首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Comparative analysis of molecular sequence data is essential for reconstructing the evolutionary histories of species and inferring the nature and extent of selective forces shaping the evolution of genes and species. Here, we announce the release of Molecular Evolutionary Genetics Analysis version 5 (MEGA5), which is a user-friendly software for mining online databases, building sequence alignments and phylogenetic trees, and using methods of evolutionary bioinformatics in basic biology, biomedicine, and evolution. The newest addition in MEGA5 is a collection of maximum likelihood (ML) analyses for inferring evolutionary trees, selecting best-fit substitution models (nucleotide or amino acid), inferring ancestral states and sequences (along with probabilities), and estimating evolutionary rates site-by-site. In computer simulation analyses, ML tree inference algorithms in MEGA5 compared favorably with other software packages in terms of computational efficiency and the accuracy of the estimates of phylogenetic trees, substitution parameters, and rate variation among sites. The MEGA user interface has now been enhanced to be activity driven to make it easier for the use of both beginners and experienced scientists. This version of MEGA is intended for the Windows platform, and it has been configured for effective use on Mac OS X and Linux desktops. It is available free of charge from http://www.megasoftware.net.  相似文献   

2.
The Molecular Evolutionary Genetics Analysis (MEGA) software is a desktop application designed for comparative analysis of homologous gene sequences either from multigene families or from different species with a special emphasis on inferring evolutionary relationships and patterns of DNA and protein evolution. In addition to the tools for statistical analysis of data, MEGA provides many convenient facilities for the assembly of sequence data sets from files or web-based repositories, and it includes tools for visual presentation of the results obtained in the form of interactive phylogenetic trees and evolutionary distance matrices. Here we discuss the motivation, design principles and priorities that have shaped the development of MEGA. We also discuss how MEGA might evolve in the future to assist researchers in their growing need to analyze large data set using new computational methods.  相似文献   

3.
Aging or senescence is an age-dependent decline in physiological function, demographically manifest as decreased survival and fecundity with increasing age. Since aging is disadvantageous it should not evolve by natural selection. So why do organisms age and die? In the 1940s and 1950s evolutionary geneticists resolved this paradox by positing that aging evolves because selection is inefficient at maintaining function late in life. By the 1980s and 1990s this evolutionary theory of aging had received firm empirical support, but little was known about the mechanisms of aging. Around the same time biologists began to apply the tools of molecular genetics to aging and successfully identified mutations that affect longevity. Today, the molecular genetics of aging is a burgeoning field, but progress in evolutionary genetics of aging has largely stalled. Here we argue that some of the most exciting and unresolved questions about aging require an integration of molecular and evolutionary approaches. Is aging a universal process? Why do species age at different rates? Are the mechanisms of aging conserved or lineage-specific? Are longevity genes identified in the laboratory under selection in natural populations? What is the genetic basis of plasticity in aging in response to environmental cues and is this plasticity adaptive? What are the mechanisms underlying trade-offs between early fitness traits and life span? To answer these questions evolutionary biologists must adopt the tools of molecular biology, while molecular biologists must put their experiments into an evolutionary framework. The time is ripe for a synthesis of molecular biogerontology and the evolutionary biology of aging.  相似文献   

4.
5.
Heuristic approaches were used to quantify the influence that sequencing errors have on estimates of nucleotide diversity, substitution rate, and the construction of genealogies. Error rates of less than 1 nucleotide/kb probably have little affect on conclusions about the evolutionary history of highly polymorphic organisms such as Drosophila and Escherichia coli, but organisms with very low nucleotide diversity, such as humans, require greater sequencing accuracy. A scan of GenBank for corrections of previous errors reveals that sequencing errors are highly nonrandom.  相似文献   

6.
Cary JW  Ehrlich KC 《Mycopathologia》2006,162(3):167-177
Aflatoxins (AFs) are toxic and carcinogenic secondary metabolites produced by isolates of Aspergillus section Flavi as well as a number of Aspergillus isolates that are classified outside of section Flavi. Characterization of the AF and sterigmatocystin (ST) gene clusters and analysis of factors governing regulation of their biosynthesis has resulted in these two mycotoxins being the most extensively studied of fungal secondary metabolites. This wealth of information has allowed the determination of the molecular basis for non-production of AF in natural isolates of A. flavus and domesticated strains of A. oryzae. This review provides an overview of the molecular analysis of the AF and ST gene clusters as well as new information on an AF gene cluster identified in the non-section Flavi isolate, Aspergillus ochraceoroseus. Additionally, molecular phylogenetic analysis using AF biosynthetic gene sequences as well as ribosomal DNA internal transcribed spacer (ITS) sequences between various section Flavi and non-section Flavi species has enabled determination of the probable evolutionary history of the AF and ST gene clusters. A model for the evolution of the AF and ST gene clusters as well as possible biological roles for AF are discussed.  相似文献   

7.
The last decade has brought renewed interest in the genetics of speciation, yielding a number of new models and empirical results. Defining speciation as ''the origin of reproductive isolation between two taxa'', we review recent theoretical studies and relevant data, emphasizing the regular patterns seen among genetic analyses. Finally, we point out some important and tractable questions about speciation that have been neglected.  相似文献   

8.
9.
10.
Developmental geneticists' contribution to the study of the evolution of morphological divergence has proceeded along two lines: comparative analysis of gene expression and quantitative genetics. Recent studies highlight how complementation tests between species can bridge the gap between these approaches.  相似文献   

11.
Mollib is a software framework for the analysis of molecular structures, properties and data with an emphasis on data collected by NMR. It uses an open source model and a plugin framework to promote community-driven development of new and enhanced features. Mollib includes tools for the automatic retrieval and caching of protein databank (PDB) structures, the hydrogenation of biomolecules, the analysis of backbone dihedral angles and hydrogen bonds, and the fitting of residual dipolar coupling (RDC) and residual anisotropic chemical shift (RACS) data. In this article, we release version 1.0 of mollib and demonstrate its application to common molecular and NMR data analyses.  相似文献   

12.
13.
This paper is written in memory of John Maynard Smith. In a brief survey it discusses essential aspects of how game theory in biology relates to its counterpart in economics, the major transition in game theory initiated by Maynard Smith, the discrepancies between genetic and phenotypic models in evolutionary biology, and a balanced way of reconciling these models. In addition, the paper discusses modern problems in understanding games at the genetic level using the examples of conflict between endosymbionts and their hosts, and the molecular interactions between parasites and the mammalian immune system.  相似文献   

14.
With its theoretical basis firmly established in molecular evolutionary and population genetics, the comparative DNA and protein sequence analysis plays a central role in reconstructing the evolutionary histories of species and multigene families, estimating rates of molecular evolution, and inferring the nature and extent of selective forces shaping the evolution of genes and genomes. The scope of these investigations has now expanded greatly owing to the development of high-throughput sequencing techniques and novel statistical and computational methods. These methods require easy-to-use computer programs. One such effort has been to produce Molecular Evolutionary Genetics Analysis (MEGA) software, with its focus on facilitating the exploration and analysis of the DNA and protein sequence variation from an evolutionary perspective. Currently in its third major release, MEGA3 contains facilities for automatic and manual sequence alignment, web-based mining of databases, inference of the phylogenetic trees, estimation of evolutionary distances and testing evolutionary hypotheses. This paper provides an overview of the statistical methods, computational tools, and visual exploration modules for data input and the results obtainable in MEGA.  相似文献   

15.
Portin P 《Hereditas》2007,144(3):80-95
The discovery in the mid 1970s of efficient methods of DNA sequencing and their subsequent development into more and more rapid procedures followed by sequencing the genomes of many species, including man in 2001, revolutionised the whole of biology. Remarkably, new light could be cast on the evolutionary relations of different species, and the tempo and mode of evolution within a given species, notably man, could quantitatively be illuminated including ongoing evolution possibly involving also the size of the brains. This review is a short summary of the results of the molecular genetic investigations of human evolution including the time and place of the formation of our species, our evolutionary relation to the closest living species relatives as well as extinct forms of the genus Homo. The nature and amount of genetic polymorphism in man is also considered with special emphasis on the causes of this variation, and the role of natural selection in human evolution. A consensus about the mosaic nature of our genome and the rather dynamic structure of our ancestral population is gradually emerging. The modern gene pool has most likely been contributed to several different ancestral demes either before or after the emergence of the anatomically modern human phenotype in the extent that even the nature of the evolutionary lineage leading to the anatomically modern man as a distinct biological species is disputable. Regulation of the function of genes, as well as the evolution of brains will be dealt with in the second part of this review.  相似文献   

16.
17.
18.
19.
This article outlines recent advances in explaining hereditary deafness in molecular terms, focusing on isolated (i.e. nonsyndromic) hearing loss. The number of genes identified (36 to date) is growing rapidly. However, difficulties inherent in genetic linkage analysis, coupled with the possible involvement of environmental causes, have so far prevented the characterization of the main genes causative or predisposing to the late-onset forms of deafness.  相似文献   

20.
Evolutionary genetics has recently made enormous progress in understanding how genetic variation maps into phenotypic variation. However why some traits are phenotypically invariant despite apparent genetic and environmental changes has remained a major puzzle. In the 1940s, Conrad Hal Waddington coined the concept and term "canalization" to describe the robustness of phenotypes to perturbation; a similar concept was proposed by Waddington's contemporary Ivan Ivanovich Schmalhausen. This paper reviews what has been learned about canalization since Waddington. Canalization implies that a genotype's phenotype remains relatively invariant when individuals of a particular genotype are exposed to different environments (environmental canalization) or when individuals of the same single- or multilocus genotype differ in their genetic background (genetic canalization). Consequently, genetic canalization can be viewed as a particular kind of epistasis, and environmental canalization and phenotypic plasticity are two aspects of the same phenomenon. Canalization results in the accumulation of phenotypically cryptic genetic variation, which can be released after a "decanalizing" event. Thus, canalized genotypes maintain a cryptic potential for expressing particular phenotypes, which are only uncovered under particular decanalizing environmental or genetic conditions. Selection may then act on this newly released genetic variation. The accumulation of cryptic genetic variation by canalization may therefore increase evolvability at the population level by leading to phenotypic diversification under decanalizing conditions. On the other hand, under canalizing conditions, a major part of the segregating genetic variation may remain phenotypically cryptic; canalization may therefore, at least temporarily, constrain phenotypic evolution. Mechanistically, canalization can be understood in terms of transmission patterns, such as epistasis, pleiotropy, and genotype by environment interactions, and in terms of genetic redundancy, modularity, and emergent properties of gene networks and biochemical pathways. While different forms of selection can favor canalization, the requirements for its evolution are typically rather restrictive. Although there are several methods to detect canalization, there are still serious problems with unambiguously demonstrating canalization, particularly its adaptive value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号