首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
寡核苷酸芯片在微生物检测中的应用   总被引:3,自引:0,他引:3  
近几年来发展起来的基因组研究技术———基因芯片技术为微生物检测提供了一种强有力的手段。目前国内外已广泛地开展了利用寡核苷酸芯片对多种微生物 (主要是病毒和细菌 ,少量有真菌 )进行相关检测的研究 ,并在对微生物病原体检测、种类鉴定、功能基因检测、基因分型、突变检测、基因组监测等方面获得了成功。由于寡核苷酸探针具有可根据研究需要任意设计、特异性高等特点 ,寡核苷酸芯片在微生物检测中有着巨大的应用价值 ,具有广阔的应用前景。  相似文献   

2.
小鼠细胞因子相关基因表达检测寡核苷酸芯片的制备及分析   总被引:12,自引:0,他引:12  
生物芯片技术用于基因表达谱研究是近年来发展起来的一项新技术 ,该方法本质上是基于对一玻璃片或膜表面上固定的cDNA或寡核苷酸的分子杂交 ,这一新技术可同时测定成千上万个基因的作用方式 ,几周获得的信息用其它方法可能要几年才能得到 ,是以定量方式同时监测大量基因相对表达的强有力的新方法[1 ,2 ] 。国内外目前主要采用cDNA芯片进行基因表达的检测 ,芯片制备所用的DNA探针一般为已知基因cDNA克隆的PCR扩增产物或EST的扩增产物[3~ 8] 。对基因的表达检测来说 ,cDNA芯片技术是一条非常适用的检测方法 ,但在有…  相似文献   

3.
目的:建立多药耐药基因(mdr1)分型芯片,以检测患者的单核苷酸多态性(SNPs)。方法:设计并合成探针和引物,制备芯片;构建野生型和突变型质粒,以其为模板经PCR仪扩增后,与芯片上的探针杂交,并用扫描仪分析结果。结果:构建了野生型和突变型质粒,与芯片杂交能很好地区分基因型;优化了制备条件,建立了分型标准。结论:该基因芯片是一种快速特异的基因分型方法。  相似文献   

4.
In gene expression analyses using a high-density oligonucleotide array in a rat ischemia model, two comparison methods, “pair-wise comparison” and “sample average comparison”, were evaluated based on statistical methods. The reliability of the elements screened with a 1.2 to 10-fold threshold was also evaluated. In pair-wise comparisons, most of the elements were significantly independent of the threshold value, with the percentage of significant elements remaining above 95%, when screened at 2.5-fold or higher threshold value. Pair-wise comparison structurally provided strict screening, which resulted in genes that were not selected despite significant alterations in expression. Screening by “sample average comparison” resulted in elements with low probability of significance, which suggested the necessity for increasing the reliability by additional statistical analyses after screening. When genes with altered expression were screened using an oligonucleotide array, marked differences in the numbers and reliability were proved to exist among elements screened by each sample comparison method.  相似文献   

5.
为研制肿瘤相关寡核苷酸芯片,并实现其在抗肿瘤反义核酸“癌泰得”作用机理研究方面的初步应用,制备了包含近450种肿瘤相关基因特异寡核苷酸探针的寡核苷酸芯片,建立了相应的质控标准.“癌泰得”用脂质体转染HepG2肿瘤细胞,提取细胞总RNA反转录并荧光标记cDNA,用制备的寡核苷酸芯片检测肝癌细胞HepG2的肿瘤相关基因表达水平,用软件分析获得其差异基因表达谱.0.4 μmol/L的反义核酸“癌泰得”作用于HepG2细胞15 h后,MDNCF、DHS等基因mRNA表达下调,MUC2、MPP11、LAT、HRIF-B、JNK3A1等mRNA基因表达上调,初步检测到了“癌泰得”的抗肿瘤作用可能的相关基因,为进一步的分子作用机理的探讨奠定基础.结果表明,制备的肿瘤相关芯片敏感度高、特异性高、重复性均较好,可用于检测肿瘤相关基因的表达谱,为临床诊断和基础研究提供了技术平台.  相似文献   

6.
优化了醛基载玻片的制备方法 ,探讨了醛基修饰载玻片固定寡核苷酸探针的性质。研究发现氨基硅烷试剂的浓度是影响载玻片荧光背景的主要因素 ;2 %氨基化试剂处理 16min、戊二醛处理 30min可以得到荧光背景较低、固定效果较好的醛基载玻片。寡核苷酸固定过程中 ,末端氨基修饰没有明显的特异性 ,但是可以提高被固定探针的杂交容量。在较低的浓度 (小于 10 μmol L)时 ,探针的浓度与杂交信号趋近线性关系 ,浓度为 2 0 μmol L时杂交信号达到饱和  相似文献   

7.
Russian Journal of Bioorganic Chemistry - Herein, we present a synthesis of a molecular construct based on the polysulfonated indocarbocyanine dye and the lysine. The chemical structure of the...  相似文献   

8.
苏云金杆菌DNA芯片Oligo探针设计   总被引:1,自引:0,他引:1  
迅速增长的分子生物学数据为总结新的生物学信息,进行生物研究尤其是分子生物学研究,提供了丰富的资料,利用苏云金杆菌的基因信息和一些生物学软件,设计特异性高、长度一致、熔解温度相近的Oligo探针,为后期打印成DNA芯片,进行苏云金杆菌鉴定打下基础。  相似文献   

9.
High-density functional gene arrays have become a powerful tool for environmental microbial detection and characterization. However, microarray data normalization and comparison for this type of microarray remain a challenge in environmental microbiology studies because some commonly used normalization methods (e.g., genomic DNA) for the study of pure cultures are not applicable. In this study, we developed a common oligonucleotide reference standard (CORS) method to address this problem. A unique 50-mer reference oligonucleotide probe was selected to co-spot with gene probes for each array feature. The complementary sequence was synthesized and labeled for use as the reference target, which was then spiked and cohybridized with each sample. The signal intensity of this reference target was used for microarray data normalization and comparison. The optimal amount or concentration were determined to be ca. 0.5 to 2.5% of a gene probe for the reference probe and ca. 0.25 to 1.25 fmol/μl for the reference target based on our evaluation with a pilot array. The CORS method was then compared to dye swap and genomic DNA normalization methods using the Desulfovibrio vulgaris whole-genome microarray, and significant linear correlations were observed. This method was then applied to a functional gene array to analyze soil microbial communities, and the results demonstrated that the variation of signal intensities among replicates based on the CORS method was significantly lower than the total intensity normalization method. The developed CORS provides a useful approach for microarray data normalization and comparison for studies of complex microbial communities.Microarray-based technology has become a robust genomic tool to detect, track, and profile hundreds to thousands of different microbial populations simultaneously in complex environments such as soils and sediments. For example, GeoChip, a comprehensive functional gene array, has been developed for investigating biogeochemical, ecological, and environmental processes (12, 18, 23, 27, 29, 32). Although a massive amount of microarray data can be generated rapidly, one of the bottlenecks in using microarrays for environmental microbial community studies is the lack of an appropriate standard for data comparison and normalization (6). Currently, it is difficult to compare microarray data across different sites, experiments, laboratories, and/or time periods (10). This limits the power of the technology to address ecological and environmental questions.In pure culture-based functional genomics studies, genomic DNAs (gDNAs) have been used as a common reference for hybridizations in which the same amount of gDNAs are used to cohybridize with each target cDNA sample and then to normalize different target cDNAs based on the gDNA standard (4, 5, 8, 9, 19, 21, 23). Several normalization methods such as scale normalization, quantile normalization, and Lowess normalization have been used for gene expression studies (2). Using the gDNA standard method can minimize or eliminate differences in target cDNA quantity, spot morphology, uneven hybridization, labeling, and sequence-specific hybridization behaviors (5), and this allows the comparison of microarray data across different sites, laboratories, experiments, and/or times. The main rationale for gDNA as a common reference is that it provides complete coverage for all genes represented on the array because the DNA composition from a particular organism should be identical across different treatment samples even though RNA expression is different (8). However, this approach is not applicable to microbial community studies because not all communities have identical DNA compositions. Pooling of equal amounts of gDNA or RNA from every target sample to make a common sample could be used as an alternative reference for cohybridization (1, 22). However, the disadvantage of the sample pooling approach is that samples do not provide large amounts of DNA or RNA in a reliable and reproducible way. For example, groundwater samples usually have a very low biomass and thus would not provide enough DNA for pooling. In addition, the sample pool itself is uncharacterized, and gene abundance may be diluted out so that insufficient DNA is present to result in a positive signal some array features, especially for those genes in low abundance. Moreover, a new sample pool would be required for every new experiment, making comparison across experiments difficult. Thus, other approaches need to be developed for microbial community studies.Dudley et al. (7) used a 25-mer oligonucleotide that matched a small portion of the parental EST clone vector contained in every PCR product printed on the array for normalization of pure culture RNA expression. Although the oligonucleotide generated a stable hybridization signal on every array feature, this method requires a universal sequence tag as a “capture” sequence, limiting its general use in microbial community studies. Thus, in the present study, we developed a common oligonucleotide reference standard (CORS) approach by co-spotting a common oligonucleotide with each array feature to improve the accuracy and comparability of microarray data for microbial community studies. This method was evaluated by using a pilot array, a whole-genome array, and a functional gene array, and all results demonstrate that the developed CORS is a reliable and reproducible method for microarray data normalization and comparison for microbial community studies.  相似文献   

10.
Microarray Analysis of Microbial Virulence Factors   总被引:8,自引:6,他引:8       下载免费PDF全文
Hybridization with oligonucleotide microchips (microarrays) was used for discrimination among strains of Escherichia coli and other pathogenic enteric bacteria harboring various virulence factors. Oligonucleotide microchips are miniature arrays of gene-specific oligonucleotide probes immobilized on a glass surface. The combination of this technique with the amplification of genetic material by PCR is a powerful tool for the detection of and simultaneous discrimination among food-borne human pathogens. The presence of six genes (eaeA, slt-I, slt-II, fliC, rfbE, and ipaH) encoding bacterial antigenic determinants and virulence factors of bacterial strains was monitored by multiplex PCR followed by hybridization of the denatured PCR product to the gene-specific oligonucleotides on the microchip. The assay was able to detect these virulence factors in 15 Salmonella, Shigella, and E. coli strains. The results of the chip analysis were confirmed by hybridization of radiolabeled gene-specific probes to genomic DNA from bacterial colonies. In contrast, gel electrophoretic analysis of the multiplex PCR products used for the microarray analysis produced ambiguous results due to the presence of unexpected and uncharacterized bands. Our results suggest that microarray analysis of microbial virulence factors might be very useful for automated identification and characterization of bacterial pathogens.  相似文献   

11.
DNA微阵列能在一次实验中检测成千上万个基因的表达情况, 有助于阐明疾病发生的分子机制及发现新的诊治靶标.但常规方法需要大量RNA, 因而基于T7 RNA线性扩增技术逐渐成为微阵列表达谱实验中最常用的探针制备方法.本方法将实验步骤进一步改进,增加额外的一轮体外转录,并结合Klenow酶标记技术来制备cDNA靶标和寡核苷酸芯片杂交.从纳克量级的总RNA起始,本方法和常规的RNA单轮线性扩增法相比,仍然准确地保留了约70%的基因表达信息.同一RNA样本的自身比较实验及重复实验结果也显示,该方法具有较高的可靠性和重复性.RNA双轮体外扩增法需要的起始RNA相对于常规的单轮扩增法减少了很多(10 ng甚至更少),因而非常适合分析那些只能提供微量RNA的样本.  相似文献   

12.
13.
14.
A synthetic aromatic polymer has been used for preparing replicas of different microorganisms. This method of preparing highly concentrated (9.6 k) microbiological samples for scanning electron microscopy was compared with a standard method. The micrographs of the replicated samples are satisfactory. This method is rapid, cost effective and produces good results, especially in the case of spore-forming mycelial microorganisms.  相似文献   

15.
PhyloTrac is an integrated desktop application for analysis of PhyloChip microarray data. PhyloTrac combined with PhyloChip provides turnkey and comprehensive identification and analysis of bacterial and archaeal communities in complex environmental samples. PhyloTrac is free for noncommercial organizations and is available for all major operating systems at http://www.phylotrac.org/.The PhyloChip is a low-cost Affymetrix GeneChip microarray, developed at Lawrence Berkeley National Laboratory (LBNL), designed to detect and quantify abundance of bacterial and archaeal taxa using signature probes targeting all known 16S rRNA gene sequences. The second generation of the PhyloChip microarray targets nearly 9,000 operational taxonomic units (OTUs), with an average of 24 probes, each 25 bp long, and the upcoming third-generation PhyloChip application will target an even larger number of OTUs. Multiple, complex environments have been successfully analyzed using the PhyloChip microarray, including, among others, air (2), soil (1), the human lung (6), and the gut (9). PhyloChip microarrays are manufactured by Affymetrix, but to date, analysis has been available only from within LBNL, limiting the accessibility of the technology. PhyloTrac addresses this limitation by providing a standardized analysis package for the PhyloChip microarray, including microarray normalization, OTU quantification, multiple interactive visualizations, and integrated analytics.  相似文献   

16.
用SARS冠状病毒全基因组芯片杂交方法分析SARS-CoV   总被引:2,自引:1,他引:2  
为从临床样品中检测和分析SARSCoV病毒打基础,并为分析SARSCoV病毒的复制和转录等机理提供一种有效方法。以SARS冠状病毒TOR2株序列作为标准设计和制备一种覆盖SARS冠状病毒全基因组的寡聚核苷酸芯片,探针长度为70nt,每相邻的探针序列重复25nt,共660条。用该芯片分析了细胞培养的SARSCoV病毒总RNA、7个SARSCoV病毒的基因克隆片段。对RNA样品用随机引物进行反转录PCR获得cDNA。对DNA用随机引物扩增和dUTPcy3标记。结果用这种芯片杂交检测SARSCoV病毒RNA可见阳性信号呈全基因组分布,并且有多处连续的阳性信号点;用正常人的白细胞RNA为对照,杂交未出现明显阳性信号。检测7个SARSCoV病毒基因克隆片段,在该片段相应的探针区段出现连续阳性信号点。这种方法可有效地检测和分析样品中SARS冠状病毒全基因组的信息。  相似文献   

17.
18.
研制和优化寡核苷酸芯片以初步实现对多种常见HPV(Human papillomavirus)病毒的分型检测.应用生物学软件对四型常见HPV病毒(6、11、16、18型)的全基因组序列进行分析,设计具有型特异性、熔解温度(Tm)相近的~60 mer寡核苷酸探针,对玻片片基进行优化处理后,点样制备成寡核苷酸基因芯片.将含HPV全长基因序列的质粒作为阳性标准品,利用梯度限制性荧光标记技术对其进行荧光标记,标记好的样品与芯片杂交.结果显示HPV样品与相应的型特异性探针杂交有明显的荧光信号,而与阴性对照探针和空白对照探针没有杂交信号.通过对芯片片基处理和样品荧光标记方法的优化,可以提高芯片检测的杂交特异性和荧光信号强度.  相似文献   

19.
高危型人乳头瘤病毒(Human papillomavims,HPV)是宫颈癌的主要致病因子。利用Arraydesigner2.0和BLAST等生物学软件对10种型别的人乳头瘤病毒全基因组序列进行分析,设计高特异性、熔解温度(Tm)和GC含量相近的60mer HPV型特异性寡核苷酸探针,用于HPV检测芯片的制备,并对其中四型最常见HPV病毒(HPV6,11,16,18)探针的有效性进行初步验证,结果表明设计所得的探针型特异性好,可以应用于HPV的检测与分型。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号