首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In the presence of guanyl nucleotides and rhodopsin-containing retinal rod outer segment membranes, transducin stimulates the light-sensitive cyclic nucleotide phosphodiesterase 5.5-7 times. The activation constant (Ka) for GTP and Gpp(NH)p is 0.25 microM, that for GDP and GDP beta S is 14 and 110 microM, respectively. GDP purified from other nucleotide contaminations at concentrations up to 1 mM does not stimulate phosphodiesterase but binds to transducin and inhibits the Gpp(NH)p-dependent activation of phosphodiesterase. The mode of transducin interaction with bleached rhodopsin also depends on the nature of the bound guanyl nucleotide: in the presence of GDP rhodopsin-containing membranes bind 70-100% of transducin, whereas in the presence of Gpp(NH)p the membranes bind only 13% of the protein. The experimental results suggest that GDP and GTP convert transducin into two different functional states, i.e., the transducin X GTP complex binds to phosphodiesterase causing its stimulation, while the transducin X GDP complex is predominantly bound to rhodopsin.  相似文献   

2.
The exchange-inert Cr(III) beta, gamma-bidentate guanine nucleotide complexes Cr(III)GTP and Cr(III)Gpp(NH)p were used to probe the role of transducin in activating the retinal cGMP cascade. The Cr(III) nucleotide complexes were found to have lower binding affinity for transducin as compared to the Mg2+ complexes. However, the rate of hydrolysis of the transducin-bound Cr(III)GTP was similar to that of Mg(II)GTP. Cr(III)Gpp(NH)p activated the cGMP phosphodiesterase of photolyzed rod outer segment membranes up to 75% of the Mg(II)Gpp(NH)p level but lacked the ability to dissociated the transducin subunits from the rod outer segment membrane. This result implies that the activation of the phosphodiesterase by transducin-GTP complex is a membrane-associated event and the formation of a soluble complex of transducin-GTP with the inhibitory peptide of the phosphodiesterase may not be an obligatory step. Both the delta and lambda screw sense stereoisomers of Cr(III)Gpp(NH)p were capable of activating the cGMP cascade with no apparent stereoselectivity. The nature of the interaction of the metal ion and GTP at the nucleotide-binding site of transducin is discussed together with the results from previous studies using the phosphorothioate GTP analogues [Yamanaka, G., Eckstein, F., & Stryer, L. (1985) Biochemistry 24, 8094-8101] and is compared to the site found in homologous GTP-binding proteins such as elongation factor Tu [Jurnak, F. (1985) Science (Washington, D.C.) 230, 32-36; la Cour, T.F.M., Nyborg, J., Thirup, S., & Clark, B.F.C. (1985) EMBO J. 4, 2385-2388]. The implications of the observed results on the molecular mechanism of visual signal transduction are discussed.  相似文献   

3.
Thyrotropin-releasing hormone (TRH) stimulated a rapid rise in inositol trisphosphate (IP3) formation and prolactin release from 7315c tumor cells. The potencies (half-maximal) of TRH in stimulating IP3 formation and prolactin release were 100 +/- 30 and 140 +/- 30 mM, respectively. Pretreatment of the cells with pertussis toxin (for up to 24 h) had no effect on either process. Pretreatment of the cells with cholera toxin (30 nM for 24 h) also failed to affect basal or TRH-stimulated IP3 formation. TRH was also able to stimulate IP3 formation with a half-maximal potency of 118 +/- 10 nM in a lysed cell preparation of 7315c cells; the TRH-stimulated formation of IP3 was enhanced by GTP. 5'-Guanosine gamma-thiotriphosphate (GTP gamma S) and 5'-guanylyl imidodiphosphate (Gpp(NH)p), nonhydrolyzable analogs of GTP, stimulated IP3 formation in the absence of TRH with half-maximal potencies of 162 +/- 50 and 7500 +/- 4300 nM, respectively. In contrast to the lack of effect of pertussis toxin on the TRH receptor system, treatment of 7315c cells with pertussis toxin for 3 h or longer completely abolished the ability of morphine, an opiate agonist, to inhibit either adenylate cyclase activity or prolactin release. During this 3-h treatment, pertussis toxin was estimated to induce the endogenous ADP ribosylation of more than 70% of Ni, the inhibitory GTP-binding protein. GTP gamma S and Gpp(NH)p inhibited cholera toxin-stimulated adenylate cyclase activity (presumably by acting at Ni) with half-maximal potencies of 25 +/- 9 and 240 +/- 87 nM, respectively. Finally, Gpp(NH)p was also able to inhibit the [32P]ADP ribosylation of Ni with a half-maximal potency of 300 nM. These results suggest that a novel GTP-binding protein, distinct from Ni, couples the TRH receptor to the formation of IP3.  相似文献   

4.
The properties and functions of the sulfhydryl groups of transducin were examined by 5,5' -dithiobis-(2-nitrobenzoic acid) titration and N-ethylmaleimide modification. The T beta gamma subunit of transducin contained a total of six free sulfhydryl groups and two were reactive under native conditions. Both reactive sulfhydryl groups were located in the beta polypeptide. The functions of transducin were not affected by the modification of these two sulfhydryl groups. The T alpha subunit of transducin contained three accessible sulfhydryl groups under both native and denaturing conditions. When 1.3 sulfhydryl groups were covalently modified by N-ethylmaleimide, the GTPase activity, the guanosine 5' -(beta, gamma-imido)triphosphate (Gpp(NH)p) uptake, and the rhodopsin-binding property of transducin were inhibited. The binding of Gpp(NH)p to T alpha blocked two of the three sulfhydryl groups from chemical modification and increased the reactivity of the remaining one. Modification of this specific sulfhydryl group of T alpha -Gpp(NH)p inhibited the exchange of the bound Gpp(NH)p for GTP. However, the modified T alpha-Gpp(NH)p was able to activate cGMP phosphodiesterase in solution and on positively charged liposomes. These findings demonstrated that a conformational change of T alpha occurs upon the binding of Gpp(NH)p and a specific sulfhydryl group of T alpha plays an important role in the activation of transducin in retinal rod outer segments.  相似文献   

5.
ADP-ribosylation of transducin by pertussis toxin   总被引:8,自引:0,他引:8  
Transducin, the guanyl nucleotide-binding regulatory protein of retinal rod outer segments that couples the photon receptor, rhodopsin, with the light-activated cGMP phosphodiesterase, can be resolved into two functional components, T alpha and T beta gamma. T alpha (39 kDa), which is [32P]ADP-ribosylated by pertussis toxin and [32P]NAD in rod outer segments and in purified transducin, was also labeled by the toxin after separation from T beta gamma (36 kDa and approximately 10 kDa); neither component of T beta gamma was a pertussis toxin substrate. Labeling of T alpha was enhanced by T beta gamma and was maximal at approximately 1:1 molar ratio of T alpha : T beta gamma. Limited proteolysis by trypsin of T alpha in the presence of guanyl-5'-yl imidodiphosphate (Gpp(NH)p) resulted in the sequential appearance of proteins of 38 and 32 kDa. The amino terminus of both 38- and 32-kDa proteins was leucine, whereas that of T alpha could not be identified and was assumed to be blocked. The 32-kDa peptide was not a pertussis toxin substrate. Labeling of the 38-kDa protein was poor and was not enhanced by T beta gamma. Trypsin treatment of [32P]ADP-ribosyl-T alpha produced a labeled 37-38-kDa doublet followed by appearance of radioactivity at the dye front. It appears, therefore, that, although the 38-kDa protein was poor toxin substrate, it contained the ADP-ribosylation site. Without rhodopsin, labeling of T alpha (in the presence of T beta gamma) was unaffected by Gpp(NH)p, guanosine 5'-O-(thiotriphosphate) (GTP gamma S), GTP, GDP, and guanosine 5'-O-(thiodiphosphate) (GDP beta S) but was increased by ATP. When photolyzed rhodopsin and T beta gamma were present, Gpp(NH)p and GTP gamma S decreased [32P]ADP-ribosylation by pertussis toxin. Thus, pertussis toxin-catalyzed [32P]ADP-ribosylation of T alpha was affected by nucleotides, rhodopsin and light in addition to T beta gamma. The amino terminus of T alpha, while it does not contain the pertussis toxin ADP-ribosylation site, appeared critical to its reactivity.  相似文献   

6.
Transducin, a guanine nucleotide-binding protein consisting of two subunits (T alpha and T beta gamma), mediates the signal coupling between rhodopsin and a membrane-bound cyclic GMP phosphodiesterase in retinal rod outer segments. The T alpha subunit is an activator of the phosphodiesterase, and the function of the T beta gamma subunit is to physically link T alpha with photolyzed rhodopsin. In this study, the mechanism of cholera toxin-catalyzed ADP-ribosylation of T alpha has been examined in a reconstituted system consisting of purified transducin and stripped rod outer segment membranes. Limited proteolysis of the labeled T alpha with trypsin indicated that the inserted ADP-ribose is located exclusively on a single proteolytic fragment with an apparent molecular weight of 23,000. Maximal incorporation of ADP-ribose was achieved when guanosine 5'-(beta, gamma-imido)triphosphate (Gpp(NH)p) and T beta gamma were present at concentrations equal to that of T alpha and when rhodopsin was continuously irradiated with visible light in the 400-500 nm region. The stimulating effect of illumination was related to the direct interaction of the retinal chromophore with opsin. These findings strongly suggest that a transient protein complex consisting of T alpha X Gpp(NH)p, T beta gamma, and a photointermediate of rhodopsin is the required substrate for cholera toxin. Single turnover kinetic measurements demonstrated that the ADP-ribosylation of T alpha coincided with the appearance of a population of transducin molecules having a very slow rate of GTP hydrolysis. The hydrolysis rate of the bound GTP for this population was 1.1 X 10(-3)/s, which was 22-fold slower than the rate for the unmodified transducin.  相似文献   

7.
Nicotinamide 1,N6-ethenoadenine dinucleotide (etheno-NAD, epsilon-NAD), a fluorescent analogue of NAD, was able to serve as a substrate for the bacterial toxin-catalyzed epsilon-ADP ribosylation of signal-transducing G-proteins. Pertussis toxin and transducin were used as a model system to characterize this reaction. Similar to ADP ribosylation using NAD as substrate, the epsilon-ADP ribosylation occurs at the carboxyl-terminal 5-kDa tryptic fragment of the T alpha subunit of transducin with the same labeling stoichiometry; however, the rate of labeling is slightly slower. epsilon-NAD competes with NAD as a substrate which suggests that the epsilon-ADP ribosylation occurs at Cys-347 of the T alpha subunit. The biochemical effects of epsilon-ADP ribosylation on transducin are similar to those of ADP ribosylation and include inhibition of the GTPase and [3H]Gpp(NH)p-binding activities. The epsilon-ADP-ribosylated transducin exhibits a fluorescent spectrum which resembles that of epsilon-ADP with an excitation maximum at 292 nm and an emission maximum of 413 nm. Removal of the amino-terminal peptide of epsilon-ADP-ribosylated T alpha with either Staphylococcus aureus V8 protease or trypsin results in a decrease in the emission intensity. This result suggests that the amino- and carboxyl-terminal peptides of the T alpha molecule may interact with each other as suggested previously (Hingorani, V. N., and Ho, Y.-K. (1987) FEBS Lett. 220, 15-22). epsilon-NAD should prove to be a useful fluorescent substrate for future studies of the ADP ribosylation reaction in biological systems.  相似文献   

8.
V N Hingorani  Y Ho 《Biochemistry》1987,26(6):1633-1639
Fluorescein 5'-isothiocyanate (FITC) was used to modify the lysine residues of bovine transducin (T), a GTP-binding protein involved in phototransduction of rod photoreceptor cells. The incorporation of FITC showed a stoichiometry of approximately 1 mol of FITC/mol of transducin. The labeling was specific for the T alpha subunit. There was no significant incorporation on the T beta gamma subunit. The modification had no effect on the transducin-rhodopsin interaction or on the binding of guanosine 5'-(beta, gamma-imidotriphosphate) [Gpp(NH)p] to transducin in the presence of photolyzed rhodopsin. The dissociation of the FITC-transducin-Gpp(NH)p complex from rhodopsin membrane remained unchanged. However, the intrinsic GTPase activity of T alpha and its ability to activate the cGMP phosphodiesterase were diminished by FITC modification. The rate of FITC labeling of the transducin-Gpp(NH)p complex was about 3-fold slower than that of transducin. Limited tryptic digestion and peptide mapping were used to localize the FITC labeling site. The majority of the FITC label was on the 23-kilodalton fragment, and a minor amount was on the 9-kilodalton fragment of the T alpha subunit. These results indicate that FITC labeling does not alter the activation of transducin by photolyzed rhodopsin but does affect the GTP hydrolytic activity as well as the GTP-induced conformational change of T alpha, which ultimately leads to the activation of cGMP phosphodiesterase.  相似文献   

9.
We studied the consequences of infection of L6E9 myoblasts with T. cruzi on the adenylate cyclase complex to test the hypothesis that infection alters the functional properties of the guanine nucleotide regulatory proteins, Ns and Ni. Stimulating activities of adenylate cyclase due to isoproterenol, isoproterenol plus Gpp(NH)p, or forskolin (activities mediated by Ns) are not altered by infection. However, inhibitory activities mediated by Ni [Gpp(NH)p, acetylcholine, and adenosine inhibition of forskolin-dependent adenylate cyclase activity] are compromised by infection. The reduction in adenosine's inhibition of forskolin-dependent adenylate cyclase activity is seen throughout the effective concentration range of adenosine. Pertussis toxin does not change basal or stimulated adenylate cyclase activity in infected cells compared with normal uninfected cells, nor does it alter the inhibiting action of adenosine. To evaluate the coupling proteins (Ns and Ni) involved in the stimulation and inhibition of adenylate cyclase more directly, cholera- and pertussis-toxin-dependent ADP ribosylation studies were performed. The incorporation of [32P]ADP ribose in the presence (specific) or absence (nonspecific) of the toxins was markedly decreased in membranes prepared from infected cells. However, in membranes prepared from infected or uninfected cells previously treated with pertussis toxin, there was a significant reduction in specific pertussis-toxin dependent ADP ribosylation. The infection-associated diminution in toxin-dependent ADP ribosylation complements the impaired inhibition of adenylate cyclase data. Collectively, the data further substantiate an infection-associated alteration in the adenylate cyclase complex, probably at the level of the guanine nucleotide binding proteins.  相似文献   

10.
The bacterial toxins, choleragen and pertussis toxin, inhibit the light-stimulated GTPase activity of bovine retinal rod outer segments by catalysing the ADP-ribosylation of the alpha-subunit (T alpha) of transducin [Abood, Hurley, Pappone, Bourne & Stryer (1982) J. Biol. Chem. 257, 10540-10543; Van Dop, Yamanaka, Steinberg, Sekura, Manclark, Stryer & Bourne (1984) J. Biol. Chem. 259, 23-26]. Incubation of retinal rod outer segments with NAD+ and a purified NAD+:arginine ADP-ribosyltransferase from turkey erythrocytes resulted in approx. 60% inhibition of GTPase activity. Inhibition was dependent on both enzyme and NAD+, and was potentiated by the non-hydrolysable GTP analogues guanosine 5'-[beta gamma-imido]triphosphate (p[NH]ppG) and guanosine 5'-[beta gamma-methylene]triphosphate (p[CH2]ppG). The transferase ADP-ribosylated both the T alpha and T beta subunits of purified transducin. T alpha (39 kDa), after ADP-ribosylation, migrated as two distinct peptides with molecular masses of 42 kDa and 46 kDa on SDS/polyacrylamide-gel electrophoresis. T beta (36 kDa), after ADP-ribosylation, migrated as a 38 kDa peptide. With purified transducin subunits, it was observed that the GTPase activity of ADP-ribosylated T alpha, reconstituted with unmodified T beta gamma and photolysed rhodopsin, was decreased by 80%; conversely, reconstitution of T alpha with ADP-ribosyl-T beta gamma resulted in only a 19% inhibition of GTPase. Thus ADP-ribosylation of T alpha, the transducin subunit that contains the guanine nucleotide-binding site, has more dramatic effects on GTPase activity than does modification of the critical 'helper subunits' T beta gamma. To elucidate the mechanism of GTPase inhibition by transferase, we studied the effect of ADP-ribosylation on p[NH]pp[3H]G binding to transducin. It was shown previously that modification of transducin by choleragen, which like transferase ADP-ribosylates arginine residues, did not affect guanine nucleotide binding. ADP-ribosylation by the transferase, however, decreased p[NH]pp[3H]G binding, consistent with the hypothesis that choleragen and transferase inhibit GTPase by different mechanisms.  相似文献   

11.
The first stage of amplification in the cyclic GMP cascade in bovine retinal rod is carried out by transducin, a guanine nucleotide regulatory protein consisting of two functional subunits, T alpha (Mr approximately 39,000) and T beta gamma (Mr approximately 36,000 and approximately 10,000). Limited trypsin digestion of the T beta gamma subunit converted the beta polypeptide to two stable fragments (Mr approximately 26,000 and approximately 14,000). The GTPase and Gpp(NH)p binding activities were not significantly affected by the cleavage. Trypsin digestion of the T alpha subunit initially removed a small segment from the polypeptide terminus and resulted in the formation of a single 38,000-Da fragment. When this fragment was recombined with the intact T beta gamma subunit in the presence of membranes containing photolyzed rhodopsin, the reconstituted transducin exhibited greatly reduced GTPase and Gpp(NH)p binding activities. The loss in activities was due to the inability of the cleaved T alpha to bind to the photolyzed rhodopsin. Prolonged digestion converted the 38,000-Da fragment to a transient 32,000-Da fragment and then to two stable 23,000-Da and 12,000-Da fragments. The cleavage of the 32,000-Da fragment, however, can be blocked by bound Gpp(NH)p. The 32,000-Da fragment contains the Gpp(NH)p binding site and retains the ability to activate phosphodiesterase. These results indicate that the guanine nucleotide binding and rhodopsin binding sites are located in topologically distinct regions of the T alpha subunit and proved evidence that a large conformational transition of the molecule occurs upon the conversion of the bound GDP to GTP.  相似文献   

12.
Pertussis toxin selectively modifies the function of Ni, the inhibitory guanine nucleotide binding protein of the adenylate cyclase complex. In chick heart membranes, guanine nucleotide activation of Ni resulted in a decrease in the apparent affinity of the muscarinic receptor for the agonist oxotremorine, inhibition of basal adenylate cyclase activity, and the attenuation of adenylate cyclase by oxotremorine. Treatment of chicks with pertussis toxin caused the covalent modification of 80-85% of cardiac Ni. After this treatment Gpp(NH)p had no effect on muscarinic receptor affinity and GTP stimulated basal adenylate cyclase activity. In contrast, the GTP-dependent attenuation of adenylate cyclase caused by muscarinic receptors was unaffected.  相似文献   

13.
The rate of GTP hydrolysis in the active site of transducin and that of the release of the phosphate thus formed have been measured. The former step has been found to be a rate-limiting one. The rate constant for GTP hydrolysis is equal to 0.027 s-1 at 23 degrees C, and 0.07 s-1 at 37 degrees C. Besides, it has been shown that the rate of GTPase reaction on the transducin alpha-subunit does not depend on the concentration of a complex of transducin beta- and gamma-subunits or on the presence of cGMP phosphodiesterase and a 48 kDa protein from rod outer segments. According to the results, GTP hydrolysis on transducin proceeds too slowly to account for the rapid quenching of a phosphodiesterase cascade in rod outer segments.  相似文献   

14.
Release of bound [3H]Gpp(NH)p from NG108-15 cell membranes was induced by carbamylcholine, enkephalinamide, and norepinephrine, all of which inhibit adenylate cyclase. Release was blocked by antagonist, was greater with multiple agonists than with one, and required guanyl nucleotides. With membranes from pertussis toxin-treated cells, both total [3H] Gpp(NH)p binding and agonist-induced [3H]Gpp(NH)p release was decreased. ADP-ribosylation by toxin of transducin, the retinal GTP-binding protein which is similar in structure and function to that in cyclase, decreased [3H]Gpp(NH)p binding. Thus, the inability to demonstrate agonist-induced [3H]Gpp(NH)p release from toxin-treated NG108-15 membranes may result in part from absence of bound [3H]Gpp(NH)p.  相似文献   

15.
Y Okada  I Nakanishi 《FEBS letters》1989,250(2):353-356
The role of transducin GTPase in rapid cGMP phosphodiesterase quenching was studied by simultaneous registration of GTP hydrolysis and phosphodiesterase activity in the same rod outer segments (ROS) preparation. The results thus obtained allow the conclusion that: (i) phosphodiesterase quenching coincides with transducin-bound GTP hydrolysis independently of ROS concentration; (ii) an increase in the ROS concentration results in the acceleration of cascade quenching due to the existence of a GTPase accelerating mechanism in ROS; (iii) approximation to physiological conditions (protein concentration, temperature) provides a transducin GTPase rate equal to 1–2 turnovers per second i.e., sufficiently high for satisfying the real rate of photoresponse reversion in dark-adapted rods.  相似文献   

16.
Both the light-stimulated cGMP phosphodiesterase of retinal rod outer segments (ROS) and hormone-stimulated adenylate cyclase are regulated by guanine nucleotide-binding regulatory proteins (N). Transducin serves as the signal-carrying regulatory protein in ROS, and the N protein (also called G or G/F) performs this role in the adenylate cyclase system. The GTP form of these regulatory proteins activates the corresponding enzyme, whereas the GDP form does not. Both transducin and the N protein possess a GTPase activity that restores the regulatory protein to the unstimulated state. Cholera enterotoxin catalyzes the transfer of ADP-ribose from NAD+ to the N protein, which inhibits its GTPase activity and activates adenylate cyclase. We report here that the toxin also catalyzes ADP-ribosylation of the alpha-subunit of transducin in ROS membranes. This modification of the guanine nucleotide-binding subunit of transducin is markedly enhanced by the bleaching of rhodopsin and by the addition of guanosine-5'-(beta, gamma-imino)triphosphate. In contrast, GDP, GTP, and guanosine-5'-(3-O)thiotriphosphate inhibit the reaction, while GMP and ATP have no effect. Under optimal conditions, toxin catalyzes labeling of 0.7 mol of the alpha-subunit of transducin/mol of bound [3H]guanosine-5'-(beta, gamma-imido)triphosphate and causes 70% inhibition of the light-dependent GTPase activity of transducin in ROS. These results indicate close functional homology between transducin of ROS and the N protein of adenylate cyclase.  相似文献   

17.
1. Some of the actions of pertussis toxin on the rabbit luteal adenylyl cyclase system were analyzed. 2. Incubation of luteal membranes with pertussis toxin and [32P]NAD resulted in the [32P]ADP-ribosylation of a 40,000 Da protein that is distinct from the proteins ADP-ribosylated by cholera toxin. 3. Pertussis toxin specific [32P]ADP-ribosylation was time-dependent and dependent upon the concentration of pertussis toxin present during the incubation. 4. Pertussis toxin mediated [32P]ADP-ribosylation was enhanced by ATP, ADP, adenylyl imidodiphosphate, GTP, guanosine-5'-O-(2-thiodiphosphate), guanosine-5'-O-(3-thiotriphosphate), and NaF but not AMP or guanylyl imidodiphosphate [GMP-P(NH)P]. 5. Treatment of luteal membranes with NAD and pertussis toxin prevents GTP and enkephalin but not GMP-P(NH)P mediated inhibition of forskolin stimulated adenylyl cyclase, demonstrating the existence of a functional Gi in the rabbit corpus luteum.  相似文献   

18.
Insulin inhibited the ability of activated pertussis toxin to catalyse the ADP-ribosylation of alpha-Gi in isolated plasma membranes in either the absence of added guanine nucleotides or in the presence of GTP. In contrast, when the non-hydrolysable GTP analogue guanylyl-5'-imido-diphosphate (p[NH]ppG) was added to ribosylation mixtures, to inhibit the action of pertussis toxin in catalysing the ADP-ribosylation of alpha-Gi, then the addition of insulin attenuated the action of p[NH]ppG causing an increase in alpha-Gi ribosylation. Pre treatment of intact hepatocytes with insulin had no effect on the subsequent ability of thiol-preactivated pertussis toxin to cause the ADP-ribosylation of alpha Gi using isolated membranes from such cells. The ability of p[NH]ppG to inhibit forskolin-stimulated adenylate cyclase activity was attenuated in the presence of insulin. Insulin did not cause the phosphorylation of alpha-Gi in either intact hepatocytes or in isolated membranes.  相似文献   

19.
Tubulin, the primary constituent of microtubules, is a GTP-binding proteins with structural similarities to other GTP-binding proteins. Whereas microtubules have been implicated as modulators of the adenylate cyclase system, the mechanism of this regulation has been elusive. Tubulin, polymerized with the hydrolysis-resistant GTP analog, 5'-guanylylimidodiphosphate [Gpp(NH)p], can promote inhibition of synaptic membrane adenylate cyclase which persists subsequent to washing. Tubulin with Gpp(NH)p bound was slightly less potent than free Gpp(NH)p in the inhibition of adenylate cyclase, but tubulin without nucleotide bound had no effect on the enzyme. A GTP-binding protein from the rod outer segment (transducin), with Gpp(NH)p bound, was also without effect on adenylate cyclase. Tubulin (regardless of the nucleotide bound to it) did not alter the activity of the adenylate cyclase catalytic unit directly. When tubulin was polymerized with the hydrolysis-resistant photoaffinity GTP analog, [32P]P3(4-azidoanilido)-P1-5'-GTP ([32P]AAGTP), and this protein was added to synaptic membranes, AAGTP was transferred from tubulin to the inhibitory GTP-binding protein, Gi. This transfer was blocked by prior incubation of the membranes with Gpp(NH)p or covalent binding of AAGTP to tubulin prior to exposure of that tubulin to membranes. Incubation of membranes with Gpp(NH)p subsequent to incubation with tubulin-AAGTP results in a decrease in AAGTP bound to Gi and a compensatory increase in AAGTP bound to the stimulatory GTP-binding protein, Gs. Likewise, persistent inhibition of adenylate cyclase by tubulin-Gpp(NH)p could be overridden by the inclusion of 100 microM Gpp(NH)p in the assay inhibition. Whereas Gpp(NH)p promotes persistent inhibition of synaptic membrane adenylate cyclase without incubation at elevated temperatures, tubulin [with AAGTP or Gpp(NH)p bound] requires 30 s incubation at 23 degrees C to effect adenylate cyclase inhibition. Photoaffinity experiments yield parallel results. These data are consistent with synaptic membrane tubulin regulating neuronal adenylate cyclase by transferring GTP to Gi and, subsequently, to Gs.  相似文献   

20.
Pertussis toxin inhibits enkephalin stimulation of GTPase of NG108-15 cells   总被引:22,自引:0,他引:22  
In neuroblastoma-glioma (NG108-15) hybrid cells, opiates inhibit adenylate cyclase and stimulate a low Km GTPase. It has been postulated that the stimulation of GTPase plays a role in opiate inhibition of adenylate cyclase (Koski, G., and Klee, W. A. (1981) Proc. Natl. Acad. Sci. U.S.A. 78, 4185-4189). Treatment of NG108-15 cells with pertussis toxin attenuates receptor-mediated inhibition of adenylate cyclase. The toxin acts by catalyzing the ADP-ribosylation of a 41,000-dalton substrate believed to be a part of the receptor-adenylate cyclase complex. We have found that toxin treatment of NG108-15 results in inhibition of the opiate-stimulated GTPase. The concentration of toxin required for inhibition of this GTPase was similar to that needed for both attenuation of opiate inhibition of adenylate cyclase and ADP ribosylation of the 41,000-dalton substrate. Inhibition of the opiate-induced GTPase by pertussis toxin in isolated membranes required NAD, consistent with the hypothesis that this effect of the toxin resulted from ADP ribosylation of a protein component of the system. Since the opiate-stimulated GTPase is believed to play a role in the receptor-mediated decrease in adenylate cyclase activity, inhibition of this GTPase may be an important part of the mechanism by which the toxin interferes with opiate action on adenylate cyclase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号