respectively. Functional equivalence of Nrf1 to areA was demonstrated by complementation of an A. nidulans areA loss-of-function mutant with Nrf1. Nrf1-deficient transformants of C. fulvum obtained by homologous recombination were unable to utilize nitrate and nitrite as a nitrogen source. In contrast to what was observed in the C. fulvum wild-type, the Avr9 gene was no longer induced under nitrogen-starvation conditions in Nrf1-deficient strains. On susceptible tomato plants, the Nrf1-deficient strains were as virulent as wild-type strains of C. fulvum, although the expression of the Avr9 gene was strongly reduced. In addition, Nrf1-deficient strains were still avirulent on tomato plants containing the functional Cf-9 resistance gene, indicating that in planta, apparently sufficient quantities of stable AVR9 elicitor are produced. Our results suggest that the NRF1 protein is a major regulator of the Avr9 gene.  相似文献   

2.
The interaction between the fungal pathogen Cladosporium fulvum and tomato is supposed to have a gene-for-gene basis. Races of C. fulvum which have 'overcome' the resistance gene Cf9 of tomato, lack the avirulence gene avr9 which encodes a race-specific peptide elicitor. Races avirulent on tomato genotypes carrying the resistance gene Cf9 produce the race-specific peptide elicitor, which induces the hypersensitive response (HR) on those genotypes. The causal relationship between the presence of a functional avr9 gene and avirulence on tomato genotype Cf9 was demonstrated by cloning of the avr9 gene and subsequent transformation of C. fulvum. A race virulent on tomato genotype Cf9 was shown to become avirulent by transformation with the cloned avr9 gene. These results clearly demonstrate that the avr9 gene is responsible for cultivar specificity on tomato genotype Cf9 and fully support the gene-for-gene hypothesis. The avr9 gene is the first fungal avirulence gene to be cloned.  相似文献   

3.
The avirulence gene avr9 of the fungal tomato pathogen Cladosporium fulvum encodes a race-specific peptide elicitor that induces the hypersensitive response in tomato plants carrying the complementary resistance gene Cf9. The avr9 gene is not expressed under optimal growth conditions in vitro, but is highly expressed when the fungus grows inside the tomato leaf. In this paper we present evidence for the induction of avr9 gene expression in C. fulvum grown in vitro under conditions of nitrogen limitation. Only growth medium with very low amounts of nitrogen (nitrate, ammonium, glutamate or glutamine) induced the expression of avr9. Limitation of other macronutrients or the addition of plant factors did not induce the expression of avr9. The induced expression of avr9 is possibly mediated by a positive-acting nitrogen regulatory protein, homologous to the Neurospora crassa NIT2 protein, which induces the expression of many genes under conditions of nitrogen limitation. The avr9 promoter contains several putative NIT2 binding sites. The expression of avr9 during the infection process was explored cytologically using transformants of C. fulvum carrying an avr9 promoter-β-glucuronidase reporter gene fusion. The possibility that expression of avr9 in C. fulvum growing in planta is caused by nitrogen limitation in the apoplast of the tomato leaf is discussed.  相似文献   

4.
A race-specific peptide elicitor from Cladosporium fulvum induces a hypersensitive response on Cf9 tomato genotypes. We have hypothesized that the avirulence of fungal races on Cf9 genotypes is due to the production of this elicitor by an avirulence gene, avr9. To obtain cDNA clones of the avr9 gene, oligonucleotide probes were designed based on the amino acid sequence determined previously. In northern blot analysis, one oligonucleotide detected an mRNA of 600 nucleotides in tomato-C. fulvum interactions involving fungal races producing the elicitor. A primer extension experiment indicated that the probe hybridized to a region near position 270 of the mRNA. The probe was used to screen a cDNA library made from poly(A)+ RNA from an appropriate compatible tomato-C. fulvum interaction. One clone was obtained corresponding to the mRNA detected by the oligonucleotide probe. Sequence analysis revealed that this clone encoded the avr9 elicitor. By isolating longer clones and by RNA sequencing, the primary structure of the mRNA was determined. The mRNA contains an open reading frame of 63 amino acids, including the sequence of the elicitor at the carboxyterminus. A time course experiment showed that the avr9 mRNA accumulates in a compatible tomato-C. fulvum interaction in correlation with the increase of fungal biomass. The avr9 gene is a single-copy gene that is absent in fungal races which are virulent on tomato Cf9 genotypes. Possible functions of the avirulence gene are discussed.  相似文献   

5.
6.
The biotrophic fungal pathogen Cladosporium fulvum (syn. Passalora fulva) is the causal agent of tomato leaf mold. The Avr4 protein belongs to a set of effectors that is secreted by C. fulvum during infection and is thought to play a role in pathogen virulence. Previous studies have shown that Avr4 binds to chitin present in fungal cell walls and that, through this binding, Avr4 can protect these cell walls against hydrolysis by plant chitinases. In this study, we demonstrate that Avr4 expression in Arabidopsis results in increased virulence of several fungal pathogens with exposed chitin in their cell walls, whereas the virulence of a bacterium and an oomycete remained unaltered. Heterologous expression of Avr4 in tomato increased the virulence of Fusarium oxysporum f. sp. lycopersici. Through tomato GeneChip analyses, we demonstrate that Avr4 expression in tomato results in the induced expression of only a few genes. Finally, we demonstrate that silencing of the Avr4 gene in C. fulvum decreases its virulence on tomato. This is the first report on the intrinsic function of a fungal avirulence protein that has a counter-defensive activity required for full virulence of the pathogen.  相似文献   

7.
Three constructs were used to study the expression of the avirulence gene Avr9 from the fungal tomato pathogen Cladosporium fulvum in plants. They include pAVIR1, pAVIR2 and pAVIR21, encoding the wild-type AVR9 protein and two hybrid AVR9 proteins containing the signal sequences of the pathogenesis-related proteins PR-S and PR-1a, respectively. Transgenic tobacco plants obtained with the three constructs showed a normal phenotype and produced AVR9 elicitor with the same specific necrosis-inducing activity as the wild-type AVR9 elicitor produced in planta by isolates of C. fulvum containing the Avr9 gene. Level of expression was not correlated with number of T-DNA integrations, but plants homozygous for the Avr9 gene produced more elicitor protein than heterozygous plants. The amino acid sequence of the processed AVR9 peptide present in apoplastic fluid (AF) of pAVIR1 transformed plants producing the wild-type AVR9 elicitor was identical to that of the wild-type AVR9 peptide isolated from C. fulvum-infected tomato leaves. Transgenic Cf0 genotypes of tomato, obtained by transformation with construct pAVIR21, showed a normal phenotype. However, transgenic F1 plants expressing the Avr9 gene, obtained from crossing transgenic Cf0 genotypes with wild-type Cf9 genotypes, showed delayed growth, necrosis and complete plant death indicating that the AVR9 peptide produced in plants carrying the Cf9 gene is deleterious. The necrotic defence response observed in Cf9 genotypes expressing the Avr9 gene support the potential to apply avirulence genes in molecular resistance breeding.  相似文献   

8.
The gene-for-gene model postulates that for every gene determining resistance in the host plant, there is a corresponding gene conditioning avirulence in the pathogen. On the basis of this relationship, products of resistance (R) genes and matching avirulence (Avr) genes are predicted to interact. Here, we report on binding studies between the R gene product Cf-9 of tomato and the Avr gene product AVR9 of the pathogenic fungus Cladosporium fulvum. Because a high-affinity binding site (HABS) for AVR9 is present in tomato lines, with or without the Cf-9 resistance gene, as well as in other solanaceous plants, the Cf-9 protein was produced in COS and insect cells in order to perform binding studies in the absence of the HABS. Binding studies with radio-labeled AVR9 were performed with Cf-9-producing COS and insect cells and with membrane preparations of such cells. Furthermore, the Cf-9 gene was introduced in tobacco, which is known to be able to produce a functional Cf-9 protein. Binding of AVR9 to Cf-9 protein produced in tobacco was studied employing surface plasmon resonance and surface-enhanced laser desorption and ionization. Specific binding between Cf-9 and AVR9 was not detected with any of the procedures. The implications of this observation are discussed.  相似文献   

9.
Catalases of pathogenic micro-organisms have attracted attention as potential virulence factors. Homology-based screens were performed to identify catalase genes in the fungal tomato pathogen Cladosporium fulvum. Two highly divergent genes, Cat1 and Cat2, were isolated and characterized. Cat1 codes for a putative 566-amino-acid catalase subunit and belongs to the gene family that also encodes the mainly peroxisome-localized catalases of animal and yeast species. Cat2 codes for a putative catalase subunit of 745 amino acids and belongs to a different gene family coding for the large-subunit catalases similar to ones found in bacteria and filamentous fungi. Neither catalase had an obvious secretory signal sequence. A search for an extracellular catalase was unproductive. The Cat1 and Cat2 genes showed differential expression, with the Cat1 mRNA preferentially accumulating in spores and the Cat2 mRNA preferentially accumulating in response to external H(2)O(2). With Cat2-deleted strains, activity of the Cat2 gene product (CAT2) was identified among four proteins with catalase activity separated on non-denaturing gels. The CAT2 activity represented a minor fraction of the catalase activity in spores and H(2)O(2)-stressed mycelium, and no phenotype was observed for Cat2-deleted strains, which showed a normal response to H(2)O(2) treatment. These results indicate the existence of a complex catalase system in C. fulvum, with regard to both the structure and regulation of the genes involved. In addition, efficient C. fulvum gene-replacement technology has been established.  相似文献   

10.
11.
Disease resistance in plants is commonly activated by the product of an avirulence (Avr) gene of a pathogen after interaction with the product of a matching resistance (R) gene in the host. In susceptible plants, Avr products might function as virulence or pathogenicity factors. The AVR9 elicitor from the fungus Cladosporium fulvum induces defense responses in tomato plants carrying the Cf-9 resistance gene. This 28-residue beta-sheet AVR9 peptide contains three disulfide bridges, which were identified in this study as Cys2-Cys16, Cys6-Cys19, and Cys12-Cys26. For this purpose, AVR9 was partially reduced, and the thiol groups of newly formed cysteines were modified to prevent reactions with disulfides. After HPLC purification, the partially reduced peptides were sequenced to determine the positions of the modified cysteines, which originated from the reduced disulfide bridge(s). All steps involving molecules with free thiol groups were performed at low pH to suppress disulfide scrambling. For that reason, cysteine modification by N-ethylmaleimide was preferred over modification by iodoacetamide. Upon (partial) reduction of native AVR9, the Cys2-Cys16 bridge opened selectively. The resulting molecule was further reduced to two one-bridge intermediates, which were subsequently completely reduced. The (partially) reduced cysteine-modified AVR9 species showed little or no necrosis-inducing activity, demonstrating the importance of the disulfide bridges for biological activity. Based on peptide length and cysteine spacing, it was previously suggested that AVR9 isa cystine-knotted peptide. Now, we have proven that the bridging pattern of AVR9 is indeed identical to that of cystine-knotted peptides. Moreover, NMR data obtained for AVR9 show that it is structurally closely related to the cystine-knotted carboxypeptidase inhibitor. However, AVR9 does not show any carboxypeptidase inhibiting activity, indicating that the cystine-knot fold is a commonly occurring motif with varying biological functions.  相似文献   

12.
The interaction between the biotrophic fungal pathogen Cladosporium fulvum and tomato complies with the genefor-gene model. Resistance, expressed as a hypersensitive response (HR) followed by other defence responses, is based on recognition of products of avirulence genes from C. fulvum (race-specific elicitors) by receptors (putative products of resistance genes) in the host plant tomato. The AVR9 elicitor is a 28 amino acid (aa) peptide and the AVR4 elicitor a 106 aa peptide which both induce HR in tomato plants carrying the complementary resistance genes Cf9 and Cf4, respectively. The 3-D structure of the AVR9 peptide, as determined by 1H NMR, revealed that AVR9 belongs to a family of peptides with a cystine knot motif. This motif occurs in channel blockers, peptidase inhibitors and growth factors. The Cf9 resistance gene encodes a membrane-anchored extracellular glycoprotein which contains leucine-rich repeats (LRRs). 125I labeled AVR9 peptide shows the same affinity for plasma membranes of Cf9+ and Cf9- tomato leaves. Membranes of solanaceous plants tested so far all contain homologs of the Cf9 gene and show similar affinities for AVR9. It is assumed that for induction of HR, at least two plant proteins (presumably CF9 and one of his homologs) interact directly or indirectly with the AVR9 peptide which possibly initiates modulation and dimerisation of the receptor, and activation of various other proteins involved in downstream events eventually leading to HR. We have created several mutants of the Avr9 gene, expressed them in the potato virus X (PVX) expression system and tested their biological activity on Cf9 genotypes of tomato. A positive correlation was observed between the biological activity of the mutant AVR9 peptides and their affinity for tomato plasma membranes. Recent results on structure and biological activity of AVR4 peptides encoded by avirulent and virulent alleles of the Avr4 gene (based on expression studies in PVX) are also discussed as well as early defence responses induced by elicitors in tomato leaves and tomato cell suspensions.  相似文献   

13.
14.
15.
The Aspergillus nidulans yA gene is regulated by abaA.   总被引:4,自引:1,他引:4       下载免费PDF全文
  相似文献   

16.
17.
18.
Two mating-type genes, designated MAT1-1-1 and MAT1-2-1, were cloned and sequenced from the presumed asexual ascomycete Cladosporium fulvum (syn. Passalora fulva). The encoded products are highly homologous to mating-type proteins from members of the Mycosphaerellaceae, such as Mycosphaerella graminicola and Cercospora beticola. In addition, the two MAT idiomorphs of C. fulvum showed regions of homology and each contained one additional putative ORF without significant similarity to known sequences. The distribution of the two mating-type genes in a world-wide collection of 86 C. fulvum strains showed a departure from a 1:1 ratio (chi(2)=4.81, df=1). AFLP analysis revealed a high level of genotypic diversity, while strains of the fungus were identified with similar virulence spectra but distinct AFLP patterns and opposite mating-types. These features could suggest the occurrence of recombination in C. fulvum.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号