首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During the process of follicular atresia, cells are observed to invade the zona pellucida (invasive cells) where they presumably play an important role in eliminating degraded oocytes. Although our preliminary studies have suggested that these cells may originate from granulosa cells and not from macrophages, a detailed morphological analysis of the cells has not been conducted. The objective of this study was to characterize the cells more precisely by electron microscopy and immunohistochemistry, using sexually immature mice. The results show that the invasive cells were first observed within advanced primary (non-antral) atretic follicles. The cells frequently contained cytoplasmic lysosome-like granules after passing through the zona pellucida. F4/80 and Mac-1, reported as macrophage-specific antibodies, were reactive with the cells in most cases, but some immunonegative invasive cells were also observed. The ultrastructural features of the invasive cells were quite similar to those of granulosa cells, not macrophages. Gap junctions, which are typical cytoplasmic structures of epithelial cells, were frequently identified between neighbouring cells. Although direct evidence indicating a contribution by the cells to the elimination of degenerated oocytes was not obtained, our results strongly suggest that the invasive cells originated from granulosa cells surrounding the zona pellucida, and that they may have a macrophage-like cell function for the elimination of oocytes from atretic follicles in mice.  相似文献   

2.
In the atretic follicle of the open involutionary type an opening in the wall of the follicle is formed through which granulosa cells and yolk platelets are emitted. Migrating cells of the theca layer invade the follicular lumen and absorb phagocytotically residues of granulosa cells. On the other hand, atretic follicles of the closed involutionary type show yolk platelets which remain in the follicular lumen and are dissolved there. The granulated residue of the yolk platelets and the residue of the granulosa cells are absorbed phagocytotically by migrating cells. The follicular atresia of both degenerating types can be regarded as a process exclusively devoted to the purpose of resorbing atretic oocytes. No indications for the production of steroid hormones were found.  相似文献   

3.
Macrophages are essential in cleaning up apoptotic debris during follicular atresia. However, the key factors of this process are still unclear. In the present study, we evaluated CD44 mRNA, CD44 protein, and CD44 antigen glycosylation on macrophages during follicular atresia in the pig. Atresia was classified into five stages: stage I, healthy follicles; stage II, early atretic follicles having apoptotic granulosa cells with an unclear basement membrane; stage III, progressing atretic follicles having apoptotic granulosa cells completely diffused from the basement membrane; stage IV, late atretic follicles with increasing lysosomal activity; and stage V, disintegrated atretic follicles having collapsed theca cells and strong lysosomal activity. Immunohistological analysis showed that macrophages expressing CD44 invaded the inside of stage III follicles, accompanied by a collapse of basement membrane. Semiquantitative RT-PCR showed that only mRNA of the CD44 standard isoform (CD44s) was present in inner cells of follicles, and not any CD44 variant isoform (CD44v) mRNAs. The amount of CD44s mRNA was increased at stage III. Western blot and lectin blot analyses showed that CD44 was markedly expressed at stage III and glycosylated with polylactosamine at the same time. After macrophages invaded atretic follicles at stages III-V, the CD44 expressed on macrophages was glycosylated with polylactosamine. The lysosomal activity began to increase at stage IV, and reached the highest level at stage V. Increased CD44s protein and posttranslational modification of CD44 with polylactosamine on macrophages from stage III could be involved in the cleaning up apoptotic granulosa cells.  相似文献   

4.
Mammalian females are born with a finite number of ovarian oocytes, the vast majority of which ultimately undergo degeneration by atresia. The overall process of ovarian follicular atresia has been morphologically well described only in large antral follicles. Additionally, little attention has been focused on ultrastructural changes in the oocyte. Furthermore, most such morphological studies were performed prior to identification of apoptosis as a mechanism of physiological cell death. Therefore, the purpose of this study was to use electron microscopy to compare the process of atretic oocyte degradation in ovarian follicles of female Fischer 344 rats (38 days old) with ultrastructural characteristics of apoptosis. Examination of ovarian follicles revealed that nucleolar segregation, cytoplasmic or nuclear condensation, apoptotic body formation, and chromatin margination along the nuclear membrane are never observed in atretic oocytes during the degenerative process. Instead, early morphological changes in atretic oocytes include retraction of granulosa cell- and oocyte-derived microvilli and condensation of mitochondria and loss of cristae. These occurrences coincide with initiation of granulosa cell apoptosis. After most granulosa cells are lost, more severe changes occur, including segmentation of the oocyte and cytoplasmic vacuolization as atresia progresses. Thus, these results suggest that, during atresia, oocytes are removed by physiological oocyte cell death, a method that does not involve classically described apoptosis.  相似文献   

5.
Bovine ovarian antral follicles exhibit either one or the other of two patterns of granulosa cell death in atresia. Death can commence either from the antrum and progress toward the basal lamina (antral atresia) or the converse (basal atresia). In basal atresia, the remaining live antrally situated cells appeared to continue maturing. Beyond that, little is known about these distinct patterns of atresia. Healthy (nonatretic) follicles also exhibit either one or the other of two patterns of granulosa cell shape, follicular basal lamina ultrastructure or location of younger cells within the membrana granulosa. To examine these different phenotypes, the expression of the steroidogenic enzymes cholesterol side-chain cleavage cytochrome P450 (SCC) and 3beta-hydroxysteroid dehydrogenase (3beta-HSD) in granulosa cells and concentrations of steroid hormones in follicular fluid were measured in individual histologically classified bovine antral follicles. Healthy follicles first expressed SCC and 3beta-HSD in granulosa cells only when the follicles reached an approximate threshold of 10 mm in diameter. The pattern of expression in antral atretic follicles was the same as healthy follicles. Basal atretic follicles were all <5 mm. In these, the surviving antral granulosa cells expressed SCC and 3beta-HSD. In examining follicles of 3-5 mm, basal atretic follicles were found to have substantially elevated progesterone (P < 0.001) and decreased androstenedione and testosterone compared to healthy and antral atretic follicles. Estradiol was highest in the large healthy follicles, lower in the small healthy follicles, lower still in the antral atretic follicles, and lowest in the basal atretic follicles. Our findings have two major implications. First, the traditional method of identifying atretic follicles by measurement of steroid hormone concentrations may be less valid with small bovine follicles. Second, features of the two forms of follicular atresia are so different as to imply different mechanisms of initiation and regulation.  相似文献   

6.
Changes in granulosa cell lysosomal and mitochondrial functions in relation to follicular size and to the stage of atresia were studied by fluorescent emission spectra and intensity using flow cytometry. Antral follicles were grouped by size in two groups: small, 3-6 mm and large, >6mm in diameter, and classified into three stages of atresia: non-atretic, initially atretic and advanced atretic. Differences in Rhodamine 123 (Rh123) and Acridine Orange (AO) fluorescent intensity indicated that changes in mitochondrial function are the primary mechanism of granulosa cell death in atretic follicles 3-6 mm in diameter, while its role in granulosa cell death in >6 mm atretic follicles seemed to be less important. However, modifications in lysosomal function (shown by a decrease in fluorometric intensity of AO incubated granulosa cells) were mainly associated with cell death in large atretic follicles. Our results support the hypothesis that the pathway of granulosa cell death during follicular atresia depends on the state of energy metabolism or on the production of hypoxic conditions related to follicular size. Changes in mitochondrial membrane potential and production of permeability transition pores were the main changes found in small follicles, while lysosomal function destabilization seemed to be the major cause of granulosa cell death during atresia in large follicles.  相似文献   

7.
To evaluate the mechanisms involved in the reduction of estrogen concentrations in porcine follicular fluid during atresia, nonatretic and atretic follicles ranging from 4 to 7 mm in diameter were selected. Follicular fluid estrogen concentrations were 7-16-fold less in the atretic follicles. Isolated granulosa cells from atretic follicles demonstrated a significant reduction in aromatase activity and in follicle-stimulating hormone (FSH)-induced progesterone production in vitro compared to granulosa cells from nonatretic follicles. Isolated theca from atretic follicles also demonstrated a reduction in estrogen production. However, androgen concentrations were equivalent in the follicular fluid of atretic and nonatretic follicles, and theca from atretic follicles maintained testosterone and androstenedione production in vitro. The loss of thecal aromatase activity with atresia is not secondary to a reduction in FSH responsiveness, since FSH did not increase thecal progesterone production in vitro. Cell degeneration also does not account for the reduction in thecal estrogen production, since both androgen output in vitro and follicular fluid androgen concentrations were maintained. These data thus demonstrate that a mechanism other than reduced FSH responsiveness must account for the selective loss of thecal aromatase activity in this stage of atresia.  相似文献   

8.
Changes in the glucose-6-phosphate dehydrogenase activity have been determined in relation to atresia of Graafian follicles in the rat ovary. Induction of atresia in follicles either due to absence of hCG in the hormonally stimulated immature ovaries or by repeated injections of pentobarbitone sodium to proestrous rats caused significant rise in the enzyme activity. Measurement of enzyme activity in isolated follicular compartments of healthy and atretic follicles revealed that it is significantly higher in the thecal tissue than the granulosa. Increase in enzyme activity in the atretic follicles than the healthy ones occurs due to its rise both in theca and granulosa cells. The significance of these changes in the enzyme activity in healthy and atretic follicles are discussed in relation to the precocious luteinization of cells in the follicular envelope with the onset of atresia.  相似文献   

9.
10.
Involution and resorption of both postovulatory and atretic follicles were analysed in piau‐jejo Leporinus taeniatus (Characiformes, Anostomidae) in order to evaluate the role of apoptosis during ovarian regression. Histological and ultrastructural analyses showed hallmarks of apoptosis in the granulosa: aggregation of compacted chromatin against the nuclear envelope, cell shrinkage, surface blebbing, loss of cell adhesion and cell fragmentation into apoptotic bodies. Protein synthesis activity preceded the onset of the cell death. The breakdown of the basement membrane led to the detachment of the granulosa cells into the follicular lumen. TUNEL‐positive reactions were detected in in situ DNA fragmentation of granulosa of both postovulatory and atretic follicles. Apoptosis increased in a time‐dependent manner contributing to reduction of the follicular areas. The apoptotic index (per cent of apoptotic cells) of the granulosa increased in postovulatory follicles soon after spawning, then these follicles degenerated and only remnants were observed at 7 days. In contrast, the granulosa cells reabsorbed the yolk during follicular atresia and the apoptotic index increased only in the late stage of regression. The results indicated apoptosis as the major mechanism to rapidly eliminate postovulatory follicles and being an essential process in the ovarian regression after spawning.  相似文献   

11.
Size-frequency analysis of atresia in cycling rats   总被引:4,自引:0,他引:4  
The purpose of this study was to delineate when, during follicular growth, the alternative developmental pathways leading to ovulation or atresia diverge. By using computerized image analysis techniques, random samples of healthy and atretic follicles in ovaries of cycling rats were subjected to size-frequency analysis. The vast preponderance of atretic follicles were of the early antral size class (approximately 300-350 micron diameter, 800-1000 granulosa cells in the largest cross-section); atretic small follicles (less than 250 granulosa cells in the largest cross-section) were rare. Follicles in early stages of atresia were uncommon in ovaries of animals killed at estrus, but were found with great frequency in ovaries of animals killed the following day (metestrus). These results suggest that, under normal cyclic conditions, there may be only one major branching point during follicular development when growing follicles become susceptible to atresia. The alternative developmental pathways leading to ovulation and atresia may not diverge until the penultimate stage of growth, immediately preceding the final transformation into a preovulatory follicle.  相似文献   

12.
13.
Estrogen receptor beta (ERbeta) is highly expressed, but ERalpha is not detectable in granulosa cells in the mouse ovary. In ERbeta knockout (BERKO) mice, there is abnormal follicular development and very reduced fertility. At 3 wk of age, no significant morphologic differences were discernable between wild type (WT) and BERKO mouse ovaries, but by 5 mo of age, atretic follicles were abundant in BERKO mice and there were very few healthy late antral follicles or corpora lutea. At 2 yr of age, unlike the ovaries of their WT littermates, BERKO mouse ovaries were devoid of healthy follicles but had numerous large, foamy lipid-filled stromal cells. The late antral and atretic follicles in BERKO mice were characterized by a high level of expression of the androgen receptor (AR) and IGF-1 receptor. These proteins were abundantly expressed in granulosa cells of preantral and early antral follicles in both genotypes, but their expression was extinguished in late antral follicles of WT mice. Healthy late antral follicles and corpora lutea were restored in BERKO ovaries after 15 days of treatment of mice with the antiandrogen flutamide. The results suggest that in the absence of ERbeta there was a loss of regulation of AR. Because androgens enhance recruitment of primordial follicles into the growth pool and cause atresia of late antral follicles, the inappropriately high level of AR probably is related to the follicular atresia and to the early exhaustion of follicles in BERKO mice.  相似文献   

14.
R K Parshad  S S Guraya 《Life sciences》1985,37(11):1001-1005
To determine changes in the surface membrane of granulosa cells related to follicular atresia and luteinization, their agglutination behavior with Concanavalin A has been studied by quantitative spectrophotometry. As compared to the granulosa cells of normal Graafian follicles, the agglutination rate (delta A546/5 min) and final level of agglutination significantly increased in atretic and decreased in luteinized cells indicating the increase of Con A binding sites with atresia and decrease with luteinization. Treatments of granulosa cells with EDTA and trypsin enhanced agglutination of follicular and luteal cells but had no effect on atretic granulosa cells.  相似文献   

15.
The differential quantitative participation of apoptosis and necrosis in ewe antral follicles of two different sizes, separated in four stages of atresia using macroscopic, histologic, and esteroid quantification methods was assessed. Annexin V binding and propidium iodide (PI) uptake was used to detect healthy live cells (Annexin V negative/PI negative), early apoptotic cells (Annexin V+/PI-), and necrotic or late apoptotic cells (PI+). Additionally we used internucleosomal DNA fragmentation as a quantitative estimate of apoptosis. Presence and distribution of lysosomal enzymes in follicular fluid and granulosa cells was used as a measure of necrotic cell death. DNA flow cytometry and gel electrophoresis were positively correlated with the progression of atresia, small atretic follicles tend to have higher percentages of internucleosomal cleaved DNA than follicles >6 mm. Annexin/PI binding also indicates that apoptosis and necrosis increase with atresia progression, generally apoptosis outweighs necrosis in small follicles. Acid phosphatase and glucosaminidase in follicular fluid of 3-6 mm follicles showed no significant modifications between healthy and initially atretic follicles, and only a small, but significant increase in activity in advancedly atretic follicles. On the contrary, lysosomal enzyme activity in follicles >6 mm showed positive correlation between atresia stages and the activities of acid phosphatase and glucosaminidase in follicular fluid. A similar size-differential behavior was found in free or membrane-bound lysosomal enzyme activity of granulosa cells. Necrosis, but principally apoptosis, were present during all stages of follicular maturation indicating that growth and maturation of ovarian follicles involves a continuous renewal of granulosa cells, regulated by apoptosis. Mechanisms regulating this equilibrium may participate in the final destiny, whether ovulation or atresia of ovarian follicles.  相似文献   

16.
Semi-serial (1 in 20) sections of ovaries were studied and only two types of atresia were identified--non-bursting and bursting. Smaller, non-yolky follicles (less than 1 mm diameter) showed non-bursting atresia. Atresia in follicles greater than 1 mm diameter was invariably of the bursting type which involved the rupture of the follicular wall, and the extrusion of yolk and cellular debris through the rupture site into the stroma. However, this rupture site was small and consequently was not visible in every section but it could always be seen when the follicle was followed in semi-serial sections. The mitotic index of granulosa cells in bursting atretic follicles was much lower than that for normal follicles. The most common criteria for distinguishing non-bursting atretic follicles were the extremely shrunken, irregularly shaped oocytes and the separation of the granulosa from the theca. In bursting atretic follicles, reliable indications were the presence in the ooplasm of some cells or cellular debris, and disorganization of the yolk and granulosa tissue. The presence of pycnotic nuclei in the granulosa cells was not a consistent feature of all atretic follicles of the hen.  相似文献   

17.
The purpose of this study was to establish a culture model for isolated intact porcine antral follicles and investigate the relationship between granulosa cell apoptosis and follicular atresia. Small (<3 mm), medium (3–5 mm) and large (>5 mm) healthy porcine follicles were isolated and cultured in serum‐free TCM199 with or without follicular stimulating hormone (FSH). Microscopic identification of healthy follicles was confirmed by histology. A spontaneous onset of apoptotic cell death in granulosa cells was observed from cultured antral follicles. The apoptotic rate of granulosa cells from small follicles cultured for 24 hr was higher than those of large and medium follicles, accompanied with high FasL mRNA abundance in granulosa cells. Supplementation with 3 or 5 IU/ml FSH significantly inhibited the percentage of granulosa cells that became apoptotic. FSH did not significantly alter estradiol secretion from cultured follicles. Progesterone secretion significantly decreased after culture for 48 hr, coinciding with the morphological changes observed. FasL and Fas mRNA were expressed in the healthy, early atretic, and progressed atretic porcine follicles regardless of follicular size. However, FasL but not Fas mRNA levels increased during follicular atresia. Addition of FSH significantly decreased FasL rather than Fas mRNA levels in granulosa cells and could attenuate apoptosis. Small follicles seemed to be more susceptible to atresia as compared to medium and large follicles. Mol. Reprod. Dev. 77: 670–678, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
We examined the frequency of apoptosis in cystic follicular cells to investigate the cause of the delay in regression of cystic follicles. Paraffin sections of healthy antral follicles, early and late atretic ones, and early and late cystic ones were stained using the terminal deoxynucleotidyl transferase (Tdt)-mediated biotinylated deoxyuridine triphosphates (dUTP) nick end-labeling (TUNEL) method to detect apoptotic cells. In the granulosa layer of early cystic and atretic follicles, TUNEL-positive cells were evident. In the theca interna of both early and late atresia, high frequencies of TUNEL-positive cells were observed. In the theca interna, a high frequency of TUNEL-positive cells was noted in the early cystic follicles, whereas their frequency decreased in late cystic follicles. These results suggest that apoptosis occurs in the granulosa and theca interna cells of cystic as well as atretic follicles, but the frequency of apoptosis in theca interna cells decreases in late cystic follicles, which may be responsible for the delay of follicular regression.  相似文献   

19.
20.
Currently, histological classifications of ovarian follicular atresia are almost exclusively based on the morphology of the membrana granulosa without reference to the theca interna. Atresia in the bovine small antral ovarian follicle has been redefined into antral or basal atresia where cell death commences initially within antral or basal regions of the membrana granulosa, respectively. To examine cell death in the theca interna in the two types of atretic follicles, bovine ovaries were collected and processed for immunohistochemistry and light microscopy. Follicles were classified as healthy, antral atretic, or basal atretic. Follicle diameter was recorded and sections stained with lectin from Bandeiraea simplicifolia to identify endothelial cells or with an antibody to cytochrome P450 cholesterol side-chain cleavage to identify steroidogenic cells and combined with TUNEL labeling to identify dead cells. The numerical density of steroidogenic cells within the theca interna was significantly reduced (P < 0.001) in basal atretic follicles in comparison with other follicles. Cell death was greater in both endothelial cells (P < 0.05) and steroidogenic cells (P < 0.01) of the theca interna of basal atretic follicles compared with healthy and antral atretic follicles. Thus, we conclude that the theca interna is susceptible to cell death early in atresia, particularly in basal atretic follicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号