首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we report on mutational studies performed to investigate the mechanism of binding of 14-3-3 proteins to the plasma membrane H(+)-ATPase of plant cells. In fact, although the molecular basis of the interaction between 14-3-3 and the known mode-1 and mode-2 consensus sequences are well characterized, no information is available regarding the association with the H(+)-ATPase, which contains the novel binding site YTV totally unrelated to the 14-3-3 canonical motifs. To this purpose, different mutants of the maize 14-3-3 GF14-6 isoform were produced and used in interaction studies with the plasma membrane H(+)-ATPase and with a peptide reproducing the 14-3-3 binding site of the enzyme. The ability of 14-3-3 mutants to stimulate H(+)-ATPase activity was also tested. To investigate the mechanism of fusicoccin-dependent interaction, binding experiments between 14-3-3 proteins and mutants of the extreme portion of the H(+)-ATPase C terminus were also carried out. The results demonstrate that mutations of Lys(56) and Val(185) within the amphipathic groove disrupt the ability of GF14-6 to interact with H(+)-ATPase and to stimulate its activity. Moreover, substitution of Asp(938) and Asp(940) in the MHA2 H(+)-ATPase C terminus greatly decreased association with GF14-6, thereby demonstrating a crucial role of negatively charged residues in the fusicoccin-dependent interaction.  相似文献   

2.
The H(+)-ATPase is a key enzyme for the establishment and maintenance of plasma membrane potential and energization of secondary active transport in the plant cell. The phytotoxin fusicoccin induces H(+)-ATPase activation by promoting the association of 14-3-3 proteins. It is still unclear whether 14-3-3 proteins can represent natural regulators of the proton pump, and factors regulating 14-3-3 binding to the H(+)-ATPase under physiological conditions are unknown as well. In the present study in vivo and in vitro evidence is provided that 14-3-3 proteins can associate with the H(+)-ATPase from maize roots also in a fusicoccin-independent manner and that the interaction depends on the phosphorylation status of the proton pump. Furthermore, results indicate that phosphorylation of H(+)-ATPase influences also the fusicoccin-dependent interaction of 14-3-3 proteins. Finally, a protein phosphatase 2A able to impair the interaction between H(+)-ATPase and 14-3-3 proteins was identified and partially purified from maize root.  相似文献   

3.
Polyamines are abundant polycationic compounds involved in many plant physiological processes such as cell division, dormancy breaking, plant morphogenesis and response to environmental stresses. In this study, we investigated the possible role of these polycations in modulating the association of 14-3-3 proteins with the H(+)-ATPase. In vivo experiments demonstrate that, among the different polyamines, spermine brings about 2-fold stimulation of the H(+)-ATPase activity and this effect is due to an increase in 14-3-3 levels associated with the enzyme. In vivo administration of polyamine synthesis inhibitors causes a small but statistically significant decrease of the H(+)-ATPase phosphohydrolytic activity, demonstrating a physiological role for the polyamines in regulating the enzyme activity. Spermine stimulates the activity of the H(+)-ATPase AHA1 expressed in yeast, in the presence of exogenous 14-3-3 proteins, with a calculated S(50) of 70 microM. Moreover, spermine enhances the in vitro interaction of 14-3-3 proteins with the H(+)-ATPase and notably induces 14-3-3 association with the unphosphorylated C-terminal domain of the proton pump. Comparison of spermine with Mg(2+), necessary for binding of 14-3-3 proteins to different target proteins, shows that the polyamine effect is stronger than and additive to that of the divalent cation.  相似文献   

4.
Interaction of 14-3-3 proteins with their targets depends not only on the phosphorylation status of the target but also on that of 14-3-3 (Fu et al., 2000). In this work we demonstrated that the maize 14-3-3 isoform GF14-6 is a substrate of the tyrosine kinase insulin growth factor receptor 1. By means of site-directed mutants of GF14-6, we identified Tyr-137 as the specific tyrosine residue phosphorylated by the insulin growth factor receptor 1. Phosphorylation of GF14-6 on Tyr-137 lowered its affinity for a peptide mimicking the 14-3-3 binding site of the plant plasma membrane H+-ATPase. Moreover, phosphorylation in planta of 14-3-3 tyrosine residues, resulting from incubation with the tyrosine phosphatase inhibitor, phenylarsine oxide, decreased their association to the H+-ATPase.  相似文献   

5.
Regulation of the trans-plasma membrane pH gradient is an important part of plant responses to several hormonal and environmental cues, including auxin, blue light, and fungal elicitors. However, little is known about the signaling components that mediate this regulation. Here, we report that an Arabidopsis thaliana Ser/Thr protein kinase, PKS5, is a negative regulator of the plasma membrane proton pump (PM H+ -ATPase). Loss-of-function pks5 mutant plants are more tolerant of high external pH due to extrusion of protons to the extracellular space. PKS5 phosphorylates the PM H+ -ATPase AHA2 at a novel site, Ser-931, in the C-terminal regulatory domain. Phosphorylation at this site inhibits interaction between the PM H+ -ATPase and an activating 14-3-3 protein in a yeast expression system. We show that PKS5 interacts with the calcium binding protein SCaBP1 and that high external pH can trigger an increase in the concentration of cytosolic-free calcium. These results suggest that PKS5 is part of a calcium-signaling pathway mediating PM H+ -ATPase regulation.  相似文献   

6.
Accumulating evidence suggests that 14-3-3 proteins are involved in the regulation of plant plasma membrane H(+)-ATPase activity. However, it is not known whether the 14-3-3 protein interacts directly or indirectly with the H(+)-ATPase. In this study, detergent-solubilized plasma membrane H(+)-ATPase isolated from fusicoccin-treated maize shoots was copurified with the 14-3-3 protein (as determined by protein gel blotting), and the H(+)-ATPase was recovered in an activated state. In the absence of fusicoccin treatment, H(+)-ATPase and the 14-3-3 protein were well separated, and the H(+)-ATPase was recovered in a nonactivated form. Trypsin treatment removed the 10-kD C-terminal region from the H(+)-ATPase as well as the 14-3-3 protein. Using the yeast two-hybrid system, we could show a direct interaction between Arabidopsis 14-3-3 GF14-phi and the last 98 C-terminal amino acids of the Arabidopsis AHA2 plasma membrane H(+)-ATPase. We propose that the 14-3-3 protein is a natural ligand of the plasma membrane H(+)-ATPase, regulating proton pumping by displacing the C-terminal autoinhibitory domain of the H(+)-ATPase.  相似文献   

7.
Phosphatidic acid is a phospholipid second messenger implicated in various cellular processes in eukaryotes. In plants, production of phosphatidic acid is triggered in response to a number of biotic and abiotic stresses. Here, we show that phosphatidic acid binds to 14-3-3 proteins, a family of regulatory proteins which bind client proteins in a phosphorylation-dependent manner. Binding of phosphatidic acid involves the same 14-3-3 region engaged in protein target binding. Consequently, micromolar phosphatidic acid concentrations significantly hamper the interaction of 14-3-3 proteins with the plasma membrane H(+)-ATPase, a well characterized plant 14-3-3 target, thus inhibiting the phosphohydrolitic enzyme activity. Moreover, the proton pump is inhibited when endogenous PA production is triggered by phospholipase D and the G protein agonist mastoparan-7. Hence, our data propose a possible mechanism involving PA that regulates 14-3-3-mediated cellular processes in response to stress.  相似文献   

8.
Several authors previously showed that the interaction between 14-3-3 proteins and plasma membrane H(+)-ATPase leads to an activated complex in which the enzyme is endowed with more favorable kinetic parameters and a more physiological pH optimum. In this paper we report immunological studies with antibodies covering a different specific region of the protein, including the N- and the C-terminal ends. The results showed that, beside a free and a complexed form, a third form of H(+)-ATPase in the cell must exist with low activity and no more activation due to the loss of a part of the C-terminal regulatory domain. A model in which 14-3-3 proteins activate H(+)-ATPase by protecting it from a specific proteolytic attack is presented and its generalization is discussed.  相似文献   

9.
Summary Mineral transport across the plasma membrane of plant cells is controlled by an electrochemical gradient of protons. This gradient is generated by an ATP-consuming enzyme in the membrane known as a proton pump, or H+-ATPase. The protein has a catalytic subunit of Mr=100,000 and is a prominent band when plasma membrane proteins are analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. We generated specific rabbit polyclonal antibody against the Mr=100,000 H+-ATPase and used the antibody to screen λgtll expression vector libraries of plant DNA. Several phage clones producing immunoreactive protein, and presumably containing DNA sequences for the ATPase structural gene, were isolated and purified from a carrot cDNA library and a Arabidopsis genomic DNA library. These studies represent our first efforts at cloning the structural gene for a plant plasma membrane transport protein. Applicability of the technique to other transport protein genes and the potential for use of recombinant DNA technology in plant mineral transport research are discussed.  相似文献   

10.
Regulatory 14-3-3 proteins activate the plant plasma membrane H(+)-ATPase by binding to its C-terminal autoinhibitory domain. This interaction requires phosphorylation of a C-terminal, mode III, recognition motif as well as an adjacent span of approximately 50 amino acids. Here we report the X-ray crystal structure of 14-3-3 in complex with the entire binding motif, revealing a previously unidentified mode of interaction. A 14-3-3 dimer simultaneously binds two H(+)-ATPase peptides, each of which forms a loop within the typical 14-3-3 binding groove and therefore exits from the center of the dimer. Several H(+)-ATPase mutants support this structure determination. Accordingly, 14-3-3 binding could result in H(+)-ATPase oligomerization. Indeed, by using single-particle electron cryomicroscopy, the 3D reconstruction of the purified H(+)-ATPase/14-3-3 complex demonstrates a hexameric arrangement. Fitting of 14-3-3 and H(+)-ATPase atomic structures into the 3D reconstruction map suggests the spatial arrangement of the holocomplex.  相似文献   

11.
14-3-3 proteins constitute a family of well conserved proteins interacting with a large number of phosphorylated binding partners in eukaryotic cells. The plant plasma membrane H+-ATPase is an unusual target in that a unique phosphothreonine motif (946YpTV, where pT represents phosphothreonine) in the extreme C-terminal end of the H+-ATPase interacts with the binding cleft of 14-3-3 protein (Wurtele, M., Jelich-Ottmann, C., Wittinghofer, A., and Oecking, C. (2003) EMBO J. 22, 987-994). We report binding of 14-3-3 protein to a nonphosphorylated peptide representing the 34 C-terminal residues of the Arabidopsis plasma membrane H+-ATPase isoform 2 (AHA2). Following site-directed mutagenesis within the 45 C-terminal residues of AHA2, we conclude that, in addition to the 946YpTV motif, a number of residues located further upstream are required for phosphorylation-independent binding of 14-3-3. Among these, Thr-924 is important for interaction with 14-3-3 protein even when Thr-947 is phosphorylated. We suggest that the role of phosphorylation, which is accentuated by fusicoccin, is to stabilize protein-protein interaction between 14-3-3 protein and several residues of the H+-ATPase C-terminal domain.  相似文献   

12.
 Taking the binding of fusicoccin to plasma membranes as an indicator of complex formation between the 14-3-3 dimer and H+-ATPase, we assessed the effect of osmotic stress on the interaction of these proteins in suspension-cultured cells of sugar beet (Beta vulgaris L.). An increase in osmolarity of the cell incubation medium, accompanied by a decrease in turgor, was found to activate the H+ efflux 5-fold. The same increment was observed in the number of high-affinity fusicoccin-binding sites in isolated plasma membranes; the 14-3-3 content in the membranes increased 2- to 3-fold, while the H+-ATPase activity changed only slightly. The data obtained indicate that osmotic regulation of H+-ATPase in the plant plasma membrane is achieved via modulation of the coupling between H+ transport and ATP hydrolysis, and that such regulation involves 14-3-3 proteins. Received: 10 February 2000 / Accepted: 31 March 2000  相似文献   

13.
Although a well ascertained evidence proves that the activity of the plant plasma membrane H(+)-ATPase is regulated by 14-3-3 proteins, information about physiological factors modulating the phosphorylation-dependent association between 14-3-3 proteins and the proton pump is largely incomplete. In this paper we show that the 5'-AMP-mimetic, 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR), inhibits the fusicoccin-promoted proton extrusion in maize roots. We also demonstrate that 5'-AMP inhibits the association of 14-3-3 proteins with the C-terminal domain of the H(+)-ATPase in an overlay assay as well as the 14-3-3-dependent stimulation of the Arabidopsis thaliana H(+)-ATPase AHA1 isoform expressed in yeast membranes. Finally, by means of affinity chromatography with immobilized 5'-AMP and trinitrophenyl-AMP fluorescence analysis, we demonstrate that the 14-3-3 isoform GF14-6 from maize is able to bind 5'-AMP. The possible role of 5'-AMP as a general regulator of 14-3-3 functions in the plant cell is discussed.  相似文献   

14.
15.
Blue light (BL) activates the plasma membrane H(+)-ATPase via phosphorylation of the C-terminus with concomitant binding of 14-3-3 protein to the terminus in stomatal guard cells. However, the binding site and role of 14-3-3 protein in this physiological response have not been elucidated. We investigated the above using synthetic phosphopeptides designed from the C-terminus of Vicia H(+)-ATPase (isoform 1; VHA1). The presence of KGLDIDTIQQHYphospho-T(950)V peptide (P-950) prevented binding of 14-3-3 protein to the phosphorylated H(+)-ATPase. Dephosphorylated P-950 and other phosphopeptides, including typical phosphorylation sites in the C-terminus, had no effect on the binding. Incubation of BL-activated plasma membrane H(+)-ATPase with P-950 dissociated the 14-3-3 protein from the H(+)-ATPase without affecting phosphorylation levels and decreased the H(+)-ATPase activity. By contrast, incubation of P-950 with the activated H(+)-ATPase from fusicoccin-treated guard-cell protoplasts neither dissociated the 14-3-3 protein nor decreased the H(+)-ATPase activity. These results indicate that BL induces phosphorylation on threonine residue (Thr(950)) in the C-terminus of H(+)-ATPase, and that the binding of 14-3-3 to this site is required for the activation of H(+)-ATPase in stomatal guard cells.  相似文献   

16.
14-3-3 proteins are phosphoserine/phosphothreonine-recognizing adapter proteins that regulate the activity of a vast array of targets. There are also examples of 14-3-3 proteins binding their targets via unphosphorylated motifs. Here we present a structural and biological investigation of the phosphorylation-independent interaction between 14-3-3 and exoenzyme S (ExoS), an ADP-ribosyltransferase toxin of Pseudomonas aeruginosa. ExoS binds to 14-3-3 in a novel binding mode mostly relying on hydrophobic contacts. The 1.5 A crystal structure is supported by cytotoxicity analysis, which reveals that substitution of the corresponding hydrophobic residues significantly weakens the ability of ExoS to modify the endogenous targets RAS/RAP1 and to induce cell death. Furthermore, mutation of key residues within the ExoS binding site for 14-3-3 impairs virulence in a mouse pneumonia model. In conclusion, we show that ExoS binds 14-3-3 in a novel reversed orientation that is primarily dependent on hydrophobic residues. This interaction is phosphorylation independent and is required for the function of ExoS.  相似文献   

17.
Modulation of proton extrusion and ATP-dependent H+ transport through the plasma membrane in relation to the presence of 14-3-3 proteins in this membrane in response to osmotic shock was studied in tomato ( Lycopersicon esculentum Mill. cv. Pera) cell cultures. In vivo H+ extrusion by cells was activated rapidly and significantly after adding 100 m M NaCl, 100 m M KCl, 50 m M Na2SO4, 1.6% sorbitol or 2 µ M fusicoccin to the medium. The increase in H+ extrusion by cells treated with 100 m M NaCl was correlated with an increase of H+ transport by the plasma membrane H+-ATPase (EC 3.6.1.35), but not with changes in ATP hydrolytic activity of this enzyme, suggesting an increased coupling ratio of the enzyme. Immunoblot experiments showed increased amounts of 14-3-3 proteins in plasma membrane fractions isolated from tomato cells treated with 100 m M NaCl as compared to control cells without changing the amount of plasma membrane H+-ATPase. Together, these data indicate that in tomato cells an osmotic shock could enhance coupling between ATP hydrolysis and proton transport at the plasma membrane through the formation of a membrane 14-3-3/H+-ATPase complex.  相似文献   

18.
The plant plasma membrane H(+)-ATPase is regulated by an auto-inhibitory C-terminal domain that can be displaced by phosphorylation of the penultimate residue, a Thr, and the subsequent binding of 14-3-3 proteins. By mass spectrometric analysis of plasma membrane H(+)-ATPase isoform 2 (PMA2) isolated from Nicotiana tabacum plants and suspension cells, we identified a new phosphorylation site, Thr-889, in a region of the C-terminal domain upstream of the 14-3-3 protein binding site. This residue was mutated into aspartate or alanine, and the mutated H(+)-ATPases expressed in the yeast Saccharomyces cerevisiae. Unlike wild-type PMA2, which could replace the yeast H(+)-ATPases, the PMA2-Thr889Ala mutant did not allow yeast growth, whereas the PMA2-Thr889Asp mutant resulted in improved growth and increased H(+)-ATPase activity despite reduced phosphorylation of the PMA2 penultimate residue and reduced 14-3-3 protein binding. To determine whether the regulation taking place at Thr-889 was independent of phosphorylation of the penultimate residue and 14-3-3 protein binding, we examined the effect of combining the PMA2-Thr889Asp mutation with mutations of other residues that impair phosphorylation of the penultimate residue and/or binding of 14-3-3 proteins. The results showed that in yeast, PMA2 Thr-889 phosphorylation could activate H(+)-ATPase if PMA2 was also phosphorylated at its penultimate residue. However, binding of 14-3-3 proteins was not required, although 14-3-3 binding resulted in further activation. These results were confirmed in N. tabacum suspension cells. These data define a new H(+)-ATPase activation mechanism that can take place without 14-3-3 proteins.  相似文献   

19.
To investigate the effects of calcineurin expression on cellular ion homeostasis in plants, we have obtained a transgenic cell culture of tomato, expressing constitutively activated yeast calcineurin. Transgenic cells exhibited reduced growth rates and proton extrusion activity in vivo. We show that reduction of plasma membrane H+-ATPase activity by expression of calcineurin is the basis for the observed phenotypes. Transgenic calli and cell suspensions displayed also increased salt tolerance and contained slightly higher Ca2+ and K+ levels. This demonstrates that calcineurin can modulate ion homeostasis in plants as it does in yeast by affecting the activity of primary ion transporters.  相似文献   

20.
Using the two-hybrid technique we identified a novel protein whose N-terminal 88 amino acids (aa) interact with the C-terminal regulatory domain of the plasma membrane (PM) H+-ATPase from Arabidopsis thaliana (aa 847-949 of isoform AHA1). The corresponding gene has been named Ppi1 for Proton pump interactor 1. The encoded protein is 612 aa long and rich in charged and polar residues, except for the extreme C-terminus, where it presents a hydrophobic stretch of 24 aa. Several genes in the A. thaliana genome and many ESTs from different plant species share significant similarity (50-70% at the aa level over stretches of 200-600 aa) to Ppi1. The PPI1 N-terminus, expressed in bacteria as a fusion protein with either GST or a His-tag, binds the PM H+-ATPase in overlay experiments. The same fusion proteins and the entire coding region fused to GST stimulate H+-ATPase activity. The effect of the His-tagged peptide is synergistic with that of fusicoccin (FC) and of tryptic removal of a C-terminal 10 kDa fragment. The His-tagged peptide binds also the trypsinised H+-ATPase. Altogether these results indicate that PPI1 N-terminus is able to modulate the PM H+-ATPase activity by binding to a site different from the 14-3-3 binding site and is located upstream of the trypsin cleavage site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号