首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method was devised by which different zones along a singleseminal axis of an intact plant could be exposed for extendedperiods to contrasting concentrations of nitrate (either 0.01or 1.0 mM) in continuous flow, the supply of all other nutrientsbeing favourable throughout. The concentration of nitrate wasfound to exert a direct and strictly localized effect upon thegrowth of lateral roots which, depending upon the supply ofassimilates from the shoot, resulted in marked modificationsto the form of the root system. Zones receiving 1.0 mM nitrateshowed an increase in the number and extension rate of bothfirst- and second-order laterals, associated with a preferentialaccumulation of dry matter, compared with zones in 0.01 mM nitrate.The average number of laterals (both first and second order)per cm of parent root was 4.4 in the presence of 1.0 mM nitrateand 2.2 in 0.01 mM. The average extension rates of first-orderlaterals were 0.61 and 0.26 cm d–1 and second-order laterals,0.10 and 0.05 cm d–1 for nitrate concentrations of 1.0and 0.01 mM respectively. The precise numbers and extensionrates of laterals in any one zone were affected, however, bythe rate of growth of laterals in other parts of the root system.In contrast, the extension rates of axes were little affectedby the concentration of nitrate to which their apical meristemswere exposed and approached 2.0 cm d–1 provided the plantswere not nitrogen-starved. The significance of these resultsto the physiology of root growth and soil-plant relations isdiscussed.  相似文献   

2.
Barley (Hordeum vulgare L., cvs Golf, Mette, and Laevigatum)was grown under nitrogen limitation in solution culture untilnear maturity. Three different nitrogen addition regimes wereused: in the ‘HN’ culture the relative rate of nitrate-Naddition (RA) was 0·08 d–1 until day 48 and thendecreased stepwise to, finally, 0·005 d–1 duringgrain-filling; the ‘LN’ culture received 45% ofthe nitrogen added in HN; the ‘CN’ culture was maintainedat RA 0·0375 d–1 throughout. Kinetics of net nitrateuptake were measured during ontogeny at 30 to 150 mmol m–3external nitrate. Vmax (which is argued to reflect the maximuminflux rate in these plants) declined with age in both HN andLN cultures. A pronounced transient drop was observed just beforeanthesis, which correlated in time with a peak in root nitrateconcentration. Similar, but less pronounced, trends were observedin CN. The relative Vmax (unit nitrogen taken up per unit nitrogenin plants and day) in all three cultures declined from 1·3–2·3d–1 during vegetative growth to 0·1–0·7d–1 during generative growth. These values are in HN andLN cultures 15- to more than 100-fold in excess of the demandset by growth rates throughout ontogeny. Predicted balancingnitrate concentrations (defined as the nitrate concentrationrequired to support the observed rate of growth) were below6·0 mmol m–3 in HN and LN cultures before anthesisand then decreased during ontogeny. In CN cultures the balancingnitrate concentration increased during grain-filling. Apartfrom the transient decline during anthesis, most of the effectof ageing on relative Vmax can be explained in terms of reducedcontribution of roots to total biomass (R:T). The loss in uptakeper unit root weight is largely compensated for by the declinewith time in average tissue nitrogen concentrations. The quantitativerelationships between relative Vmax and R:T in ageing plantsare similar to those observed for vegetative plants culturedat different RAs. The data support the contention that the capacity for nitrateacquisition in N-limited plants is under general growth control,rather than controlled by specific regulation of the biochemicalpathway of nitrate assimilation. Key words: Barley, nitrogen concentration, root: total plant biomass ratio, Vmax  相似文献   

3.
Responses to a localized supply of phosphate were studied inbarley grown in continuous flow solution culture. Root systemswere either uniformly supplied with 50 µM phosphate (controls)or the same solution was supplied to only a 4 cm or 2 cm lengthof a seminal root (localized supply), the remainder of the rootsystem receiving a nutrient solution lacking phosphate. Little development of laterals occurred on those parts of theroot system receiving no phosphate from the external solution,while an increase in the number and extension of laterals tookplace in the 4 cm zone enriched with phosphate. Compared withsimilar zones on controls, the total length of laterals wasincreased 15-fold in 21 d plants. In addition, rates of 32P-phosphateuptake and translocation to shoots per unit root weight werehigher than in controls by a factor of 2?5–5?0. Furtherincreases in the growth of lateral roots, and rates of phosphateuptake, were induced when the segment initially supplied withphosphate was restricted to only 2 cm. These localized modifications to root growth and uptake of phosphatelargely compensated for the deficient supply of phosphate tothe remainder of the root system. After an early period of retardedgrowth and phosphate stress, the relative growth rate of plantsand the concentration of phosphate in shoots were restored tolevels similar to that of the controls. The manner in which the supply of phosphate may control rootdevelopment, and the nature of the co-ordination between rootgrowth, phosphate uptake, and shoot growth, are discussed.  相似文献   

4.
Tobacco shoots were grown in vitro for 35 d, in MS culture mediummodified to include various sources (nitrate-N, ammonium-N ora mixture) and levels (0–120 mM) of N, and in the presenceof 0–180 mM NaCI or iso-osmotic concentrations of mannitol.Growth of control plantlets was significantly inhibited whenNH4+-N was the sole N source, and at high (120 mM) NO3-N supply. Under conditions of salt stress (90 and 180 mM NaCI)growth was repressed, with roots being more severely affectedthan shoots. Salinity also inhibited root emergence in vitro.The only alleviation of the salt stress by nitrate nutritionobserved in this study was on shoot growth parameters of plantletsgrown on 60 mM NO3-N and 90 mM NaCI. Although both weresignificantly inhibited by NaCI, nitrate reduc-tase activitywas more severely affected than nitrate uptake. When mannitolreplaced NaCI in the culture medium, similar Inhibition of growth,nutrient uptake and enzyme activity were recorded. These observations,together with the relatively low recorded values for Na+ andCI uptake, indicate that under in vitro salt stress conditionsthe negative effects of NaCI are primarily osmotic. Key words: Growth, nitrogen metabolism, osmotic stress, salinity  相似文献   

5.
The effects of excess salinity and oxygen deficiency on growthand solute relations in Zea mays L. cv. Pioneer 3906 were examinedin greenhouse experiments. The roots of plants 14 d old growingin nutrient solution containing additions of NaCl in the range1.0–200 mol m–3 were either exposed to a severedeficiency of O2 by bubbling with nitrogen gas (N2 treatment),or maintained with a supply of air (controls), for a periodof 1–7 d. The threshold NaCl concentration resulting inappreciable inhibition of leaf extension, and shoot f. wt gainin controls was between 10 and 25 mol m–3. At 25 mol m–3NaCl the ratio of Na+/K+ transported to shoots was about 20times greater than in plants in 1.0 mol m–3 NaCl. Theeffect of addition of NaCl to the nutrient solution was to enhanceNa+ movement but simultaneously depress the rate of K+ transportto shoots (per g f. wt roots). Interactions between NaCl levels and aeration treatment wereshown by analyses of variance to be statistically significantfor leaf extension, shoot and root f. wt gains, Na+ and K+ concentrationsin shoots and roots. When roots were N2-treated, shoot and rootgrowth were depressed, the effect of aeration treatment beinggreatest at NaCl concentrations of 50 mol m–3 or less.Additionally, N2-treatment greatly accelerated Na- transportto shoots while depressing K+ transport still further, so thatat 10 mol m–3 NaCl the ratio Na+/K+ acquired by the shootswas 230 times greater than in controls. Over the concentrationrange 1.0 to 50 mol m–3 NaCl, the ratio Na+/K+ transportedto shoots by anoxic roots increased by a factor of 860. Mechanisms controlling changes in solute flux to the shoot,and the significance in relation to plant tolerance of excesssalts or oxygen deficiency are discussed. Anaerobic, corn, flooding, maize, oxygen-deficiency, salinity  相似文献   

6.
Growth and nitrate uptake kinetics in vegetatively growing barley(Hordeum vulgare L., cvs Laevigatum, Golf, and Mette) were investigatedin solution culture under long-term limitations of externalnitrogen availability. Nitrate was fed to the cultures at relativeaddition rates (RA) ranging from 0.02 to 0.2 d–1. Therelative growth rate (RG, calculated for total plant dry weight)correlated well with RA in the range 0.02 to 0.07 d–1.In the RA range from 0.07 to 0.2 d–1 RG continued to increase,but an increasing fraction of nitrogen, added and absorbed,was apparently stored rather than used for structural growth.The RG of the roots was less affected by RA. Vmax, for net nitrateuptake increased with RA up to 0.11 d–1, but decreasedat higher RA. The decline in Vmax coincided with a build-upof nitrate stores in both roots and shoots. Vmax, expressedper unit nitrogen in the plants (the relative Vmax, was higherthan required for maintenance of growth (up to 30-fold) at lowRA, whereas at higher RA the relative Vmax decreased. Kineticpredictions of steady-state external nitrate concentrationsduring N-limited growth ranged from 0.2 to 5.0 mmol m–3over the RG range 0.02 to 0.11 d–1. It is suggested thatthe nitrate uptake system is not under specific regulation atlow RA, but co-ordinated with root protein synthesis and growthin general. At RA higher than 0.11 d–1, however, specificregulation of nitrate uptake, possibly via root nitrate pools,become important. The three cultivars showed very similar growthand nitrate uptake characteristics. Key words: Barley, growth, nitrogen limitation, nitrate uptake, kinetics  相似文献   

7.
Lawlor, D. W., Boyle, F. A., Keys, A. J., Kendall, A. C. andYoung, A. T. 1988. Nitrate nutrition and temperature effectson wheat: a synthesis of plant growth and nitrogen uptake inrelation to metabolic and physiological processes.—J.exp. Bot. 39: 329-343. Growth of spring wheat was measured in cool (13°C day/10°Cnight) or warm (23°C/18°C) temperatures, combined withlarge and small amounts of nitrate fertilizer. The rate of growthof dry matter was less at cool temperatures but total growthover the same period of development was slightly greater inthe cool than in the warm. Main-shoot and tiller leaves grewslower and, despite growing for a longer period, were shorterin the cool than in the warm. They had greater fresh and drymass and content of starch and fructosans per unit area. Coolconditions increased root dry mass, root to shoot ratio andnitrogen content in dry matter. Additional nitrate increasedleaf area of main shoots slightly but of tillers greatly; itincreased leaf and tiller dry matter and total plant dry mass.Additional nitrate decreased the proportion of dry matter inroots and in stems and the N content of dry matter in all plantparts. Regulation of growth by temperature, nitrate supply andthe rôle of photosynthesis and nitrogen uptake, is consideredin relation to the mechanisms of incorporation of carbon andnitrogen into biochemical constituents. It is concluded thattemperature regulates the rate of protein synthesis, which determinesplant growth rate. Nitrogen flux into the plant is not directlylinked to protein synthesis so that the content of NO3and of amino acids is related both to growth and to conditionsgoverning NO3 uptake and its reduction. When nitrogensupply is large, growth is limited by temperature, not NO3.Inadequate nitrate supply decreases protein synthesis (and thereforegrowth) more than it decreases carbon assimilation, so thatorgans such as roots and stems increase in dry matter relativeto shoots and all tissues have smaller proportions of nitrogenin dry matter. Cool conditions, although decreasing the rateof protein synthesis, increase its duration and decrease thesize of leaves, so that the content of protein per unit leafarea is greater in cool than in warm grown leaves. Consequencesof changes in the balance of N and C supply and growth ratefor dry matter distribution in plants are discussed. Key words: Wheat, nitrate nutrition, temperature  相似文献   

8.
The effect of iodotyrosine and its related compounds on theroot elongation was studied using intact roots of rice seedlingsgrown on an agar medium and in a culture solution. MIT (3-monoiodotyrosine), DIT (3,5-diiodotyrosine) markedlystimulated the growth of seminal root, but tyrosine itself wasnot active. Both iodinated amino acids doubled the length ofseminal root in comparison with the control when used at theconcentration of 10–5M, where the growth of shoot andcrown root was not affected. And above 10–5M, the developmentof lateral root and root hairs was inhibited. DBT (3,5-dibromotyrosine) also notably increased the lengthof seminal root. Potassium iodide did not accelerate the growthof root. (Received September 18, 1964; )  相似文献   

9.
Maize (Zea mays L.) was grown in quartz sand culture eitherwith a normal root system (controls) or with seminal roots only(‘single-rooted’). Development of adventitious rootswas prevented by using plants with an etiolated mesocotyl andthe stem base was positioned 5–8 cm above the sand. Eventhough the roots of the single-rooted plants were sufficientlysupplied with water and nutrients, the leaves experienced waterdeficits and showed decreased transpiration as trans plrationalwater flow was restricted by the constant number of xylem vesselspresent in the mesocotyl. As a consequence of this restriction,transpirational water flow velocities in the metaxylem vesselsreached mean values of 270 m h–1 and phloem transportvelocities of 5.2 m h–1. Despite limited xylem transportmineral nutrient concentrations in leaf tissues were not decreasedin single-rooted plants, but shoot and particularly stem developmentwas somewhat inhibited. Due to the lack of adventitious rootsthe shoot:root ratio was strongly increased in the single-rootedplants, but the seminal roots showed compensatory growth comparedto those in control plants. Consistent with decreased leaf conductance,ABA concentrations in leaves of single-rooted plants were elevatedup to 10-fold, but xylem sap ABA concentrations in these plantswere lower than in controls, in good agreement with the well-wateredconditions experienced by the seminal roots. Surprisingly, however,ABA concentrations in tissues of the seminal roots of the single-rooted plants were clearly increased compared to the controls,presumably due to increased ABA import via phloem from the water-stressedleaves. The results are discussed in relation to the role ofABA as a shoot to root signal. Key words: Zea mays, seminal roots, plant development, xylem transport, mineral nutrition, ABA, shoot-to-root signal  相似文献   

10.
The vegetative growth of Dactylis glomerata L. in sand was studiedunder controlled light, temperature, and nutritional conditions.Plants were daily supplied with three nutrient solutions ofdifferent nitrate concentrations (10–2, 10–3 and2 x 10–4 mol I–1). For each concentration, growthobeyed an exponential law between the fourth and seventh weeksafter sowing. The time constant of the exponential was the samefor the shoot as for the root, and showed no significant variationwith nitrate concentration. The kinetic results and the strong dependence of the root: shootratio on nitrate concentration are discussed on the basis ofThornley's model. Hypothesizing that the molecular mechanismsof nitrate absorption are independent of the nitrate concentrationof the nutrient solution, we derived a relationship betweenthe root: shoot ratio and nitrate concentration. This relationshipwas found to be compatible with the experimental results. Dactylis glomerata L., vegetative phase, kinetics of growth, root: shoot equilibrium, nitrate absorption  相似文献   

11.
Nitrate ion uptake by the roots of hydroponically grown maizeseedlings was measured using the short-lived isotope 13N. Itis shown to be described by a four compartment model, recognizablynitrogen in the root bathing solution, nitrogen which is readilyexchangeable from the root, nitrogen bound in the root, andnitrogen transported from the root. Some of the absorbed activity leaks back into the root bathingsolution with the efflux from the root, as a fraction of theinflux, increasing with concentration to be greater than 0–8at external nitrate ion concentrations above about 1.0 mol m–3.The capacity of the exchangeable root pool increases with externalnitrate ion concentration, approaching the expected cytoplasmicnitrate ion content at the highest external nitrate ion concentrationsstudied (70 mol m–3). The investigation has highlighted the problems of interpretinguptake profiles in experiments for which the 10 min half-lifeof 13N dictates experimental times that are comparable withthe times for saturation of root pools. Key words: Zea mays, 13N, Compartmental model, Nitrate uptake  相似文献   

12.
Seven heathland species, four herbaceous plants and three dwarfshrubs, were tested for their capacity to utilize NH4+ or NO3. When cultured in solution at pH 4.0 with 2mol m–3 N,all species showed similar growth responses with respect toN source. Nitrate was assimilated almost equally well as ammonium,with relative growth rate generally averaging 5–8% lowerfor NO3 grown plants, albeit not always significantly.However, N source was significantly and consistently correlatedwith biomass partitioning, as NH4+-fed plants allocated moredry matter to shoots and less to roots when compared to NO3-fed plants. The strong difference in biomass partitioning mayrelate to the relative surplus of carbon per unit plant N (or,alternatively, the relatively suboptimal rate of N assimilationper unit plantC) in NO3-fed plants Inherently slow-growing dwarf shrubs accumulated virtually nofree nitrate in their tissues and reduction of nitrate was strictlyroot-based. Faster-growing herbaceous plants, however, partitionedthe assimilation of nitrate over both shoots and roots, therebyaccumulating relatively high tissue NO3 levels. Ion uptakerates depended clearly on the ‘relative shoot demand’.At similar shoot demands, especially in the herbaceous species,specific uptake rates for N and total inorganic (non-N) anionswere higher in NH4+ -fed plants, whereas the uptake rate fortotal (non-N) cations was higher in NO3-fed plants. Rateof P uptake was enhanced with increasing plant demand, but wasindependent of the N source. Net H+ extrusions ranged from 1.00to 1.34 H+ per NH4+, and from –0.48 to –0.77 H+per NO3 taken up. Key words: Ammonium, biomass partitioning, heathland plants, low pH, nitrate, nitrate reductase activity, relative shoot demand, specific absorption rate  相似文献   

13.
The pattern of lateral root initiation in seminal roots of wheat(Triticum aestivumL. cv. Alexandria) and the location, scaleand time-course for adjustments in initiation were studied afterchanges in C and N supply. Macroscopically visible primordiaappeared in a non-acropetal sequence with the frequency (numberper unit length) increasing with distance behind the main rootapex to a maximum at 40–50 mm behind the root tip. Pruningthe root system to a single seminal axis increased the primordiafrequency by 23% within 15 h. After longer periods, the effectof root-pruning was greater. The enhanced primordia frequencywas first observed in tissue located 0–10 mm behind theapex at the start of treatment. Feeding glucose (50 mM) alsoincreased primordia frequency within 15 h, but to a greaterextent, and here additional primordia were initiated in tissuelocated 0–10and10–20 mm behind the apex at the startof treatment. Withdrawing NO3-from one part of a split-rootsystem, whilst maintaining the supply to the other, reducedprimordia frequency in the non-fed roots and, in some cases,a compensatory increase in the NO3--fed roots was observed.The location and scale of the adjustments were similar to thosefound with root-pruning and glucose-feeding, but were slightlyslower to appear. In spite of some differences in detail, therewas a broad similarity in site, scale and time-course for adjustmentsin lateral root initiation with these treatments, which is consistentwith the operation of a common mechanism. Whenever an increasein primordia frequency was observed, it was associated withan increase in the ethanol-soluble sugar content of the tissue.However, the reduction in frequency in NO3--deprived roots wasalso accompanied by an increase in sugar content. There wasno consistent relationship between total N content of the tissueand primordia frequency, but there was between primordia frequencyand the rate of net NO3-uptake. The possible mechanisms controllinglateral root initiation are discussed. Compensatory growth; correlative growth; glucose; initiation; lateral root; nitrate; primordium; split-root; Triticum aestivum; wheat  相似文献   

14.
We studied the response of maize (Zea mays L. cv. Anjou 256)to a simultaneous, but separated supply of ammonium and nitrate(localized supply, LS). A split-root system was used to supplyhalf of the roots with ammonium and the other half with nitrate.A homogeneously distributed supply of both nitrogen forms (HS)was the control treatment. Seedlings were grown for 12 d fromthe two-leaf to the three-leaf stage in hydroponics at threepH levels (4, 5·5 and 7). The total N concentration was3 mol m-3. The split-root system was established by removingthe seminal root system and using only four nodal roots perplant. Total root length and root surface area were recordedautomatically with a modified Delta- T area meter. Other morphologicalroot traits (such as main axis length and diameter, number,density, and length of laterals) were recorded manually. Uptakeof ammonium and nitrate was measured by the depletion of thenutrient solution. As compared with LS, HS was superior in shootand root DM, total root length and root surface area, ammoniumand nitrate uptake and shoot nitrogen concentration, irrespectiveof pH level. This indicates that, also under field conditions,mixed ammonium and nitrate fertilization is only beneficialto plant growth if both N forms are evenly distributed in thesoil. At both HS and LS, ascending pH increased the ammonium:nitrateuptake ratio. At LS, declining pH induced a considerable shiftin the distribution of root DM, root length, and root surfacearea the nitrate-fed compartment.Copyright 1993, 1999 AcademicPress Maize, Zea may L., ammonium, nitrate, pH, root morphology, split-root  相似文献   

15.
The aim of this study was to determine the relationship between shoot nitrate concentration, mediated by nitrate supply to roots, and root exudation from Hordeum vulgare. Plants were grown for 14 d in C-free sand microcosms, supplied with nutrient solution containing 2 mM nitrate. After this period, three treatments were applied for a further 14 d: (A) continued supply with 2 mM nitrate (zero boost), (B) supply with 10 mM nitrate (low boost), and (C) supply with 20 mM nitrate (high boost). At the end of the treatment period, a bacterial biosensor (Pseudomonas fluorescens 10586 pUCD607, marked with the lux CDABE genes for bioluminescence) was applied to the microcosms to report on C-substrate availability, as a consequence of root exudation. The nitrate boost treatments significantly affected shoot nitrate concentrations, in the order C>B>A. In treatments receiving a nitrate boost (B, C), increased shoot nitrate concentration was correlated with increased plant biomass, reduced root length, reduced number of root tips, and increased mean root diameter, relative to the no boost treatment (A). Imaging of biosensor bioluminescence (proportional to metabolic activity in response to availability of root exudates) indicated that root exudation increased with decreasing shoot nitrate concentration. Biosensor reporting of root C-flow indicated that exudation was greater from root tip regions than from the whole root, but that specific exudation rates for all sites were unaffected by treatments. Total root exudation across treatments was found to be closely correlated with total root length, indicating that increased root exudation, per unit root biomass, with decreasing nitrate supply was associated with altered root morphology, as a consequence of systemic plant responses to internal N-status.  相似文献   

16.
Nitrate assimilation was examined in two cultivars (Banner Winterand Herz Freya) of Vicia faba L. supplied with a range of nitrateconcentrations. The distribution between root and shoot wasassessed. The cultivars showed responses to increased applied nitrateconcentration. Total plant dry weight and carbon content remainedconstant while shoot: root dry weight ratio, total plant nitrogen,total plant leaf area and specific leaf area (SLA) all increased.The proportion of total plant nitrate and nitrate reductase(NR) activity found in the shoot of both cultivars increasedwith applied nitrate concentrations as did NO3: Kjeldahl-Nratios of xylem sap. The cultivars differed in that a greaterproportion of total plant NR activity occurred in the shootof cv. Herz Freya at all applied nitrate concentrations, andits xylem sap NO3: Kjeldahl-N ratio and SLA were consistentlygreater. It is concluded that the distribution of nitrate assimilationbetween root and shoot of V. faba varies both with cultivarand with external nitrate concentration. Vicia faba L., field bean, nitrate assimilation, nitrate reductase, xylem sap analysis  相似文献   

17.
Effects of root temperatures, ranging from 10–35 °C, on growth and nitrate inflow of fodder rape seedlings (cv.Emerald) were examined. These were cultured in solution, withtheir shoots held at 25 ° C. Nitrate inflow (uptake rateper unit root length) was little affected over the temperaturerange 10–30 ° C, although enhanced values were foundat 35 ° C. Nitrate absorption by roots at 10-30 ° Cdepleted solution concentrations to an apparent minimum of approximately6.0 µM NO3. Relative growth rates were highestwith root temperatures of 25 ° C and 30 °C, and thesewere associated with the greatest nitrate depletion rates fromsolution. Root: shoot weight ratios were also greatest at 25°C and 30 °C. At 10 °C and 35 °C a relativelylarge shoot on a small root maintained nitrate inflow in spiteof the plants' slow growth rate. The nitrogen concentrationin the shoots was little affected by root temperature. Slowgrowth at a root temperature of 10 °C was not associatedwith a shortage of nitrogen in the shoots. The principal influenceof temperature appears to be on extension and differentiationof root tissues, possibly through effects on carbohydrate supplyto root meristems.  相似文献   

18.
The influence of varied supply of phosphorus (10 and 250 mmolP m–3) potassium (50 and 2010 mmol K m–3) and magnesium(20 and 1000 mmol Mg m–3) on the partitioning of dry matterand carbohydrates (reducing sugars, sucrose and starch) betweenshoots and roots was studied in bean (Phaseolus vulgaris) plantsgrown in nutrient solution over a 12 d period. Shoot and rootgrowth were quite differently affected by low supply of P, K,and Mg. The shoot/root dry weight ratios were 4.9 in the control(sufficient plants), 1.8 in P-deficient, 6.9 in K-deficientand 10.2 in Mg-deficient plants. In primary (source) leaves,but not in trifoliate leaves, concentrations of reducing sugars,sucrose and starch were also differently affected by low nutrientsupply. In primary leaves under K deficiency and, particularlyMg deficiency, the concentrations of sucrose and reducing sugarswere much higher than in control and P-deficient plants. Magnesiumdeficiency also distinctly increased the starch concentrationin the primary leaves. In contrast, in roots, the lowest concenfrationsof sucrose, reducing sugars and starch were found in Mg-deficientplants, whereas the concentrations of sucrose and starch wereparticularly high in P-deficient plants. There was a close relationshipbetween shoot/root dry weight ratios and relative distributionof total carbohydrates (sugars and starch) in shoot and roots.Of the total amounts of carbohyd rates per plant, the followingproportions were parti tioned to the roots: 22.7% in P-deficient,15.7% in control, 3.4% in K-deficient and 0.8% in Mg-deficientplants. The results indicate a distinct role of Mg and K in the exportof photosynthates from leaves to roots and suggest that alterationin photosynthate partitioning plays a major role in the differencesin dry matter distribution between shoots and roots of plantssuffering from mineral nutrient deficiency. Key words: Bean, carbohydrates, magnesium nutrition, phosphorus nutrition, potassium nutrition, shoot/root growth  相似文献   

19.
Approximately 35–55% of total nitrogen (N) in maize plants is taken up by the root at the reproductive stage. Little is known about how the root of an adult plant responds to heterogeneous nutrient supply. In this study, root morphological and physiological adaptations to nitrate‐rich and nitrate‐poor patches and corresponding gene expression of ZmNrt2.1 and ZmNrt2.2 of maize seedlings and adult plants were characterized. Local high nitrate (LoHN) supply increased both lateral root length (LRL) and density of the treated nodal roots of adult maize plants, but only increased LRL of the treated primary roots of seedlings. LoHN also increased plant total N acquisition but not N influx rate of the treated roots, when expressed as per unit of root length. Furthermore, LoHN markedly increased specific root length (m g?1) of the treated roots but significantly inhibited the growth of the lateral roots outside of the nitrate‐rich patches, suggesting a systemic carbon saving strategy within a whole root system. Surprisingly, local low nitrate (LoLN) supply stimulated nodal root growth of adult plants although LoLN inhibited growth of primary roots of seedlings. LoLN inhibited the N influx rate of the treated roots and did not change plant total N content. The gene expression of ZmNrt2.1 and ZmNrt2.2 of the treated roots of seedlings and adult plants was inhibited by LoHN but enhanced by LoLN. In conclusion, maize adult roots responded to nitrate‐rich and nitrate‐poor patches by adaptive morphological alterations and displayed carbon saving strategies in response to heterogeneous nitrate supply.  相似文献   

20.
Concentrations of inorganic cations are often lower in plantssupplied with NH4+ as compared with NO3. To examine whetherthis is attributable to impaired root uptake of cations or lowerinternal demand, the rates of uptake and translocation of K,Mg, and Ca were compared in maize plants (Zea mays L.) withdifferent growth-related nutrient demands. Plants were grownin nutrient solution with either 1·0 mol m–3 NO3or NH4+ and the shoot growth rate per unit weight of roots wasmodified by varying the temperature of the shoot base (SBT)including the apical shoot meristem. The shoot growth rate per unit weight of roots, which was takenas the parameter for the nutrient demand imposed on the rootsystem, was markedly lower at 12°C than at 24°C SBT.As a consequence of the lower nutrient demand at 12°C SBT,uptake rates of NO3 and NH4+ declined by more than 50%Compared with NO3 supply, NH4+ nutrition depressed theconcentrations of K and particularly of Ca in the shoot, bothin plants with high and with low nutrient demand. This indicatesa control of cation concentration by internal demand ratherthan by uptake capacity of the roots. Translocation rates of K, Mg and Ca in the xylem exudate werelower in NH4+- than in NO3-fed plants. Net accumulationrates of Ca in the shoot were also decreased, whereas net accumulationrates of K in the shoot were even higher in NH4+-fed plants.It is concluded that reduced cation concentrations in the xylemsap of plants supplied with NH4+ are due to the lower demandof cations for charge balance. The lower K translocation tothe shoot is compensated by reduced retranslocation to the roots.For Ca, in contrast, decreased translocation rates in NH4+-fedplants result in lower shoot concentration. Key words: Nitrogen form, cation nutrition, charge balance, xylem exudate, recirculation  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号