首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The oncoproteins of the DNA tumor viruses, adenovirus E1A, simian virus 40 T antigen, and papillomavirus E7, each interact with the retinoblastoma family of tumor suppressors, leading to cell cycle stimulation, apoptosis induction, and cellular transformation. These proteins utilize a conserved LXCXE motif, which is also found in cellular proteins, to target the retinoblastoma family. Here, we describe a herpesvirus protein that shares a subset of the properties of the DNA tumor virus oncoproteins but maintains important differences as well. The human cytomegalovirus pp71 protein employs an LXCXD motif to attack the retinoblastoma family members and induce DNA synthesis in quiescent cells. pp71 binds to and induces the degradation of the hypophosphorylated forms of the retinoblastoma protein and its family members p107 and p130 in a proteasome-dependent manner. However, pp71 does not induce apoptosis and fails to transform cells. Thus, the similarities and differences in comparison to E1A, T antigen, and E7 make pp71 an interesting new tool with which to further dissect the role of the retinoblastoma/E2F pathway in cellular growth control and carcinogenesis.  相似文献   

2.
3.
Simian virus (SV) 40 large T antigen can both induce tumors and inhibit cellular differentiation. It is not clear whether these cellular changes are synonymous, sequential, or distinct responses to the protein. T antigen is known to bind to p53, to the retinoblastoma (Rb) family of tumor suppressor proteins, and to other cellular proteins such as p300 family members. To test whether SV40 large T antigen inhibits cellular differentiation in vivo in the absence of cell cycle induction, we generated transgenic mice that express in the lens a mutant version of the early region of SV40. This mutant, which we term E107KDelta, has a deletion that eliminates synthesis of small t antigen and a point mutation (E107K) that results in loss of the ability to bind to Rb family members. At embryonic day 15.5 (E15.5), the transgenic lenses show dramatic defects in lens fiber cell differentiation. The fiber cells become post-mitotic, but do not elongate properly. The cells show a dramatic reduction in expression of their beta- and gamma-crystallins. Because CBP and p300 are co-activators for crystallin gene expression, we assayed for interactions between E107KDelta and CBP/p300. Our studies demonstrate that cellular differentiation can be inhibited by SV40 large T antigen in the absence of pRb inactivation, and that interaction of large T antigen with CBP/p300 may be enhanced by a mutation that eliminates the binding to pRb.  相似文献   

4.
Both p53 and ATM are checkpoint regulators with roles in genetic stabilization and cancer susceptibility. ATM appears to function in the same DNA damage checkpoint pathway as p53. However, ATM's role in p53-dependent apoptosis and tumor suppression in response to cell cycle dysregulation is unknown. In this study, we tested the role of murine ataxia telangiectasia protein (Atm) in a transgenic mouse brain tumor model in which p53-mediated apoptosis results in tumor suppression. These p53-mediated activities are induced by tissue-specific inactivation of pRb family proteins by a truncated simian virus 40 large T antigen in brain epithelium. We show that p53-dependent apoptosis, transactivation, and tumor suppression are unaffected by Atm deficiency, suggesting that signaling in the DNA damage pathway is distinct from that in the oncogene-induced pathway. In addition, we show that Atm deficiency has no overall effect on tumor growth and progression in this model.  相似文献   

5.
Even though the retinoblastoma gene is one of the best-studied tumor suppressor genes, little is known about its functional role. Like all tumor suppressor gene products, the retinoblastoma protein (pRB) is thought to inhibit some aspect of cell proliferation. It also appears to be a cellular target of several DNA tumor virus-transforming proteins, such as adenovirus E1A, human papillomavirus E7, or simian virus 40 large T antigen. To help in the analysis of pRB, we have prepared a new set of anti-human pRB monoclonal antibodies. In addition to being useful reagents for the study of human pRB, these antibodies display several unexpected properties. They can be used to distinguish different subsets of the pRBs on the basis of their phosphorylation states. Some are able to recognize pRB homologs in other species, including mice, chickens, and members of the genus Xenopus. In addition, some of these antibodies can bind directly to other cellular proteins that, like pRB, were originally identified through their association with adenovirus E1A. These immunologically cross-reactive proteins include the p107 and p300 proteins, and their recognition by antibodies raised against pRB suggests that several members of the E1A-targeted cellular proteins form a structurally and functionally related family.  相似文献   

6.
7.
The retinoblastoma (RB) family consists of three genes, RB1, RBL1, and RBL2, that code for the pRb, p107, and pRb2/p130 proteins, respectively. All these factors have pivotal roles in controlling fundamental cellular mechanisms such as cell cycle, differentiation and apoptosis. The founder and the most investigated RB family protein is pRb, which is considered to be the paradigm of tumor suppressors. However, p107 and pRb2/p130 clearly display a high degree of structural and functional homology with pRb. Interestingly, these factors were first identified as physical targets of the Adenovirus E1A oncoprotein. Indeed, RB family proteins are the most important and widely investigated targets of small DNA virus oncoproteins, such as Adenovirus E1A, human papillomavirus E7 and Simian virus 40 large T antigen. By interacting with pRb and with other RB family members, these oncoproteins neutralize their growth suppressive properties, thus stimulating proliferation of the infected cells, de‐differentiation, and resistance to apoptosis. All these acquired features strongly favor the rise and selection of immortalized and mutation‐prone cells, leading to a higher propensity in undergoing transformation. Our present work aims to illustrate and delve into these protein–protein interactions. Considering that these viral oncoproteins are dispensable for normal cellular functions, they can create “oncogene addiction” in the infected/transformed cells. This makes the possibility to dismantle these interactions extremely attractive, thus promoting the development of highly specific smart molecules capable of targeting only the infected/transformed cells that express these viral factors. J. Cell. Physiol. 228: 285–291, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
Simian virus 40 tumor (T) antigen, an established viral oncoprotein, causes alterations in cell growth control through interacting with, and altering the function of, cellular proteins. To examine the effects of T antigen on cell growth control, and to identify the cellular proteins with which it may functionally interact, T antigen was expressed in the budding yeast Saccharomyces cerevisiae. The yeast cells expressing T antigen showed morphological alterations as well as growth inhibition attributable, at least in part, to a lag in progression from G1 to S. This point in the cell cycle is also known to be affected by T antigen in mammalian cells. Both p34CDC28 and p34CDC2Hs were shown to bind to a chimeric T antigen-glutathione S-transferase fusion protein, indicating that T antigen interacts directly with cell cycle proteins which control the G1 to S transition. This interaction was confirmed by in vivo cross-linking experiments, in which T antigen and p34CDC28 were coimmunoprecipitated from extracts of T-antigen-expressing yeast cells. These immunoprecipitated complexes could phosphorylate histone H1, indicating that kinase activity was retained. In addition, in autophosphorylation reactions, the complexes phosphorylated a novel 60-kDa protein which appeared to be underphosphorylated (or underrepresented) in p34CDC28-containing complexes from cells which did not express T antigen. These results suggest that T antigen interacts with p34CDC28 and alters the kinase function of p34CDC28-containing complexes. These events correlate with alterations in the yeast cell cycle at the G1 to S transition.  相似文献   

9.
High levels of the p53 tumor suppressor protein can block progression through the cell cycle. A model system for the study of the mechanism of action of wild-type p53 is a cell line (T64-7B) derived from rat embryo fibroblasts transformed by activated ras and a temperature-sensitive murine p53 gene. At 37 to 39 degrees C, the murine p53 protein is in a mutant conformation and the cells actively divide, whereas at 32 degrees C, the protein has a wild-type conformation and the cells arrest in the G1 phase of the cell cycle. Wild-type simian virus 40 large T antigen and a variety of T-antigen mutants were assayed for the ability to bypass the cell cycle block effected by the wild-type p53 protein to induce colony formation at 32 degrees C. The results indicate that two functions within the amino terminus of T antigen are essential to induce cell growth: (i) the ability to bind to the retinoblastoma protein, Rb, and (ii) the presence of a domain in the first exon that appears to interact with the cellular protein, p300. Thus, the cell cycle arrest triggered by wild-type p53 may be overcome by formation of a T-antigen complex with Rb, p300, or both that could then function to either remove p53-mediated negative growth regulatory signals or promote a positive cell growth signal. Surprisingly, T antigen-p53 complexes are not required to overcome the temperature-sensitive p53 block to the cell cycle in these cells. These data suggest that simian virus 40 T antigen associated with Rb, p300, or both proteins can communicate in a cell with the functions of the wild-type p53 protein.  相似文献   

10.
Mutations of the retinoblastoma tumor suppressor, pRb, or its cyclin-cyclin-dependent kinase (CDK) regulatory kinases or CDK inhibitors, allows unrestrained E2F activity, leading to unregulated cell cycle progression. However, overexpression of E2F-1 also sensitizes cells to apoptosis, suggesting that targeting this pathway may be of therapeutic benefit. Enforced expression of E2F-1 in interleukin-3-dependent myeloid cells led to preferential sensitivity to the topoisomerase II inhibitor, etoposide, which was independent of p53 accumulation. Pretreatment of the E2F-1-expressing cells with ICRF-193, a second topoisomerase II inhibitor that does not cause DNA damage, protected these cells against etoposide-induced apoptosis. However, ICRF-193 cooperated with other DNA-damaging agents to induce apoptosis. Enforced expression of E2F-1 led to accumulation of p53 protein. An E2F-1 mutant that is defective in inducing cell cycle progression also induced p53, suggesting that p53 was responding directly to E2F, and not to secondary events caused by inappropriate cell cycle progression (i.e., DNA damage). Thus, topoisomerase II inhibition and DNA damage cooperate to selectively induce apoptosis in cells that have mutations in the pRb pathway.  相似文献   

11.
12.
13.
Ogston P  Raj K  Beard P 《Journal of virology》2000,74(8):3494-3504
We used a sensitive assay to test whether an adeno-associated virus (AAV) productive replication cycle can occur in immortalized human keratinocytes carrying episomal human papillomavirus type 16 (HPV-16) DNA. Following transfection with cloned AAV DNA, infectious AAV was produced, and the infectivity was blocked by anti-AAV antiserum. The HPV-16 E2 protein substantially increased the yield of AAV. Other HPV early proteins did not, in our experiments, show this ability. E2 has been shown to be able to affect p53 levels and to block cell cycle progression at mitosis. We tested the effect of changes in p53 expression on AAV replication and found that large differences in the level of p53 did not alter AAV DNA replication. In extension of this, we found that cellular help for AAV in response to stress was also independent of p53. To test if a mitotic block could trigger AAV DNA replication, we treated the cells with the mitotic inhibitor nocodazole. AAV DNA replication was stimulated by the presence of nocodazole in these and a number of other cell types tested. Yields of infectious virus, however, were not increased by this treatment. We conclude that the HPV-16 E2 protein stimulates AAV multiplication in these cells and propose that this occurs independently of the effects of E2 on p53 and cell cycle progression. Since the effect of E2 was not seen in keratinocytes lacking the HPV-16 episome, we suggest that E2 can help AAV by working in concert with other HPV-16 proteins.  相似文献   

14.
《Seminars in Virology》1994,5(5):349-356
Simian virus 40 (SV40) is a small DNA tumor virus whose early gene products, large T and small t antigens, efficiently immortalize and transform primary rodent cells, transform rodent cell lines and extend the lifespan of primary human cells. Mutational analysis has revealed that the transforming and lifespan extension properties of large T antigen correlate with binding to and disruption of the normal functions of the human tumor suppressor proteins pRb and p53. Small t antigen contributes to cell proliferation through inactivation of protein phosphatase 2A and subsequent activation of the MAP kinase pathway. By disrupting key cell growth control mechanisms, SV40 transforming proteins provide a valuable system for analysis of cellular growth control mechanisms.  相似文献   

15.
The regulatory proteins of polyomaviruses, including small and large T antigens, play important roles, not only in the viral life cycle but also in virus-induced cell transformation. Unlike many other tumor viruses, the transforming proteins of polyomaviruses have no cellular homologs but rather exert their effects mostly by interacting with cellular proteins that control fundamental processes in the regulation of cell proliferation and the cell cycle. Thus, they have proven to be valuable tools to identify specific signaling pathways involved in tumor progression. Elucidation of these pathways using polyomavirus transforming proteins as tools is critically important in understanding fundamental regulatory mechanisms and hence to develop effective therapeutic strategies against cancer. In this short review, we will focus on the structural and functional features of one polyomavirus transforming protein, that is, the small t-antigen of the human neurotropic JC virus (JCV) and the simian virus, SV40.  相似文献   

16.
17.
The KIAA0101/p15(PAF)/OEATC-1 protein was initially isolated in a yeast two-hybrid screen for proliferating cell nuclear antigen (PCNA) binding partners, and was shown to bind PCNA competitively with the cell cycle regulator p21(WAF). PCNA is involved in DNA replication and damage repair. Using polyclonal antisera raised against a p15(PAF) fusion protein, we have shown that in a range of mammalian tumor and non-tumor cell lines the endogenous p15(PAF) protein localises to the nucleus and the mitochondria. Under normal conditions no co-localisation with PCNA could be detected, however following exposure to UV it was possible to co-immunoprecipitate p15(PAF) and PCNA from a number of cell lines, suggesting a UV-enhanced association of the two proteins. Overexpression of p15(PAF) in mammalian cells was also found to protect cells from UV-induced cell death. Based on similarities between the behaviour of p15(PAF) and the potential tumor suppressor product p33ING1b, we have further shown that these two proteins interact in the same complex in cell cultures. This suggests that p15(PAF) forms part of a larger protein complex potentially involved in the regulation of DNA repair, apoptosis and cell cycle progression.  相似文献   

18.
Microinjection of purified simian virus 40 large-T-antigen protein or DNA encoding T antigen into serum-starved cells stimulates them to re-enter the cell cycle and progress through G1 into the S phase. Genetic analysis of T antigen indicated that neither its Rb/p107-binding activity nor its p53-binding activity is essential to induce DNA synthesis in CV1P cells. However, T antigens bearing missense mutations that inactivate either activity induced slower progression of the cells into the S phase than did wild-type T antigen. Inactivation of both activities resulted in a T antigen essentially unable to induce DNA synthesis. Missense mutations in either the DNA-binding region of the N terminus also impaired the ability of full-length T antigen to stimulate DNA synthesis in CV1P cells. The wild-type kinetics of cell cycle progression were restored by genetic complementation after coinjection of plasmid DNAs encoding different mutant T antigens or coinjection of purified mutant T-antigen proteins, suggesting that the four mitogenic functions of T antigen are independent. The maximal rate of induction of DNA synthesis in secondary primate cells and established rodent cell lines required the same four functions of T antigen. A model to explain how four independent activities could cooperate to stimulate cell cycle progression is presented.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号