首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
tRNAPheE.coli was modified at accessible guanosine, cytidine, and adenosine residues using the chemical modification method described by Peattie and Gilbert [Proc. Natl Acad. Sci. USA, 77, 4679-4689 (1980)]. Modification characteristics of the tRNA in the free state, in the ternary complex with elongation factor EF-Tu and GTP and in the ribosomal A and P sites were compared. A special procedure was devised to monitor, exclusively, tRNA molecules in the aminoacylated state. In the free tRNA, the most reactive bases are confined to the A73-C-C-A sequence of the aminoacyl stem, the anticodon loop, the D-loop and the extra loop and the results correlate well with the three-dimensional structure of tRNAPheyeast determined by X-ray studies. The pattern of reactivity was not affected either by charging the tRNA with phenylalanine or by labelling the 3' terminus with pCp. In the ternary complex, with elongation factor EF-Tu and GTP, changes in modification were observed at two sites, A73-C-C-A at the 3' terminus and C-13 and C-17 in the D-loop region, which are about 6 nm apart; no difference was observed in the anticodon loop. tRNAPhe bound at the ribosomal A or P sites exhibited similar, but not identical, modification patterns. Whereas nucleotides C-74 and C-75 were strongly protected at both sites, the adjacent A-73 showed an enhanced reactivity in the A site. The anticodon region G34-A-A-ms2.6(1)A was also strongly protected at both sites. In addition, nucleotide A-21 was protected during A-site, but not P-site, binding.  相似文献   

2.
Chemical modification study of aminoacyl-tRNA conformation.   总被引:1,自引:1,他引:0       下载免费PDF全文
Chemical reactivity of cytosines in 32P-labeled E. coli tRNA1Leu, E. coli tRNAPhe and yeast tRNAPhe before and after aminoacylation was examined by use of a cytosine-specific reagent, semicarbazide-bisulfite mixture. In all the three tRNA species examined, the cytosine residues that were susceptible to the modification were the same in the aminoacylated tRNA and the unacylated tRNA. Only a limited number of the cytosine residues were modifiable: those that occur in the anticodon, the 3'-CCA terminus, the D-loop, and the extra loop. The sites accessible by the reagent are in good agreement with the general three-dimensional structure of tRNA proposed in literature. These results indicate that the gross conformation of these tRNAs does not change on aminoacylation, and consequently favor the view that the T psi C(G) sequence could become exposed in later steps of protein synthesis in order to achieve the binding of aminoacyl tRNA to ribosomes.  相似文献   

3.
It has recently been shown that the non-formylated initiator Met-tRNAfMet from E. coli can form a stable ternary complex with the elongation factor EF-Tu and GTP. Using the protection of EF-Tu:GTP against spontaneous hydrolysis of the aminoacylester bond of Met-tRNAfMet, we confirm these results, and show that the protection is specific for the non-formylated form of the initiator tRNA. The ternary complex Met-tRNAfMet:EF-Tu:GTP can be isolated by column chromatography in a way similar to that demonstrated previously with EF-Tu complexed to the elongator Met-tRNAmMet. 32P-labeled Met-tRNAfMet within the ternary complex was analyzed by the footprinting technique. The pattern of initiator tRNA protection by EF-Tu against ribonuclease digestion is not significantly different from the one found previously for elongator tRNAs. These results lead us to suggest that the initiator tRNAfMet, under growth conditions which do not permit formylation, may to some extent function as an elongator tRNA.  相似文献   

4.
J C Liu  M Liu    J Horowitz 《RNA (New York, N.Y.)》1998,4(6):639-646
Escherichia coli tRNA(Val) with pyrimidine substitutions for the universally conserved 3'-terminal adenine can be readily aminoacylated. It cannot, however, transfer valine into polypeptides. Conversely, despite being a poor substrate for valyl-tRNA synthetase, tRNA(Val) with a 3'-terminal guanine is active in in vitro polypeptide synthesis. To better understand the function of the 3'-CCA sequence of tRNA in protein synthesis, the effects of systematically varying all three bases on formation of the Val-tRNA(Val):EF-Tu:GTP ternary complex were investigated. Substitutions at C74 and C75 have no significant effect, but replacing A76 with pyrimidines decreases the affinity of valyl-tRNA(Val) for EF-Tu:GTP, thus explaining the inability of these tRNA(Val) variants to function in polypeptide synthesis. Valyl-tRNA(Val) terminating in 3'-guanine is readily recognized by EF-TU:GTP. Dissociation constants of the EF-Tu:GTP ternary complexes with valine tRNAs having nucleotide substitutions at the 3' end increase in the order adenine < guanine < uracil; EF-Tu has very little affinity for tRNA terminating in 3' cytosine. Similar observations were made in studies of the interaction of 3' end mutants of E. coli tRNA(Ala) and tRNA(Phe) with EF-Tu:GTP. These results indicate that EF-Tu:GTP preferentially recognizes purines and discriminates against pyrimidines, especially cytosine, at the 3' end of aminoacyl-tRNAs.  相似文献   

5.
BACKGROUND:. The translation elongation factor EF-Tu in its GTP-bound state forms a ternary complex with any aminoacylated tRNA (aa-tRNA), except initiator tRNA and selenocysteinyl-tRNA. This complex delivers aa-tRNA to the ribosomal A site during the elongation cycle of translation. The crystal structure of the yeast Phe-tRNAPhe ternary complex with Thermus aquaticus EF-Tu-GDPNP (Phe-TC) has previously been determined as one representative of this general yet highly discriminating complex formation. RESULTS: The ternary complex of Escherichia coli Cys-tRNACys and T. aquaticus EF-Tu-GDPNP (Cys-TC) has been solved and refined at 2.6 degrees resolution. Conserved and variable features of the aa-tRNA recognition and binding by EF-Tu-GTP have been revealed by comparison with the Phe-TC structure. New tertiary interactions are observed in the tRNACys structure. A 'kissing complex' is observed in the very close crystal packing arrangement. CONCLUSIONS: The recognition of Cys-tRNACys by EF-Tu-GDPNP is restricted to the aa-tRNA motif previously identified in Phe-TC and consists of the aminoacylated 3' end, the phosphorylated 5' end and one side of the acceptor stem and T stem. The aminoacyl bond is recognized somewhat differently, yet by the same primary motif in EF-Tu, which suggests that EF-Tu adapts to subtle variations in this moiety among all aa-tRNAs. New tertiary interactions revealed by the Cys-tRNACys structure, such as a protonated C16:C59 pyrimidine pair, a G15:G48 'Levitt pair' and an s4U8:A14:A46 base triple add to the generic understanding of tRNA structure from sequence. The structure of the 'kissing complex' shows a quasicontinuous helix with a distinct shape determined by the number of base pairs.  相似文献   

6.
Hunter SE  Spremulli LL 《Biochemistry》2004,43(22):6917-6927
Elongation factor Tu (EF-Tu) is responsible for the delivery of the aminoacyl-tRNAs (aa-tRNA) to the ribosome during protein synthesis. The primary sequence of domain II of EF-Tu is highly conserved. However, several residues thought to be important for aa-tRNA binding in this domain are not conserved between the mammalian mitochondrial and bacterial factors. One of these residues is located at position 290 (Escherichia coli numbering). Residue 290 is Gln in most of the prokaryotic factors but is conserved as Leu (L338) in the mammalian mitochondrial factors. This residue is in a loop contacting the switch II region of domain I in the GTP-bound structure. It also helps to form the binding pocket for the 5' end of the aa-tRNA in the ternary complex. In the present work, Leu338 was mutated to Gln (L338Q) in EF-Tu(mt). The complementary mutation was created at the equivalent position in E. coli EF-Tu (Q290L). EF-Tu(mt) L338Q functions as effectively as wild-type EF-Tu(mt) in poly(U)-directed polymerization with both prokaryotic and mitochondrial substrates and in ternary complex formation assays with E. coli aa-tRNA. However, the L338Q mitochondrial variant has a reduced affinity for mitochondrial Phe-tRNA(Phe). E. coli EF-Tu Q290L is more active in poly(U)-directed polymerization with both mitochondrial and prokaryotic substrates and has a higher GTPase activity in both the absence and presence of ribosomes. Surprisingly, while E. coli EF-Tu Q290L is more active in polymerization with mitochondrial Phe-tRNA(Phe), this variant has low activity in the formation of a stable ternary complex with mitochondrial aa-tRNA.  相似文献   

7.
Initiator tRNAs are used exclusively for initiation of protein synthesis and not for elongation. We show that both Escherichia coli and eukaryotic initiator tRNAs have negative determinants, at the same positions, that block their activity in elongation. The primary negative determinant in E. coli initiator tRNA is the C1xA72 mismatch at the end of the acceptor stem. The primary negative determinant in eukaryotic initiator tRNAs is located in the TPsiC stem, whereas a secondary negative determinant is the A1:U72 base pair at the end of the acceptor stem. Here we show that E. coli initiator tRNA also has a secondary negative determinant for elongation and that it is the U50.G64 wobble base pair, located at the same position in the TPsiC stem as the primary negative determinant in eukaryotic initiator tRNAs. Mutation of the U50.G64 wobble base pair to C50:G64 or U50:A64 base pairs increases the in vivo amber suppressor activity of initiator tRNA mutants that have changes in the acceptor stem and in the anticodon sequence necessary for amber suppressor activity. Binding assays of the mutant aminoacyl-tRNAs carrying the C50 and A64 changes to the elongation factor EF-Tu.GTP show marginally higher affinity of the C50 and A64 mutant tRNAs and increased stability of the EF-Tu.GTP. aminoacyl-tRNA ternary complexes. Other results show a large effect of the amino acid attached to a tRNA, glutamine versus methionine, on the binding affinity toward EF-Tu.GTP and on the stability of the EF-Tu.GTP.aminoacyl-tRNA ternary complex.  相似文献   

8.
9.
The tufB gene, encoding elongation factor Tu (EF-Tu), from the myxobacterium Stigmatella aurantiaca was cloned and sequenced. It is preceded by four tRNA genes, the first ever described in myxobacteria. The tRNA synthesized from these genes and the general organization of the locus seem identical to that of Escherichia coli, but differences of potential importance were found in the tRNA sequences and in the intergenic regions. The primary structure of EF-Tu was deduced from the tufB DNA sequence. The factor is composed of 396 amino acids, with a predicted molecular mass of 43.4 kDa, which was confirmed by expression of tufB in maxicells. Sequence comparisons between S.aurantiaca EF-Tu and other bacterial homologues from E.coli, Salmonella typhimurium and Thermus thermophilus displayed extensive homologies (75.9%). Among the variable positions, two Cys residues probably involved in the temperature sensitivity of E.coli and S.typhimurium EF-Tu are replaced in T.thermophilus and S.aurantiaca EF-Tu. Since two or even three tuf genes have been described in other bacterial species, the presence of multiple tuf genes was sought for. Southern and Northern analysis are consistent with two tuf genes in the genome of S.aurantiaca. Primer extension experiments indicate that the four tRNA genes and tufB are organized in a single operon.  相似文献   

10.
The mRNA codon in the ribosomal A-site is recognized by aminoacyl-tRNA (aa-tRNA) in a ternary complex with elongation factor Tu (EF-Tu) and GTP. Here we report the 13 A resolution three-dimensional reconstruction determined by cryo-electron microscopy of the kirromycin-stalled codon-recognition complex. The structure of the ternary complex is distorted by binding of the tRNA anticodon arm in the decoding center. The aa-tRNA interacts with 16S rRNA, helix 69 of 23S rRNA and proteins S12 and L11, while the sarcin-ricin loop of 23S rRNA contacts domain 1 of EF-Tu near the nucleotide-binding pocket. These results provide a detailed snapshot view of an important functional state of the ribosome and suggest mechanisms of decoding and GTPase activation.  相似文献   

11.
During protein biosynthesis, elongation factor Tu (EF-Tu) delivers aminoacyl-tRNA (aa-tRNA) to the A-site of ribosomes. This factor is highly conserved throughout evolution. However, several key residues differ between bacterial and mammalian mitochondrial EF-Tu (EF-Tu(mt)). One such residue is Ser221 (Escherichia coli numbering). This residue is conserved as a Ser or Thr in the bacterial factors but is present as Pro269 in EF-Tu(mt). Pro269 reorients the loop containing this residue and shifts the adjoining beta-strand in EF-Tu(mt) compared to that of E. coli EF-Tu potentially altering the binding pocket for the acceptor stem of the aa-tRNA. Pro269 was mutated to a serine residue (P269S) in EF-Tu(mt). For comparison, the complementary mutation was created at Ser221 in E. coli EF-Tu (S221P). The E. coli EF-Tu S221P variant is poorly expressed in E. coli and the majority of the molecules fail to fold into an active conformation. In contrast, EF-Tu(mt) P269S is expressed to a high level in E. coli. When corrected for the percentage of active molecules, both variants function as effectively as their respective wild-type factors in ternary complex formation using E. coli Phe-tRNA(Phe) and Cys-tRNA(Cys). They are also active in A-site binding and in vitro translation assays with E. coli Phe-tRNA(Phe). In addition, both variants are as active as their respective wild-type factors in ternary complex formation, A-site binding and in vitro translation assays using mitochondrial Phe-tRNA(Phe).  相似文献   

12.
The binding affinities between Escherichia coli EF-Tu and 34 single and double base-pair changes in the T stem of E. coli tRNA(Thr)(UGU) were compared with similar data obtained previously for several aa-tRNAs binding to Thermus thermophilus EF-Tu. With a single exception, the two proteins bound to mutations in three T-stem base pairs in a quantitatively identical manner. However, tRNA(Thr) differs from other tRNAs by also using its rare A52-C62 pair as a negative specificity determinant. Using a plasmid-based tRNA gene replacement strategy, we show that many of the tRNA(Thr)(UGU) T-stem changes are either unable to support growth of E. coli or are less effective than the wild-type sequence. Since the inviable T-stem sequences are often present in other E. coli tRNAs, it appears that T-stem sequences in each tRNA body have evolved to optimize function in a different way. Although mutations of tRNA(Thr) can substantially increase or decrease its affinity to EF-Tu, the observed affinities do not correlate with the growth phenotype of the mutations in any simple way. This may either reflect the different conditions used in the two assays or indicate that the T-stem mutants affect another step in the translation mechanism.  相似文献   

13.
Catalytic properties of the elongation factors from Thermus thermophilus HB8 have been studied and compared with those of the factors from Escherichia coli. 1. The formation of a ternary guanine-nucleotide . EF-Tu . EF-Ts complex was demonstrated by gel filtration of the T. thermophilus EF-Tu . EF-Ts complex on a Sephadex G-150 column equilibrated with guanine nucleotide. The occurrence of this type of complex has not yet been proved with the factors from E. coli. 2. The dissociation constants for the complexes of T. thermophilus EF-Tu . EF-Ts with GDP and GTP were 6.1 x 10(-7) M and 1.9 x 10(-6) M respectively. On the other hand, T. thermophilus EF-Tu interacted with GDP and GTP with dissociation constants of 1.1 x 10(-9) M and 5.8 x 10(-8) M respectively. This suggests that the association of EF-Ts with EF-Tu lowered the affinity of EF-Tu for GDP by a factor of about 600 and facilitated the nucleotide exchange reaction. 3. Although the T. thermophilus EF-Tu . EF-Ts complex hardly dissociates into EF-Tu and EF-Ts, a rapid exchange was observed between free EF-Ts and the EF-Tu . EF-Ts complex using 3H-labelled EF-Ts. The exchange reaction was independent on the presence or absence of guanine nucleotides. 4. Based on the above findings, an improved reaction mechanism for the regeneration of EF-Tu . GTP from EF-Tu . GDP is proposed. 5. Studies on the functional interchangeability of EF-Tu and EF-Ts between T. thermophilus and E. coli has revealed that the factors function much more efficiently in the homologous than in the heterologous combination. 6. T. thermophilus EF-Ts could bind E. coli EF-Tu to form an EF-Tu (E. coli) . EF-Ts (T. thermophilus hybrid complex. The complex was found to exist in a dimeric form indicating that the property to form a dimer is attributable to T. thermophilus EF-Ts. On the other hand, no stable complex between E. coli EF-Ts and T. thermophilus EF-Tu has been isolated. 7. The uncoupled GTPase activity of T. thermophilus EF-G was much lower than that of E. coli EF-G. T. thermophilus EF-G formed a relatively stable binary EF-G . GDP complex, which could be isolated on a nitrocellulose membrane filter. The Kd values for EF-G . GDP and EF-G . GTP were 6.7 x 10(-7) M and 1.2 x 10(-5) M respectively. The ternary T. thermophilus EF-G . GDP . ribosome complex was again very stable and could be isolated in the absence of fusidic acid. The stability of the latter complex is probably the cause of the low uncoupled GTPase activity of T. thermophilus EF-G.  相似文献   

14.
The elongation factor Tu binds aminoacyl-tRNA in the presence of GDP   总被引:7,自引:0,他引:7  
Escherichia coli elongation factor (EF-Tu) binds aminoacyl-tRNAs (aa-tRNA) not only in the presence of GTP but also in the presence of GDP. Complex formation leads to a protection of the aa-tRNA against nonenzymatic deacylation and digestion by pancreatic ribonuclease, as well as to a protection of EF-Tu against proteolysis by trypsin. The equilibrium constant for the binding of Phe-tRNAPheyeast for example to EF-Tu.GDP has been determined to be 0.7 X 10(5) M-1 which is 2 orders of magnitude lower than the equilibrium constant for Phe-tRNAPheyeast binding to EF-Tu.GTP. In the presence of kirromycin, aminoacyl-tRNA binding to EF-Tu.GDP is not affected as much: Phe-tRNAPheyeast is bound with an equilibrium constant of 3 X 10(5) M-1. While there is also a measurable interaction between EF-Tu.GTP and tRNA, such an interaction cannot be detected with EF-Tu.GDP and tRNA, not even at millimolar concentrations. A so far undetected complex formation between aminoacyl-tRNA and EF-Tu.GTP in the presence of pulvomycin, however, could be detected. The results are discussed in terms of the structural requirements of ternary complex formation and in the light of proofreading schemes involving A-site binding on the E. coli ribosome.  相似文献   

15.
The interaction of three different Met-tRNAsMet from E. coli with bacterial elongation factor (EF) Tu X GTP was investigated by affinity chromatography. Met-tRNAfMet which lacks the base pair at the end of the acceptor stem binds only weakly to EF-Tu X GTP, while Met-tRNAmMet has a high affinity for the elongation factor. A modified Met-tRNAfMet which has a C1-G72 base pair binds much more strongly to immobilized EF-Tu X GTP than the native aminoacyl(aa)-tRNA with non-base-paired C1A72 at this position, demonstrating that the base pair including the first nucleotide in the tRNA is one of the essential structural requirements for the aa-tRNA X EF-Tu X GTP ternary complex formation.  相似文献   

16.
The interaction of 18 different Escherichia coli aminoacyl-tRNA species with elongation factor Tu and GTP has been measured by a fluorescence titration assay under equilibrium conditions. The dissociation constants range from 1.9 +/- 0.2.10(-10) M up to 1020 +/- 250.10(-10) M depending on the nucleotide sequence, secondary structure and the chemical composition of the aminoacyl residue of the particular aminoacyl-tRNA. The 'aminoacyl domain' of tRNA consisting of the single stranded, four-nucleotide-long 3'-terminus, aminoacyl stem of seven base-pairs, T-stem and T-loop contains all elements necessary for binding EF-Tu.GTP. The efficiency of aminoacyl-tRNA interaction with EF-Tu.GTP is modulated by the sequence of this 'aminoacyl domain' and by natural modification of its nucleotide residues. An oligoribonucleotide resembling the aminoacyl stem of E.coli tRNA(Ala) and consisting of a four-membered 3'-end, a stem of seven base-pairs and a loop of six nucleotides was prepared by total chemical synthesis on a polymer support. It can be enzymatically aminoacylated by alanine but does not bind in its aminoacylated form to EF-Tu.GTP.  相似文献   

17.
The tuf gene, which encodes the elongation factor Tu (EF-Tu) of Thermus thermophilus HB8, and its flanking regions were cloned and sequenced. The gene encoding EF-G was found upstream of the 5' end of the tuf gene. The tuf gene of T. thermophilus HB8 had a very high G + C content and 84.5% of the third base in codon usage was either G or C. The deduced primary structure of the EF-Tu was composed of 405 amino acid residues with a Mr = 44658. A comparison of the amino acid sequence of EF-Tu from T. thermophilus HB8 with those of Escherichia coli and Saccharomyces cerevisiae mitochondria showed a very high sequence homology (65-70%). Two Cys residues out of the three found in E. coli EF-Tu had been replaced with Val in T. thermophilus HB8 EF-Tu. An extra amino acid sequence of ten residues, consisting predominantly of basic amino acids (Met-182-Gly-191), which does not occur in EF-Tu of E. coli, was found in T. thermophilus HB8.  相似文献   

18.
The sequence of the tufA gene from the extreme thermophilic eubacterium Thermus aquaticus EP 00276 was determined. The GC content in third positions of codons is 89.5%, with an unusual predominance of guanosine (60.7%). The derived protein sequence differs from tufA- and tufB-encoded sequences for elongation factor Tu (EF-Tu) of Thermus thermophilus HB8, another member of the genus Thermus, in 10 of the 405 amino acid residues. Three exchanges are located in the additional loop of ten amino acids (182-191). The loop, probably involved in nucleotide binding, is absent in EF-Tu of the mesophile Escherichia coli. Since EF-Tu from E. coli is quite unstable, the protein is well-suited for analyzing molecular changes that lead to thermostabilization. Comparison of the EF-Tu domain I from E. coli and Thermus strains revealed clustered amino acid exchanges in the C-terminal part of the first helix and in adjacent residues of the second loop inferred to interact with the ribosome. Most other exchanges in the guanine nucleotide binding domain are located in loops or nearest vicinity of loops suggesting their importance for thermostability. The T. aquaticus EF-Tu was overproduced in E. coli using the tac expression system. Identity of the recombinant T. aquaticus EF-Tu was verified by Western blot analysis, N-terminal sequencing and GDP binding assays.  相似文献   

19.
Elongation factor (EF) Tu promotes the binding of aminoacyl-tRNA (aa-tRNA) to the acceptor site of the ribosome. This process requires the formation of a ternary complex (EF-Tu.GTP.aa-tRNA). EF-Tu is released from the ribosome as an EF-Tu.GDP complex. Exchange of GDP for GTP is carried out through the formation of a complex with EF-Ts (EF-Tu.Ts). Mammalian mitochondrial EF-Tu (EF-Tu(mt)) differs from the corresponding prokaryotic factors in having a much lower affinity for guanine nucleotides. To further understand the EF-Tu(mt) subcycle, the dissociation constants for the release of aa-tRNA from the ternary complex (K(tRNA)) and for the dissociation of the EF-Tu.Ts(mt) complex (K(Ts)) were investigated. The equilibrium dissociation constant for the ternary complex was 18 +/- 4 nm, which is close to that observed in the prokaryotic system. The kinetic dissociation rate constant for the ternary complex was 7.3 x 10(-)(4) s(-)(1), which is essentially equivalent to that observed for the ternary complex in Escherichia coli. The binding of EF-Tu(mt) to EF-Ts(mt) is mutually exclusive with the formation of the ternary complex. K(Ts) was determined by quantifying the effects of increasing concentrations of EF-Ts(mt) on the amount of ternary complex formed with EF-Tu(mt). The value obtained for K(Ts) (5.5 +/- 1.3 nm) is comparable to the value of K(tRNA).  相似文献   

20.
A fluorescence titration assay was used to detect the effects of various modifications of E.coli elongation factor Tu on the formation of the ternary complex with aminoacyl-tRNAs. The treatment of EF-Tu.GDP with TPCK, an analogue of the 3'terminus of aminoacyl-tRNA, was found to have no influence on the conversion of EF-Tu.GDP to 'active' EF-Tu.GTP, but does decrease the affinity of the activated protein for yeast aminoacyl-tRNA by more than three orders of magnitude. Modification of the elongation factor by limited cleavage with trypsin, leading to the excision of amino acid residues 45-58, has only a minor influence on ternary complex formation. The equilibrium dissociation constant of the ternary complex with this trypsin-treated EF-Tu.GTP and E.coli Phe-tRNA(Phe) is only one order of magnitude higher than that of the ternary complex with native EF-Tu. Mutations in the amino acid residues 222 and 375 of EF-Tu also have little effect on ternary complex formation. Compared with TPCK-treated EF-Tu, the affinities of the two mutant species, designated EF-tuAR and EF-TuBO respectively, for [AEDANS-s2C]Tyr-tRNA(Tyr) are only slightly reduced and in the same range as trypsin-cleaved EF-Tu.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号