首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tissue distributions of cyclic [3H]AMP and [14C]inulin in toad bladder were determined and their kinetics analyzed. We found that both the epithelial and the other cells of the toad bladder handcle cyclic AMP similarly. Moreover, we found that the distribution of cyclic AMP did not differ from that of inulin, an extracellular marker. Kinetic analysis suggests that the rate of coefficient of cyclic AMP metabolism is much larger than the exchange rate coefficient, which explains why distribution of both cyclic AMP and inulin are similar.  相似文献   

2.
Summary Parathyroid hormone (PTH) inhibited active transport of inorganic phosphate and stimulated an increase in cyclic AMP concentration in the urinary bladder of the toad,Bufo marinus. Active transport of phosphate in the toad bladder was also inhibited by an analog of cyclic AMP (dibutyryl cyclic AMP) and by other drugs (pitressin and theophylline) which increase toad bladder intracellular cyclic AMP concentration. These data support the concept that cyclic AMP may be the mediator of PTH-induced phosphate transport inhibition in the toad bladder.  相似文献   

3.
The effect of vasopressin on the toad urinary bladder has been shown to be mediated by cyclic AMP. It has been assumed that, as demonstrated for other systems, this involves activation of cyclic AMP-dependent protein kinase. In order to test this hypothesis we investigated the effect of vasopressin on cyclic AMP-dependent protein kinases in epithelial cells of toad bladders. About 80% of protein kinase activity and cyclic AMP-binding capacity was found to be in the cytosol. DEAE-cellulose chromatography showed a pattern of 15--20% type I and 80--85% type II cyclic AMP-dependent protein kinase. Cytosolic kinase was activated 3--4-fold by cyclic AMP with half-maximal activation at 5 . 10(-8) M. Similarly, half-maximal binding of cyclic AMP occurred at 7 . 10(-8) M. Incubation of toad bladders in Ringer's solution containing 0.1 mM 3-isobutyl-1-methylxanthine, prior to homogenization and assay, showed stable cyclic AMP-binding capacity and protein kinase ratio --cyclic AMP/+cyclic AMP. Exposure of bladders to 10 mU/ml of vasopressin for 10 min caused intracellular activation of protein kinase and decrease in cyclic AMP-binding capacity that were maintained for at least 30 min. Incubation of bladders with increasing concentrations of vasopressin (0.5--100 mU/ml) resulted in a discrepancy between a progressive increase in cyclic AMP levels and a levelling off at 10 mU/ml of vasopressin for the changes in protein kinase ratio and cyclic AMP-binding capacity. The increase in kinase ratio was due to higher activity in the absence of exogenous cyclic AMP and was fully inhibitable by a specific protein kinase inhibitor. Using Sephadex G-25-CM50 column chromatography for separation of holoenzyme and free catalytic subunit we demonstrated that the activation of protein kinase in the vasopressin-treated bladders is due to intracellular dissociation of the kinase. These results show that the effect of vasopressin on the toad bladder involves activation of a cytosolic cyclic AMP-dependent protein kinase. The time course and the dose-response curve of the kinase activation closely parallel vasopressin's effect on osmotic water flow.  相似文献   

4.
In the toad urinary bladder 8-p-chlorophenylthio-cyclic AMP mimics the stimulatory effects of antidiuretic hormone on osmotic water permeability, 3H2O diffusion, and transepithelial sodium transport; but unlike the hormone does not cause an increase in urea permeability. Trheshold activation for the hydroosmotic response is observed at 1 micrometer and full activation at 100 micrometer. These results suggest that cyclic AMP may not mediate all the physiological effects of antidiuretic hormone and that this highly potent cyclic AMP analog may be useful in elucidating the precise role of cyclic AMP in other biomediate hormone action.  相似文献   

5.
A combined physiological and morphological study of the effects of cytochalasin B (CB) on the toad urinary bladder has been carried out. CB inhibits the hydro-osmotic response to vasopressin without altering basal water permeability or diffusion, or the increase in 3H2O diffusion observed after hormone addition. Although CB increases [22Na]-, [36Cl]-, and [14C]urea fluxes, and decreases transepithelial potential, no alteration in basal short-circuit current, the vasopressin-induced increase in this parameter, or [14C]inulin permeability occurs. In the absence of hormone, CB does not markedly alter the structure of the toad bladder. However, in the presence of vasopressin, CB induces the formation of large intracellular vacuoles. These results suggest a possible coupling of solute and water movement across the tissue.  相似文献   

6.
F Marumo 《Life sciences》1978,23(9):907-911
The effect of guanylylimidodiphosphate [Gpp(NH)p] on vasopressin-induced osmotic water flow across the bladder of the toad, Bufobufojaponicus was examined. Gpp(NH)p significantly enhanced vasopressin-induced osmotic water flow of the bladder at a concentration of 1 × 10?5M, while it showed no effect on the water flow without vasopressin. Gpp(NH)p alone could not enhance cyclic AMP-induced osmotic water flow of the toad bladder. Adenylylimidodiphosphate [App(NH)p] could not enhance vasopressin-induced osmotic water flow of the bladder at a concentration of 1 × 10?5M. The results suggest that Gpp(NH)p can enhance the physiological effect of vasopressin by stimulating vasopressin activation of adenylate cyclase during substrate and hormone depletion of the toad bladder.  相似文献   

7.
F Marumo 《Life sciences》1986,39(24):2371-2375
The effects of angiotensins I and II on 10 mU/ml vasopressin-stimulated water flow across toad bladder were examined. Angiotensin I at concentrations of 10(-6) and 10(-7) M enhanced the water flow, but angiotensin II failed to do so at these concentrations. Angiotensin I had no effect on 5 mM cyclic AMP-stimulated water flow. After being preincubated for 30 min with angiotensin II, angiotensin I failed to have any stimulatory effect on vasopressin-stimulated water flow. At 10(-6) M angiotensin I significantly enhanced vasopressin-stimulated cyclic AMP content in bladder mucosal cells. These results indicate that angiotensin I enhances vasopressin-stimulated water flow by increasing cyclic AMP production in bladder cells and that angiotensin II may possibly interfere with angiotensin I in a competitive manner.  相似文献   

8.
Osmotic water movement across the toad urinary bladder in response to both vasopressin and cyclic AMP was inhibited by 10(-5) to 10(-4) M colchicine on the serosal but not on the mucosal side. This inhibitory effect was found to be time- and dose-dependent. Colchicine alone did not change basal osmotic flow and a baseline of the short-circuit current (Isc) and also did not affect a vasopressin-induced rise of the Isc. The inhibitory effect was not prevented by the addition of pyruvate. The osmotic water movement produced by 360 mM Urea (mucosal), 360 mM mannitol (serosal) or 2 mug/ml amphotericin B (mucosal), was not affected by 10(-4) M colchicine. These results suggest that colchicine inhibits some biological process subsequent to the formation of cyclic AMP except a directional cytoplasmic streaming process where microtubules may be involved.  相似文献   

9.
Porcine kidney cortex was utilized for the preparation of plasma-membrane-enriched and soluble cytoplasmic (cytosol) fractions for the purpose of examining the relative properties of cyclic [3H]AMP receptor and cyclic AMP-dependent protein kinase activities of these preparations. The affinity, specificity and reversibility of cyclic [3H]AMP interaction with renal membrane and cytosol binding sites were indicative of physiological receptors.Binding sites of cytosol and deoxycholate-solubilized membranes were half-saturated at approx. 50nM and 100 nM cyclic [3H]AMP. Native plasma membranes exhibited multiple binding sites which were not saturated up to 1 mM cyclic [3H]AMP. Modification of the cyclic phosphate configuration or 2′-hydroxyl of the ribose moiety of cyclic AMP produced a marked reduction in the effectiveness of the cyclic AMP analogue as a competitor with cyclic [3H]AMP for renal receptors. The cyclic [3H]AMP interaction with membrane and cytosol fractions was reversible and the rate and extent of dissociation of bound cyclic [3H]AMP was temperature dependent. With the plasma-membrane preparation, dissociation of cyclic [3H]AMP was enhanced by ATP or AMP.Assay of both kidney subcellular fractions for protein kinase activity revealed that cyclic AMP enhanced the phosphorylation of protamine, lysine-rich and arginine-rich histones but not casein. The potency and efficacy of activation of renal membrane and cytosol protein kinase by cyclic AMP analogues such as N6-butyryl-adenosine cyclic 3′,5′-monophosphate or N6,O2-dibutyryl-adenosine cyclic 3′,5′-monophosphate supported the observations on the effectiveness of cyclic AMP analogues as competitors with cyclic [3H]AMP in competitive binding assays.This study suggested that the membrane cyclic [3H]AMP receptors may be closely associated with the membrane-bound catalytic moiety of the cyclic AMP-dependent protein kinase system of porcine kidney.  相似文献   

10.
Isolated rat kidneys were perfused with a recirculating medium containing exogenous adenosine 3':5'-monophosphate (cyclic AMP) or guanosine 3':5'-monophosphate (cyclic GMP) at an initial concentration of 0.1 mM. Both cyclic nucleotides were rapidly removed from the perfusate. Urinary excretion accounted for about 20% and 40% of the respective cyclic AMP and cyclic GMP lost from the perfusate. The metabolism of the cyclic nucleotides was studied by 14C-labeled cyclic nucleotides in the perfusate. During 60 min, 30% of added cyclic [14C]AMP was metabolized to renal [14C]adenine nucleotides (ATP, ADP, and AMP) and 30% to perfusate [14C]uric acid. Similarly, 20% of cyclic[14C]GMP was metabolized to renal [14C]guanine nucleotides (GTP, GDP, and GMP) and 30% to perfusate [14C]uric acid. Urine contained principally unchanged 14C-labeled cyclic nucleotide. Addition of 0.1 mM cyclic AMP to the perfusate elevated the renal ATP and ADP contents 2-fold. Addition of 0.1 mM of either cyclic AMP or cyclic GMP to the perfusate also elevated the renal production of uric acid 2- to 3-fold. The production and distribution of metabolites of exogenous cyclic nucleotides were also studied in the intact rat. Within 60 min after injection, 3.3 mumol of either 14C-labeled cyclic AMP or cyclic GMP was cleared from the plasma. Kidney cortex and liver were the principal tissues for 14C accumulation. Urinary excretion accounted for about 20 and 45% of the cyclic [14C]AMP and cyclic [14C]GMP lost from the plasma, respectively. The 14C found in the kidney and liver was present almost entirely as the respective purine mono-, di-, and trinucleotides. The other principal metabolite was [14C]allantoin, found in the urine and, to a lesser extent, the liver. The urine contained mostly unchanged 14C-labeled cyclic nucleotide. Unlike the findings with the perfused kidney, [14C]uric acid was not a significant metabolite of the 14C-labeled cyclic nucleotides in these in vivo experiments.  相似文献   

11.
The urinary bladder of Bufo marinus excretes H+ and NH+4, and the H+ excretion is increased after the animal is placed in metabolic acidosis. The present study was done to determine if parathyroid hormone could stimulate the bladder to increase the excretion of H+ and/or NH+4. Parathyroid hormone added to the serosal solution in a final concentration of 10 mug/ml was found to increase H+ excretion by 50 per cent above the control hemibladders, while there was no effect on NH+4 excretion. Parathyroid hormone had no effect on H+ excretion when added to the mucosal solution. We also performed experiments utilizing theophylline and dibutyryl cyclic AMP which mimicked those of the parathyroid hormone experiments. A dose-response analysis was performed and the results indicate that 1 mug/ml of parathyroid hormone was the minimal effective dose. These results suggest that parathyroid hormone can stimulate H+ excretion in the toad urinary bladder and this effect seems to be mediated by cyclic AMP. In addition, it was found that parathyroid hormone has no effect on NH+4 excretion.  相似文献   

12.
Intravenous infusion of salmon calcitonin in six healthy subjects produced an increase in the plasma levels and urinary excretion of cyclic AMP. Cyclic AMP clearance diminished but remained higher than inulin clearance. Salmon calcitonin was also infused in six hypertensive patients with normal glomerular filtration rate. Arterial and renal venous plasma concentration of cyclic AMP were clearly raised. The difference between both these concentrations was not significant in the control periods but became marked during the treatment and post treatment periods demonstrating a net extraction of cyclic AMP from plasma by the kidneys. Renal extraction of cyclic AMP was lower than its urinary excretion in the control periods whereas it was clearly higher after salmon calcitonin was given. This shows that salmon calcitonin stimulates the production of cyclic AMP in extra-renal tissues and that the excess of cyclic AMP formed is catabolized by the kidneys.  相似文献   

13.
Interation of cyclic AMP with a profoundly changing pattern of specific binding proteins was shown during aerobic germination of sporangiospores from the fungus Mucor racemosus. 32P-labeled 8-azido-cycli AMP, an analogue of cyclic AMP that forms a covalent linkage with the binding proteins under u.v. light, was used as the ligand. Binding proteins carrying this photoaffinity label were separated by polyacrylamide-gel electrophoresis and identified by radioautography. Equibiltrium dissociation constants (Kd) and binding-response curves in the presence of competing nucleotides were identical for both 8-azido-cyclic [32P]AMP and cyclic [3H]AMP. A quantitative binding assay with both 8-azido-cyclic [32P]AMP and cyclic [3H]AMP over the time course of sporangiospore germination indicated a parallel relationship between cyclic AMP-binding capacity and the intracellular concentrations of cyclic AMP reported in a previous study [Paznokas & Sypherd (1975) J. Bacteriol. 124, 134--139]. Both of these parameters attained transient high values at a time of development when addition of exogenous cyclic AMP prevents hyphal-germ-tube emergence. The measured Kd values did not change during sport germination.  相似文献   

14.
Pinealocytes were prelabelled with [14C]taurine. Twenty-four hours later they were treated with derivatives of cyclic AMP. It was found that dibutyryl cyclic AMP and ?-chloro-phenyl-thio cyclic AMP treatment caused a large increase in the release of [14C]taurine. The effect of dibutryl cyclic AMP on [14C]taurine release was near maximal fifteen minutes after treatment started. In view of the known stimulatory effects of norepinephrine on pineal cyclic AMP and the recent discovery that norepinephrine causes the release of taurine from pinealocytes, one can conclude that norepinephrine stimulates [14C]taurine release from pinealocytes by acting through a cyclic AMP mechanism.  相似文献   

15.
Primary cultures containing ≥99% neurons, ≥99% non-neuronal cells (glia), or both cell types were prepared from the sympathetic ganglia of 12-day chick embryos. Levels of cyclic AMP in the non-neuronal cells (~14 pmol/mg protein) were approximately 3-fold higher than levels in the neurons (~4 pmol/mg protein). Mixed cultures had concentrations of cyclic AMP which fell between the values measured for pure neuronal and pure non-neuronal cultures. The measured cyclic AMP values of mixed cultures were indistinguishable from values predicted by summing the expected contributions of the neurons and non-neuronal cells. Thus, contact between the neurons and non-neuronal cells in these mixed cultures did not appear to alter the level of cyclic AMP in either cell type. Neuronal-glial interactions, such as the specific neuronal stimulation of non-neuronal cell proliferation, occurred independently of any changes in the level of cyclic AMP in the mixed cultures. Cell density was varied in both pure and mixed cultures, and both cyclic AMP concentrations and amounts of [3H]thymidine incorporation into DNA were measured. The cyclic AMP content of the non-neuronal cells varied inversely with cell density. [3H]Thymidine incorporation was independent of cell density in both neuronal and non-neuronal cultures. Parallel density-dependent decreases in cyclic AMP concentration and [3H]thymidine incorporation were observed in mixed cultures as cell density was increased. The data suggest that there is no relationship between changes in rate of non-neuronal cell proliferation and cyclic AMP levels in these cultures.  相似文献   

16.
The role of cyclic nucleotides in regulating acid secretion by dispersed mucosal cells from guinea-pig stomach was examined by measuring first the ability of histamine and carbachol to stimulate [dimethylamine-14C]aminopyrine uptake and cyclic nucleotide metabolism and secondly, the effect of exogenous cyclic nucleotides on basal and stimulated [14C]aminopyrine uptake. The [14C]aminopyrine was found in an acidic, osmotically sensitive compartment, probably associated with the initial steps in acid secretion by these cells. Although histamine increased [14C]aminopyrine uptake and cyclic AMP synthesis as expected, histamine was approx. 10-fold more potent in inducing [14C]aminopyrine uptake. This dissociation of [14C]aminopyrine uptake and cyclic AMP metabolism process was further manifested by the observation that prostaglandin E1 failed to increase [14C]aminopyrine uptake, although it did cause a rise in cellular cyclic AMP. Furthermore, prostaglandin E1 did not alter the [14C]-aminopyrine uptake caused by histamine. Carbachol was found to increase the [14C]aminopyrine uptake and also to potentiate the ability of histamine to increase [14C]aminopyrine uptake. Carbachol, however, affected neither the histamine-induced increase in cyclic AMP nor the binding of [3H]histamine to the cells. Cimetidine, a histamine H2 receptor antagonist, blocked the [14C]aminopyrine uptake induced either by histamine alone or by the potentiating combination of histamine plus carbachol. These results suggest that cyclic AMP is mediating the action of histamine on [14C]aminopyrine uptake but changes in cyclic AMP per se are not necessarily the cause for the potentiated increase in [14C]aminopyrine uptake. Furthermore, the potentiated response observed with histamine plus carbachol on [14C]aminopyrine uptake occurs at a biochemical step distal to and not obviously related to cyclic AMP generation.  相似文献   

17.
Water flow across the amphibian urinary bladder can be induced by either vasopressin or serosal hypertonicity. In an effort to determine the common intracellular steps mediating both responses, we determined the in situ activation of cyclic AMP-dependent protein kinase in bladders stimulated by vasopressin or hypertonicity. Treatment of bladders with vasopressin (1 mU/ml) caused in situ activation of cytosolic cyclic AMP-dependent protein kinase of epithelial cells, with a rise in the kinase ratio and cyclic AMP content. Similarly, hyperonicity increased the kinase ratio, but this occured without a measurable increase in cyclic AMP content per mg protein. Because of the hypertonicity-induced cell shrinkage, epithelial cell water decreased by 20%, which may result in a proportionate increase in cyclic AMP concentration (per ml cell water). Furthermore, cell shrinkage also increases intracellular electrolyte concentration, which, in turn, should delay reassociation and consequent inactivation of the predominant Type II cyclic AMP-dependent protein kinase of the epithelial cells. Thus activation of cyclic AMP-dependent protein kinase during hypetonicity may be the result of cell shrinkage, with an associated increase in cyclic AMP and electrolyte concentrations. Studies with prostaglandin synthesis inhibitors and colchicine, a microtubule disrupting agent, also indicated common pathways for vasopressin and hypertonicity. Both naproxen and meclofenamate significantly enhanced the hypertonicity response. Colchicine pretreatment, on the other hand, caused a small (18%) but significant inhibition of the hypertnicity response, similar to its effect on the vasopressine response (25% inhibition). Thus, the increased water permeability of the toad bladder in response to both vasopressin and hypertonicity follows a similar pathway. Activation of cyclic AMP-dependent protein kinase represents the first common step yet identified.  相似文献   

18.
Bladder outlet obstruction (BOO) is a common disorder that is associated with altered bladder structure and function. For example, it is well established that BOO results in hypertrophy and hyperplasia of the bladder smooth muscle as well as detrusor instability. Since prostaglandins (PGs) and cyclic nucleotides (cyclic AMP [cAMP] and cyclic GMP [cGMP]) mediate both smooth muscle tone and proliferation, it is reasonable to suggest that changes in their levels may be involved in the pathophysiology of BOO-associated bladder disorders. Hence, the objective of this study was to investigate cyclic AMP, cyclic GMP and prostaglandins in the bladder of a rabbit model of BOO. BOO was induced in adult male New Zealand White rabbits. After 3 weeks, urinary bladders were excised, weighed and cut into segments. They were then incubated with stimulators of PGs, cAMP and cGMP and the formation of PGs, cAMP and cGMP were measured using radioimmunoassays. There was a significant increase in the obstructed bladder weights (P=0.002). The formation of PGE2, PGI2, cAMP and cGMP was significantly diminished in the detrusor (P<0.05) and bladder neck (P<0.05) in the BOO bladders compared to age-matched controls. Since PGE2, PGI2, cAMP and cGMP are known to inhibit the proliferation of smooth muscle cells (SMCs), the decreased synthesis of these factors, in BOO, may play a role in bladder SMC hypertrophy/hyperplasia. Our study points to the possible use of drugs that modulate the NO-cGMP and/or PG-cAMP axes in BOO-associated bladder pathology.  相似文献   

19.
The effects of time and cyclic AMP concentration on cyclic AMP uptake and membrane phosphorylation were studied using intact human erythrocytes. The rate of uptake of cyclic [3H]AMP was nearly linear with respect to cyclic AMP concentration. The amount taken up was small compared to the extracellular cyclic AMP concentration, but was sufficient to significantly increase the intracellular cyclic AMP concentration. Incubation with cyclic AMP resulted in increased incorporation of 32Pi into several phosphorylated membrane peptides of the intact erythrocytes. Although cyclic AMP altered the distribution of radioactivity among the membrane components, the total amount of incorporation was not increased. The effect of cyclic AMP on phosphorylation of membrane peptides was observed with extracellular cyclic AMP concentrations as low as 1 μm and was most pronounced in incubations of 1 to 4 h. These results indicate that cyclic AMP can enter erythrocytes in sufficient amounts to alter the activity of cyclic AMP-dependent protein kinases, or to alter the rate of turnover of certain phosphorylated membrane peptides.  相似文献   

20.
Renal cortical plasma membranes were solubilized with sodium deoxycholate. The membrane-bound cyclic AMP receptors retained biologic activity in the detergent-dispersed state exhibiting the properties of high affinity for cyclic AMP, saturability and specificity. Half-maximal binding of cycle [3H]-AMP to these receptors was found to occur at 0.06 muM and 1.5 pmol of cyclic [3H]AMP was bound per mg membrane protein at saturation (0.5 muM cyclic [3H]AMP). Sodium deoxycholate-solubilized membrane proteins were chromatographed on Biogel A-5m. Cyclic [3H]AMP receptors eluted in the internal volume at positions equivalent to molecular sizes of 50 000 and 20 000 daltons and in the void volume at molecular size greater than 450 000. After photoaffinity labeling the renal membrane receptors with cyclic [3H]AMP, we found peaks of tritium radioactivity which eluted at similar molecular size positions on this Bogel A-5m column. Further treatment of photoaffinity labeled membranes with sodium dodecyl sulfate, mercaptoethanol and urea, followed by polyacrylamide gel electrophoresis, showed bands of tritium-labeled receptor protein with relative mobilities corresponding to molecular sizes of 26 000 and 21 000 daltons. This study shows that porcine renal cortical membranes contain at least two molecular species of cyclic AMP receptors which may be associated with regulation of the membrane-bound cyclic AMP-dependent protein kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号