首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The sensory cells of the vomero-nasal organ in reptiles and mammals do not develop cilia. In several species they contain centrioles together with cilium-structure precursor bodies measuring 400–700 Å in diameter. These structures resemble axonemal precursor bodies which are known to occur in developing ciliated cells. They are enclosed in a fibrogranular matrix. The precursor bodies are resistant to pepsin digestion in Araldite sections. In Tupaia precursor bodies may join periodically in a row. In the vomero-nasal receptor cells the precursor bodies can be considered stabilized with a corresponding reduction of cilia. The periodically arranged precursor bodies could represent a special storage form.  相似文献   

2.
Summary The apposition eye of Aglais urticae is composed of eucone ommatidia. Serial sectioning of blocks from the laterofrontal and lateroventral eye regions and mapping at different levels revealed that there is no torsion of whole ommatidia along their long axes.The sensory part of the ommatidium comprises nine retinula cells. The most significant features of the complicated rhabdom structure (diagrammed in Fig. 3) are as follows. The vertically aligned receptor cells V1 and V5, which become axonal at the level at which the ninth cell begins, have microvilli arranged in bundles. The microvilli bundles of these cells generally make an angle between 30 and 55° on one or the other side of the dorsoventral axis in the ommatidium cross section. The two orientations alternate regularly along the length of the rhabdom. The repeated sweeps of these bundles in regular intervals in combination with the curvature of the V-cell microvilli is considered to be a substitute for rhabdomere twisting. The four diagonally aligned receptor cells D2,4,6,8 have rhabdomers that are continuous, though of variable size. These rhabdomeres, like those of the horizontally aligned cells (H3 and H7), extend along the entire rhabdom, though there is a small (1–2 m) interruption in the H-cell rhabdomeres; the latter have the most constant orientation. Pigment granules are most abundant in the D cells, followed by the H cells and finally the V cells. RC9 lacks pigments.Light- and dark-adaptation experiments reveal marked horizontal migration of the retinula-cell pigment (pupil reaction) and slight vertical migration. Monochromatic adaptation experiments at wavelengths =342, 436, 522, 578, and 626 nm indicate special sensitivity of the D-cells around -520 nm. There are indications for sensitivity of V cells in the UV, and possibly of H cells in the blue. The H cells are regarded as suited for the detection of polarized light. The functional significance of these findings is discussed and compared with what is known of other butterfly eyes.This work was supported by grants from the Deutsche Forschungsgemeinschaft and the Stiftung Volkswagenwerk  相似文献   

3.
Three basic types of cells are distinguished in the rat vomeronasal epithelium at birth: bipolar neurons, supporting cells, and basal cells. Neurons at this time include both immature and differentiated cells. By the end of the first postnatal week, all neurons show morphological signs of maturity in their cytoplasm, including abundant granular and smooth endoplasmic reticulum, neurotubules, dense lamellar bodies, apical centrioles, and tufts of microvilli. During the third week microvilli are more frequently encountered and appear to be longer and more branched. Supporting cells appear well-developed by the second day after birth. During the first ten days of life, supporting cells lose their centrioles and all of the complex associated with ciliary generation in the apical zone. Basal cells appear to be more numerous in newborns than in older animals. Protrusions projecting into the lumen are frequently observed in the epithelium of newborn animals, both on the dendrites of neurons and on supporting cells. After the third week, such protrusions are only observed in the transitional zone between the sensory and the non-sensory epithelia of the vomeronasal tubes. In this transitional zone, a fourth cell type showing apical protrusions with microvilli differentiates. Cytoplasm in this type resembles that of neighboring ciliated cells but has no cilia or centrioles. These transitional cells are considered to be cells in an intermediate state of differentiation, between that of the differentiated neurons and supporting cells of the sensory epithelium and that of the predominate ciliated cells of the non-sensory epithelium. The results suggest that by the end of the third week the vomeronasal epithelium is morphologically mature.  相似文献   

4.
Summary This paper reports on the fine structure of chemo and mechano-receptor cells found in three species of fishes (Corydoras paleatus, Cnesterodon decemmaculatus, Fitzroyia lineata).Taste cells were studied in the food-finding barbels of adult species belonging to the Genus Corydoras. They are characterized by the presence of a great amount of vesicular material concentrated at the level of the apical and medial region. Most of these cells terminate at the barbel surface by means of a cylindrical or tapered extremity devoid of sensory hairs. It was possible to observe, in some cases, the existence of short and ill defined microvilli. The basal pole of each sensory cell contacts with several sensory nerve fibers. These fibers contain mitochondria and a few vesicles.The fine structure of the olfactory neurons was studied in full-developed embryos of Cnesterodon and Fitzroyia. The olfactory sensory hairs consist of long cilia which project into the lumen of the olfactory pit. Cilia arise from the olfactory knob which is merely an apical swelling of the dendrite. The dendrite of the olfactory neuron shows profiles of small tubules, aligned parallel to its length. Near the basement membrane of the epithelium groups of axons are seen encased in the surface of the sustentacular cells.The mechano-receptor cells studied were: 1.) The sensory cells existing in the neuromasts of the lateral line system of Cnesterodon and Fitzroyia, and 2.) the receptor cells of the ampullar crests of the same species.Neuromast receptor-cells have well developed sensory hairs which consist of cilia and microvilli. It is highly probable that each receptor cell, like those of the vestibular epithelium, bears only one cilium asymmetrically located in relation to the units of the sensory process. One of the most striking characteristics of this type of cell is the existence of a high amount of vesicular material accumulated in the cytoplasm of the basal region; it is at this level that the nerve fibers take contact with the receptor cell membrane.Three main types of neuroepithelial junction are described in the neuromasts (nerve fiber deeply recessed in the cytoplasm, calyx type and knob-like ending). In these junctions the vesicular material is almost exclusively concentrated in the cytoplasm of the receptor cell, while only few vesicles are seen within the neuroplasm of the sensory fibers.The receptor cells occuring in the ampullar crests of Cnesterodon and Fitzroyia show many structural characteristics similar to those present in neuromasts' receptor cells. Like these, they bear sensory hairs consisting of several microvilli and only one cilium which is always asymmetrically located within the group of hairs. The basal region of the cell is filled with a large amount of small vesicles. Nerve endings also show vesicles but they are less in number than inside the cytoplasm of the receptor cell.Comments are made on the apparent significance of the sensory hairs. These structures are considered (in chemo-receptor cells) as devices serving to enlarge the active surface of the cell and increasing by this way the effectiveness of the whole receptive system. In mechano-receptor cells cilia and microvilli may act as levers of different mechanical characteristics which convey stimuli to the receptor-cell cytoplasm.In this paper three main types of neuroepithelial junctions connecting receptor cells with the central nervous system are described.  相似文献   

5.
Summary As revealed by glyoxylic acid induced fluorescence, the protandric polychaeteOphryotrocha puerilis possesses different types of catecholaminergic primary bipolar sensory cells, the perikarya of which are located beneath the epidermis. About 20 of such receptors are situated in each segment but they are mostly found on antennae, palps, urites and parapodial cirri. The dendrites of these sensory neurones run to the cuticle and dilate to form receptive endings. Three different types of dendritic endings could be distinguished: (1) multiciliary receptors with 4–8 cilia and ciliary rootlets, (2) monociliary receptors with microvilli arranged like a funnel and electron-dense cuffs and (3) monociliary receptors of the collar-type with, constantly, ten microvilli surrounding one single central cilium. The latter type is also characterized by rootlet fragments. Dendrites and dilated receptive endings of all three types contain clear (putative secretory) vesicles, multivesicular bodies and mitochondria. Pharmacological treatment (dopamine, reserpine) does not affect the number of secretory vesicles of the receptor neurones. Extra vesicular storage of catecholamines is discussed. Secretory cells of unknown function containing large numbers of electron-dense vesicles are usually found in close association with sensory cells.Abbreviations CA catecholamines - DA dopamine - RE reserpine  相似文献   

6.
Summary Several types of receptor endings were identified with scanning electron microscopy and silver-impregnation techniques in the skin of the tentacles, lips, dorsal surface of the head and mouth region of the pond snails Lymnaea stagnalis and Vivipara viviparus. Sensory endings at the tips of dendrites of primary receptor neurones, scattered below the epithelium, differ in structure, i.e., the endings exposed to the surface of the skin possess different proportions of cilia and microvilli, which vary in number, length, and packing. Type-I endings have microvilli and a few (1–5) cilia, 5–12 m in length. Type-2 endings have abundant (20–40), interwoven long (9–12 m) cilia and random microvilli. Type-3 endings show typical packing of 10–25 cilia in the form of bundles or brushes. They may be composed either of long (9–18 m) or short (2–7 m) cilia, or of both long and short ones. Microvilli here are absent. Type-4 endings have only microvilli. Two other types of skin receptors do not extend their sensory endings to the surface and can be indentified only in silver-stained preparations. Type-5 endings are branching dendrites of skin receptors cells that terminate among epithelial cells. In type-6, the sensory endings also terminate among epithelial cells but their cell bodies are located outside of the skin. In both species all skin regions examined possess the receptors of all six types differing only in their relative proportion. Possible functional roles of different receptors are discussed.  相似文献   

7.
The squamates are composed of many taxa, among which there is morphological variation in the vomeronasal organ (VNO). To elucidate the evolution of chemoreception in squamate reptiles, morphological data from the VNO from a variety of squamate species is required. In this study, the morphology of the VNO of the grass lizard Takydromus tachydromoides was examined using light and electron microscopy. The VNO consists of a pair of dome-shaped structures, which communicate with the oral cavity. There are no associated glandular structures. Microvilli are present on the apical surfaces of receptor cells in its sensory epithelium, as well as on supporting cells, and there are centrioles and ciliary precursor bodies on the dendrites. In addition to ciliated cells and basal cells in the non-sensory epithelium, there is a novel type of non-ciliated cell in T. tachydromoides. They have constricted apical cytoplasm and microvilli instead of cilia, and are sparsely distributed in the epithelium. Based on these results, the variation in the morphology of the VNO in scincomorpha, a representative squamate taxon, is discussed.  相似文献   

8.
Summary Olfactory receptor molecules are assumed to be integral membrane proteins which may be visualized on fracture faces of the membrane as intramembrane particles (IMPs). In the present study, the plasma membrane of the receptor dendrites and ciliated epithelial cells in the teleost fish Alburnus alburnus were studied by freeze-fracture electron microscopy. The IMP diameters on the membrane P-faces of both receptor dendrites and ciliated epithelial cells ranged from 5 nm to 11 nm. The average IMP densities on membrane fracture faces of the ciliated and microvillous sensory dendrites were 3130±780 for the cilia, 2070±550 for the microvilli, 2390±1190 on the knob regions and 3050±1130/m on the lateral dendrite membranes. The IMP densities on the P fracture faces of the cilia and knob regions were compared with the densities found on the lateral membranes of each individual dendrite. The ratios ranged from 0.5 to 0.96 in the case of the cilia/lateral membrane and from 0.5 to 0.90 in that of the knob/lateral membrane, indicating that, in contrast to the average densities, it is the lateral membrane which has the higher IMP densities and not the cilia. The great variations in the average IMP densities, as well as the considerable variety of the ratios, may be explained by the maturation and turnover of the olfactory sensory neurons.  相似文献   

9.
Abstract. We examined the nuchal organs of adults of the nereidid polychaete Platynereis dumerilii by means of scanning and transmission electron microscopy. The most prominent features of the nuchal organs are paired ciliary bands located dorsolaterally at the posterior margin of the prostomium. They are composed of primary sensory cells and multiciliated supporting cells, both covered by a thin cuticle. The supporting cells have motile cilia that penetrate the cuticle and are responsible for the movement of water. Subapically, they have a narrowed neck region; the spaces between the neck regions of these supporting cells comprise the olfactory chamber. The dendrites of the sensory cells give rise to a single modified cilium that crosses the olfactory chamber; numerous thin microvillus-like processes, presumably extending from the sensory cells, also traverse the olfactory chamber. At the periphery of the ciliated epithelium runs a large nervous process between the ciliated supporting cells. It consists of smaller bundles of sensory dendrites that unite to form the nuchal nerve, which leaves the ciliated epithelium basally and runs toward the posterior part of the brain, where the perikarya of the sensory cells are located in clusters. The ciliated epithelium of the nuchal organs is surrounded by non-ciliated, peripheral epidermal cells. Those immediately adjacent to the ciliated supporting cells have a granular cuticle; those further away have a smooth cuticle. The nuchal organs of epitokous individuals of P. dumerilii are similar to those described previously in other species of polychaetes and are a useful model for understanding the development of nuchal organs in polychaetes.  相似文献   

10.
Summary Oocyte-follicle cell gap junctions inTribolium occur in all oogenetic stages studied. During early previtellogenesis the junctions are found exclusively between lateral membranes of oocyte microvilli and the membrane of prefollicle cells. In late previtellogenesis and vitellogenesis the junctions are located between the tips of oocyte microvilli and the flat membranes of the follicle cells. During previtellogenesis gap junctions are infrequent, whereas in the phase of yolk accumulation their number increases considerably, exceeding 17 junctions/m2 of the follicle cell membrane. It could be shown by microinjection of a fluorescent dye that gap junctions are in a functional state during vitellogenesis. Possible roles of heterologous gap junctions in oogenesis are discussed.  相似文献   

11.
Summary The olfactory organ of Helisoma trivolvis is located on the surface of the body at the base of the cephalic tentacles. An evagination of skin, the olfactory plica, at the base of the tentacle extends over the olfactory organ dorsally. The epithelium of the olfactory organs contains unspecialized epithelial cells, ciliated epithelial cells, basal cells, mucous secretory cells, and sensory dendrites. The surface of the epithelium has a complex brush border of thick plasmatic processes, which branch to form several terminal microvillar twigs. Long slender cytoplasmic processes form a dense spongy layer among the plasmatic processes beneath the level of the terminal twigs. Bipolar primary sensory neurons clustered beneath the epithelium of the olfactory organ send dendrites through the epithelium to the free surface. Some sensory endings have a few short cilia, but most bear only microvilli. Cilia of sensory endings and epithelial cells extend beyond the brush border of the epithelium. Small axons arise from the perikarya of the sensory neurons and enter a branch of the olfactory nerve. HRP tracing indicates that the axons pass to the cerebral ganglion without interruption. Histochemical tests indicate that the sensory neurons are neither aminergic nor cholinergic.  相似文献   

12.
The vomeronasal epithelium of adult garter snakes (Thamnophis sirtalis and T. radix) was studied by light and electron microscopy. The sensory epithelium is extraordinarily thick, consisting of a supporting cell layer, a bipolar cell layer, and an undifferentiated cell layer. The supporting cell layer is situated along the luminal surface and includes supporting cells and the peripheral processes (dendrites) of bipolar neurons. The luminal surfaces of both supporting cells and bipolar neurons are covered with microvilli. Specializations of membrane junctions are always observed between adjacent cells in the subluminal region. Below the supporting cell layer, the epithelium is characterized by a columnar organization. Each column contains a population of bipolar neurons and undifferentiated cells. These cells are isolated from the underlying vascular and pigmented connective tissue by the presence of a thin sheath of satellite cells and a basal lamina. Heterogeneity of cell morphology occurs within each cell column. Generative and undifferentiated cells occupy the basal regions and mature neurons occupy the apical regions. Transitional changes in cell morphology occur within the depth of each cell column. These observations suggest that the vomeronasal cell column is the structural unit of the organ and may represent the dynamic unit for cell replacement as well. A sequential process of cell proliferation, neuronal differentiation, and maturation appears to occur in the epithelium despite the adult state of the animal.  相似文献   

13.
G. Purschke 《Zoomorphology》1990,110(2):91-104
Summary The statocysts inProtodrilus ciliatus, P. oculifer, P. haurakiensis andP. helgolandicus are situated in the prostomium anterior to the palps and have been investigated by electron microscopy. The sensory organs were reconstructed from serial sections, volumes were calculated from areas of consecutive section profiles, and additional data on surface area of distal receptor elements have been determined. In spite of variations in size (diameter 8–20 m) their structure is nearly identical. The organs consist of one cup-shaped supportive cell, one large bi- or multiciliated sensory cell and two small uni- or biciliated sensory cells forming an extracellular cavity. This cavity is completely filled with microvillus-like or paracrystalline structures and there are no signs of statoliths composed of extracellular material. The most striking feature is the occurrence of paracrystals made up of undulating ciliary membranes extending from the large sensory cell and occupying 75–90% of the cavity inP. ciliatus, P. oculifer andP. haurakiensis. The remaining space is filled with microvilli or dendritic processes of the sensory cells. InP. helgolandicus the ciliary paracrystals are almost completely replaced by microvillus-like branches of cilia of the corresponding sensory cell. Paracrystals fill less than 10% of the cavity and are formed of flattened membranes. These sensory organs enclose large surface areas of membranes (15,000–38,000 m2). The surface areas of the paracrystals composed of undulating membranes is almost identical to that of densely arranged arrays of microvilli (about 25 m2 per m3). These sensory organs are so different from all known statocysts that it is likely that they have another function. Their greatest structural correspondence is to light-receptive organs, especially in the structure and arrangement of microvilli. The role the paracrystals play is discussed: they might bear photopigments or simply represent a lens — a transparent, refractile and crystalline structure. These sensory organs are completely different from pigmented ocelli and phaosomes occurring in some protodrilids and represent a type of sensory organ thus far undescribed in polychaetes.  相似文献   

14.
Summary The retina of nudibranch eyes contains two types of large cells; pigment cells which comprise about two-thirds of the total, with unpigmented sensory cells making up the remainder. Both pigment and receptor cells carry microvilli on their distal borders, but no traces of cilia were observed among them. The cornea of the eyes of aeolid and dendronotid nudibranchs is composed of a single layer of small cells, unlike the dorids where the cornea is made up of one of more large cells. The latter contain nuclei comparable in size with those of the pigment cells in the retina, but are themselves unpigmented.The elliptical eyes ofAplysia contain three types of retinal cell; the pigment cells and two kinds of receptor cells. The ciliary receptor cells bear equal numbers of cilia (9+2) and microvilli, while the microvillous receptor cells carry long tufts of microvilli with only an occasional cilium among them. The proximal cytoplasm of the receptor cells inAplysia and the nudibranchs contains large quantities of the small spherical vesicles (averaging 660 Å in diameter) which appear to be characteristic of gastropod eyes.  相似文献   

15.
Summary Transmission electron microscopic analysis of serial sections showed that the receptor cells are innervated by only one neuron and not two as previously believed. The neuron's two dendrites constitute the afferent sensory nerves to the caudal ganglion where the neuron's cell body is located. Its neurite was traced a few micrometers, but the synaptic terminals were not identified. This sensory system in Oikopleura is compared with a similar caudal sensory system in the tadpole larva of Diplosoma macdonaldi investigated by Torrence and Cloney. Wiring diagrams are proposed for the two systems. The ganglia, which receive the afferent sensory neurons, are discussed in terms of models for further research on simple integration systems.  相似文献   

16.
Summary The multicellular epithelial organs in Proteus anguinus, which Bugnion (1873) assumed to be developing neuromasts, have been analyzed by lightand electron-microscopy. Their fundamental structure consists of single ampullae with sensory and accessory cells with apical parts that extend into the pit of the ampulla, and of a short jelly-filled canal connecting the ampulla pit with the surface of the skin. The organs are located intra-epithelially and are supported by a tiny dermal papilla. The cell elements of sensory epithelium are apically linked together by tight junctions. The free apical surface of the sensory cell bears several hundred densely packed stereocilia-like microvilli whereas the basal surface displays afferent neurosensory junctions with a pronounced round synaptic body. The compact uniform organization of the apical microvillous part shows a hexagonal pattern. A basal body was found in some sensory cells whereas a kinocilium was observed only in a single cell. The accessory cells have their free surface differentiated in a sparsely distributed and frequently-forked microvilli. The canal wall is built of two or three layers of tightly coalescent flat cells bordering on the lumen with branching microvilli. The ultrastructure of the content of the ampulla pit is presented.In the discussion stress is laid on the peculiarities of the natural history of Proteus anguinus that support the view that the morphologically-identified ampullary organs are electroreceptive. The structural characteristics of ampullary receptor cells are dealt with from the viewpoint of functional morphology and in the light of evolutionary hypotheses of ampullary organs.  相似文献   

17.
Summary The basilar papilla of the lizard Calotes versicolor contains about 225 sensory cells. These are of two types: the short-haired type A cells in the ventral (apical) part of the organ, and the type B cells with long hair bundles, in the dorsal (basal) part of the organ. The type A cells are unidirectionally oriented and are covered by a tectorial membrane while the type B cells lack a covering structure and their hair bundles are oriented bidirectionally. Apart from those differences, the type A and type B cells are similar. They are columnar, and display the features common to most sensory cells in inner ear epithelia. The sensory cells are separated by supporting cells, which have long slender processes that keep the sensory cells apart. Close to the surface of the basilar papilla a terminal bar of specialized junctions interlocks adjacent cells. Below this, adjacent supporting cells are linked by an occluding junction.The cochlear nerve enters from the medial (neural) aspect. The fibres of the nerve lose their myelin sheaths as they enter the basilar papilla. Each sensory cell is associated with several nerve endings. All the nerves identified were afferent. Marked variations were seen between nerve endings in the basilar papilla, but no morphological equivalents of any functional differences were observed.This work is supported by grant no. B76-12X-00720-11A from the Swedish Medical Research Council, and by funds from the Karolinska Institute, Stockholm, Sweden.  相似文献   

18.
Daniela Uthe 《Hydrobiologia》1995,309(1-3):45-52
The cephalic sensory organ (CSO) in planktonic veliger larvae of Littorina littorea is situated dorsally between the velar lobes at the level of the shell aperture. It consists of ciliated primary sensory cells, adjacent accessory cells and supporting epithelial cells. Cell bodies of the ciliated cells originate in the cerebral commissure and their dendrites pass to the epidermis. The flask-shaped sensory cells are characterized by a deep invaginated lumen with modified cilia arising from the cell surface in the lumen. These cilia are presumed to be non-motile because they lack striated rootlets and show a modified microtubular pattern (6 + 2, 7 + 2 and 8 + 2). The adjacent accessory cells never possess an invaginated lumen; occasionally cilia and branched microvilli arise from the apical surface. These cells may be sensory, but there is no obvious direct connection with the nervous system. The supporting epithelial cells are part of the epidermis and flank the apical necks of the sensory and accessory cells. Morphological evidence suggests that the CSO may function in chemoreception related to substrate selection at settlement, feeding or other behaviour.  相似文献   

19.
The ultrastructure of the frontal organ (pineal end-vesicle, Stirnorgan) of Rana temporaria L. and Rana esculenta L. is similar to the submicroscopic organization of the retina and other photosensitive organs. There are five different cell types in the frontal organ: sensory (receptor) cells, ependymal cells, ganglion cells, glial cells and epithelial cells. The ependymal cells may be secretory. There is no evidence for a typical pigment epithelium. The sensory cells have inner and outer segments. The inner segments contain numerous mitochondria, a Golgi complex, filaments, lipid droplets, two centrioles and a fibrillar apparatus (within the connecting piece). The mitochondria are very abundant in the Ellipsoid and Ersatzellipsoid areas (Holmgren) of the inner segment. The outer segment consists of about 60 to 110 discs formed by infoldings of the cell membrane. Most of the sensory cells are cone-like, but there are some elements with rod-like structures. Plexiform areas of the frontal organ contain terminations of the receptor cells, and processes of the nerve cells and glia cells. Synaptic structures have been determined within these areas. Non-medullated and medullated nerve fibers with adjacent glial satellites are observed in the pineal nerve (Nervus pinealis). The anatomical findings are described in detail and discussed in respect to the physiological results of Dodt and Heerd (1962) in Rana temporaria and Rana esculenta.

Durchgeführt mit Unterstützung durch die Deutsche Forschungsgemeinschaft.  相似文献   

20.
Most of the sensory cells found in the chemoreceptor of the ommatophore of Helix pomatia are typical bipolar cells. The chemoreceptor is deveded by a furrow into two parts; within the ventral subdivision the layer of sensory cell bodiesis thicker than in the dorsal part. According to the differentiations of the apical surface of the dendrites, it is possible to distinguish six different classes: a) dendrites with one cilium and 75 nm thick cytofila (sometimes dendrites of identical appearance posses more than one cilium); b)dendrites with several cilial and 150 nm thick cytofila; c) dendrites with several cilia, 50 nm thick cytofila, and long, striated rootlets; d) dendrites with several cilia bur without cytofila; e) dendrites with 130 nm thick cytofila but without cilia; and f) dendrites with 65 nm thick cytofila but without cilia; dendrites of this class are the only ones with a cytoplasm more electron dense than that of the surrounding supporting cells. All these dendrites are connected to the surrounding supporting cells by terminal bars, each consisting of zonula adhaerens, aonula intermedia and zonula septata. The perikarya of the sensory cells measure approximately 15 mum by 8 mum and enclose 10 mum by 6 mum large nuclei. Axons, originating from these perikarya, extend to the branches of the digital ganglion. In the distal part of this gangloin the axons come into synaptic contact with interneurons, but in our electron micrography it was not possible to coordinate processes and synapses with the corresponding neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号