首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Muscarinic acetylcholine receptor in chick limb bud during morphogenesis   总被引:1,自引:0,他引:1  
Summary In the chick embryo a cholinesterase activity appears in various organ anlagen which has been correlated with morphogenetic movements (Drews 1975). The cholinesterase activity is present in the mesenchyme of the limb bud during aggregation of the central chondrogenic core. In the present study binding of tritium labelled quinuclidinyl benzilate ((3H)QNB), a muscarinic antagonist, to homogenates of chick limb buds was investigated by a filtration assay. In the homogenate of limb buds at Stage 24 specific binding of (3H)QNB was demonstrated. Determination of binding constants and inhibition of binding by agonists and antagonists was studied at Stage 25/26. Specific binding was defined by the difference in binding in the absence and presence of atropine (1 M). Specific binding of (3H)QNB reflected a muscarinic receptor. The Kd in two experiments was 0.11 nM and 0.16 nM, the binding capacity was 15.7 fmol (3H)QNB/mg protein and 12.0 fmol (3H)QNB/mg protein, respectively. Data on displacement of specific bound (3H)QNB by various nicotinic and muscarinic ligands confirmed the muscarinic nature of the receptor. Muscarinic ligands inhibited the (3H) QNB binding, whereas nicotinic ligands caused no inhibition at pharmacological concentrations. I conclude that a specific muscarinic acetylcholine receptor is part of the cholinergic system whose presence is indicated by cholinesterase activity in the chondrogenic core of the limb bud during morphogenesis.  相似文献   

2.
The formation of duplicated wing skeletal elements and/or extra wing muscles was studied by juxtaposing normally nonadjacent embryonic chick wing bud cells. A wedge of right or left stage 21 wing bud ectoderm and mesoderm was inserted in a slit made in a host stage 20 to 22 right wing bud at the same anteroposterior position as its position of origin. The distal edge of the donor wedge and host wing bud were aligned with each other. Donor tissue was grafted into a host wing bud in one of the following four axial relationships: both the anteroposterior and dorsoventral axes corresponded with each other (aadd); only the anteroposterior axes were opposed (apdd); only the dorsoventral axes were opposed (aadv); both the anteroposterior and dorsoventral axes were opposed (apdv). Of the 63 wings resulting from the control aadd operation and the 45 wings from the apdd operation, only 12 wings had a duplicated skeletal element; of the 69 wings sectioned from these two groups of operations, only one had an extra muscle. However, of the wings resulting from the aadv and apdv operations (48 and 52 cases, respectively), 23 had a duplicated skeletal element; of the 54 wings sectioned from these operations, 43 wings had one to four extra muscles. Furthermore, when the aadv operation was performed with a wedge of donor quail wing bud ectoderm and mesoderm or mesoderm alone, supernumerary muscles formed in these chimeric wings and they were made up of donor quail and host chick cells or only donor quail cells.  相似文献   

3.
4.
A cellular lineage analysis of the chick limb bud   总被引:2,自引:1,他引:1  
The chick limb bud has been used as a model system for studying pattern formation and tissue development for more than 50 years. However, the lineal relationships among the different cell types and the migrational boundaries of individual cells within the limb mesenchyme have not been explored. We have used a retroviral lineage analysis system to track the fate of single limb bud mesenchymal cells at different times in early limb development. We find that progenitor cells labeled at stage 19-22 can give rise to multiple cell types including clones containing cells of all five of the major lateral plate mesoderm-derived tissues (cartilage, perichondrium, tendon, muscle connective tissue, and dermis). There is a bias, however, such that clones are more likely to contain the cell types of spatially adjacent tissues such as cartilage/perichondrium and tendon/muscle connective tissue. It has been recently proposed that distinct proximodistal segments are established early in limb development; however our analysis suggests that there is not a strict barrier to cellular migration along the proximodistal axis in the early stage 19-22 limb buds. Finally, our data indicate the presence of a dorsal/ventral boundary established by stage 16 that is inhibitory to cellular mixing. This boundary is demarcated by the expression of the LIM-homeodomain factor lmx1b.  相似文献   

5.
In the past twenty years, secreted signaling molecules of the Wnt family have been found to play a central role in controlling embryonic development from hydra to human. In the developing vertebrate limb, Wnt signaling is required for limb bud initiation, early limb patterning (which is governed by several well-characterized signaling centers), and, finally, late limb morphogenesis events. Wnt ligands are unique, in that they can activate several different receptor-mediated signal transduction pathways. The most extensively studied Wnt pathway is the canonical Wnt pathway, which controls gene expression by stabilizing beta-catenin in regulating a diverse array of biological processes. Recently, more attention has been given to the noncanonical Wnt pathway, which is beta-catenin-independent. The noncanonical Wnt pathway signals through activating Ca(2+) flux, JNK activation, and both small and heterotrimeric G proteins, to induce changes in gene expression, cell adhesion, migration, and polarity. Abnormal Wnt signaling leads to developmental defects and human diseases affecting either tissue development or homeostasis. Further understanding of the biological function and signaling mechanism of Wnt signaling is essential for the development of novel preventive and therapeutic approaches of human diseases. This review provides a critical perspective on how Wnt signaling regulates different developmental processes. As Wnt signaling in tumor formation has been reviewed extensively elsewhere, this part is not included in the review of the clinical significance of Wnt signaling.  相似文献   

6.
The positional signal model for specification of the cartilaginous elements in limb development has been tested by examining the effect on the humerus of grafting a polarizing region to different positions along the anteroposterior axis of the limb bud at stage 16. The humerus between the host and grafted polarizing region was largely normal though there were variations in width, particularly the distal epiphysis. The humerus often showed mirror-image symmetry along the anteroposterior axis. When the grafted polarizing region was in a very anterior position, there were a few cases where a second humerus developed. Anterior to the graft an additional humerus often developed. This was associated with the splitting of the bud into two domains. It is suggested that these results are not consistent with a positional signal model and that an additional mechanism involving an isomorphic prepattern may be involved in the specification of the cartilaginous elements.  相似文献   

7.
8.
In the developing limb bud, mesenchymal cells show position-specific affinity, suggesting that the positional identity of the cells is represented as their surface properties. Since the affinity is regulated by glycosylphosphatidylinositol (GPI)-anchored cell surface proteins, and by EphA4 receptor tyrosine kinase, we hypothesized that the GPI-anchored ligand, the ephrin-A family, also contributes to the affinity. Here, we describe the role of ephrin-A2 in the chick limb bud. Ephrin-A2 protein is uniformly distributed in the limb bud during early limb development. As the limb bud grows, expression of ephrin-A2 is strong in its proximal-to-intermediate regions, but weak distally. The position-dependent expression is maintained in vitro, and is regulated by FGF protein, which is produced in the apical ectodermal ridge. To investigate the role of ephrin-A2 in affinity and in cartilage morphogenesis of limb mesenchyme, we ectopically expressed ephrin-A2 in the limb bud using the retrovirus vector, RCAS. Overexpressed ephrin-A2 modulated the affinity of the mesenchymal cells that differentiate into autopod elements. It also caused malformation of the autopod skeleton and interfered with cartilage nodule formation in vitro without inhibiting chondrogenesis. These results suggest that ephrin-A2 regulates the position-specific affinity of limb mesenchyme and is involved in cartilage pattern formation in the limb.  相似文献   

9.
Extravascular fluid dynamics of the embryonic chick wing bud   总被引:1,自引:0,他引:1  
While a number of models of positional information in the chick wing bud have involved the diffusion of morphogens to establish chemical gradients of morphogenetic activity, only recently have there been attempts to characterize the milieu in which such diffusion must take place. We report an analysis of the fluid dynamics of the extravascular (interstitial) spaces of stage 22-25 chick wing buds, into which aqueous aniline blue dye was microinjected as a visible, unreactive tracer. Six sites along the antero-posterior (A-P) and proximo-distal (P-D) axes were chosen for study. Injections of dye into the posterior half of the wing bud exhibited marked directionality of extravascular transport (mean of all posterior sites = 68%), while anterior injections showed little or no directionality (mean of all anterior sites = 13%). All instances of directed dye movement were disto-proximal, the same direction as the blood flow through the marginal veins. In embryos gassed in situ with CO2, which reversibly stopped the heartbeat and vascular flow, directionality was abolished, yet diffusion rates were unaffected. Posterior disto-proximal extravascular dye movement was correlated with the greater diameter, flow velocity, and volume flow rate of the posterior marginal vein, compared to the anterior marginal vein. Radial diffusion rates were measured, and posterior disto-proximal rates were corrected for measured disto-proximal directionality by the use of a simple diffusion-translation model. Three-way analysis of variance showed that directionality-uncorrected disto-proximal rates in posterior sites were not significantly different from anterior radial rates, but that directionality-corrected posterior rates did differ significantly (P less than 0.0001). A significant stage effect (P less than 0.005) and a significant interaction between the A-P axis and stage (P less than 0.05) were also found. We hypothesize that the spatial arrangement and flow patterns of the vasculature physically determine the fluid dynamics of the interstitium. Based on these observations, we also suggest that disto-proximal extravascular fluid movement in the posterior wing bud presents a barrier to the free diffusion of aqueous molecules, including morphogens originating in the "zone of polarizing activity."  相似文献   

10.
11.
Appearance of myosin in the chick limb bud   总被引:2,自引:0,他引:2  
Quantitative microcomplement fixation has been used to detect the appearance of myosin in the chick embryonic limb bud. It has been shown that myosin or a myosinlike molecule is present by stage 23, before muscle can be distinguished histologically.  相似文献   

12.
The interactions of heparan sulfate (HS) with heparin-binding growth factors, such as fibroblast growth factors (FGFs), depend greatly on the chain structures. O-Sulfations at various positions on the chain are major factors determining HS structure; therefore, O-sulfation patterns may play a crucial role in controlling the developmental and morphogenetic processes of various tissues and organs by spatiotemporally regulating the activities of heparin-binding growth factors. In a previous study, we found that HS-2-O-sulfotransferase is strongly expressed throughout the mesoderm of chick limb buds during the early stages of development. Here we show that inhibition of HS-2-O-sulfotransferase in the prospective limb region by small inhibitory RNA resulted in the truncation of limb buds and reduced Fgf-8 expression in the apical ectodermal ridge. The treatment also reduced Fgf-10 expression in the mesenchyme. Moreover 2-O-sulfated HS, normally abundant in the basement membranes and mesoderm under ectoderm in limb buds, was significantly reduced in the treated buds. Phosphorylation levels of ERK and Akt were up-regulated in such truncated buds. Thus, we have shown for the first time that 2-O-sulfation of HS is essential for the FGF signaling required for limb bud development and outgrowth.  相似文献   

13.
A growth factor with properties very similar to fibroblast growth factor (FGF) was detected in the yolk and white of unfertilized chick eggs, and in the limb bud and bodies of Day 2.5 (stage 18)-13 chick embryos using two complementary and highly sensitive biological assays-competition of 125I-a-FGF binding to the FGF receptors of 3T3 cells and stimulation of DNA synthesis in MM14 cells, a permanent mouse skeletal muscle cell line that is dependent upon FGF for proliferation. Further evidence of the similarity of this growth factor to FGF is provided by the finding that biological activity is lost when the material is bound to a heparin-Sepharose column and restored upon elution with 2.5 M NaCl; the 2.5 M NaCl fraction from Day 12 embryos contains several polypeptides of apparent molecular weights 12,500-17,500. The level of FGF in the embryonic chick body is fairly constant between Days 2.5 and 6 (stages 18-29), ranging between 1 and 2 ng FGF/mg protein; but thereafter the level increases so that by Day 13 the body contains about 15 ng FGF/mg protein. In contrast, the level of FGF in the limb but is higher than that in the rest of the body until Day 5 (stage 27); it then undergoes a transient decrease between Days 6 and 7, after which it increases but remains below the level observed in the remainder of the body.  相似文献   

14.
Indirect antibody labeling techniques were used to determine when cells in the chick embryo wing bud begin to synthesize troponin. Frozen sections of stage 22 through stage 27 wing buds were treated with antibodies to the troponin complex and fluorescein-labeled antiimmunoglobulin. Cells producing detectable quantities of troponin were found first in late stage 24 or early stage 25 wing buds; all wing buds stage 25 and older contained labeled cells. Cells synthesizing troponin were initially localized in the muscle-forming areas of the wing bud nearest to the body wall. As the wing bud developed, cells located in more distal areas of the wing bud became labeled with fluorescent antibody, and the number of cells engaged in troponin synthesis increased in all areas. At all stages in which labeling occurred, some cells contained fluorescent cross-striations. When placed in the context of recent studies on the appearance of myofibrillar proteins, these results indicate that myogenic cells in the chick limb bud begin to synthesize large quantities of troponin at approximately the same time as the other muscle contractile proteins.  相似文献   

15.
The relationship between the position transplanted in a host limb bud, the orientation of a graft in a host limb bud, and the extra limb structures formed was studied by juxtaposing normally nonadjacent embryonic chick wing bud tissue. In one series of transplantation operations, two different wedges (ectoderm and mesoderm) of stage 21 right donor posterior wing bud tissue were transplanted to the middle of a host stage 20 to 22 right wing bud such that the dorsal-ventral polarity of the graft and host were the same or reversed. The results of these transplantation operations show that the formation of supernumerary limb structures depends on the position of origin of the donor tissue, the anterior-posterior position transplanted in a host limb bud, and the orientation of the graft in the host limb bud. In a second series of transplantation operations, the relationship between the proximodistal position where posterior donor tissue is transplanted in an anterior host site and the extra structures formed was studied. A wedge of posterior stage 21 right wing bud tissue was transplanted to an anterior proximal or anterior distal site of a stage 22 to 24 host right wing bud. The results of these transplantation operations show that when the donor tissue is transplanted to an anterior proximal position in a host wing bud, then limbs with only a duplicated humerus result, whereas, when transplanted to an anterior distal position, then limbs with a duplicated forearm element and extra digits result.  相似文献   

16.
The glycosaminoglycan hyaluronate (HA) appears to play an important role in limb cartilage differentiation. The large amount of extracellular HA accumulated by prechondrogenic mesenchymal cells may prevent the cell-cell and/or cell-matrix interactions necessary to trigger chondrogenesis, and the removal of extracellular HA may be essential to initiate the crucial cellular condensation process that triggers cartilage differentiation. It has generally been assumed that HA turnover during chondrogenesis is controlled by the activity of the enzyme hyaluronidase (HAase). In the present study we have performed a temporal and spatial analysis of HAase activity during the progression of limb development and cartilage differentiation in vivo. We have separated embryonic chick wing buds at several stages of development into well-defined regions along the proximodistal axis in which cells are in different phases of differentiation, and we have examined HAase activity in each region. We have found that HAase activity is clearly detectable in undifferentiated wing buds at stage 18/19, which is shortly following the formation of a morphologically distinct limb bud rudiment, and remains relatively constant throughout subsequent stages of development through stage 27/28, at which time well-differentiated cartilage rudiments are present. Moreover, HAase activity in the prechondrogenic distal subridge regions of the limb at stages 22/23 and 25 is just as high as, or even slightly higher than, it is in proximal central core regions where condensation and cartilage differentiation are progressing. We have also found that limb bud HAase is active between pH 2.2 and 4.5 and is inactive above pH 5.0. This suggests that limb HAase is a lysosomal enzyme and that extracellular HA would have to be internalized to be degraded. These results indicate that the onset of chondrogenesis is not associated with the appearance or increase in activity of HAase. We suggest that possibility that HA turnover may be regulated by the binding and endocytosis of extracellular HA in preparation for its intracellular degradation by lysosomal HAase. Finally, we have found that the apical ectodermal ridge (AER)-containing distal limb bud ectoderm possesses a relatively high HAase activity. We suggest the possibility that a high HAase activity in the AER may ensure a rapid turnover and remodeling of the disorganized HA-rich basal lamina of the AER that might be essential for limb outgrowth.  相似文献   

17.
18.
19.
Chondrogenesis is an important process in the development of the embryonic chick limb. If limb buds are dispersed just prior to the initiation of chondrogenic differentiation and their cells seeded densely in culture as three-dimensional "micromasses," some of the cells differentiate to form chondrogenic nodules. These nodules characteristically produce sulfated proteoglycans and type II collagen. Two conditions within the early avian limb core have been linked causatively to the initiation of chondrogenesis: a limitation in the availability of molecular oxygen and a low NAD content of the tissue. The O2 limitation is thought to be responsible for the low NAD level. We examined the effects of molecular oxygen on the NAD content of chick limb-bud cells in micromass culture, the formation of chondrocytic nodules, and the production of type II collagen and sulfated proteoglycans. The NAD content of the cells in the micromasses and the production of type II collagen did not vary greatly as a function of oxygen availability. The development of the nodules was modified, but not eliminated, by high oxygen partial pressure (0.95). It was eliminated by anoxia. Proteoglycan synthesis was decreased significantly by high oxygen tension and its sulfation was also decreased, more so in the wing-bud than the leg-bud cells. The results suggest that in culture, high oxygen tension is compatible with some, but not all, aspects of chondrogenic differentiation of cells from embryonic chick limbs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号