首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The resonances of nearly all 70 of the non-exchangeable protons of the duplex [d(GGTATACC)]2 in aqueous solution are assigned by proton two-dimensional nuclear Overhauser enhancement (2D NOE) spectra obtained in pure absorption phase at 500 MHz. Experimental and theoretical 2D NOE spectra are compared at each mixing time (100, 175, 250 and 400 ms) using two B-DNA structures: a standard B-form and an energy-minimized form. The GG and CC ends of the octamer duplex are well represented by the regular B-DNA structure. But large discrepancies from these models are observed for the 'TATA' box. All 2D NOE data are consistent with nanosecond correlation times, as indicated by non-selective proton spin-lattice relaxation times, but small variations in the correlation time are observed, suggesting that there are some local differences in mobility within the octamer duplex structure in solution.  相似文献   

2.
Two-dimensional proton nuclear magnetic resonance nuclear Overhauser effect experiments have been performed at a series of mixing times on proflavine and on a DNA octamer duplex [d-(GGAATTCC)]2 in solution. Using the complete matrix approach recently explored theoretically (Keepers and James, 1984), proton-proton internuclear distances were determined quantitatively for proflavine from the two-dimensional nuclear Overhauser effect results. Since proflavine is a rigid molecule with X-ray crystal structure determined, interproton distances obtained from the two-dimensional nuclear Overhauser effect experiments in solution can be compared with those for the crystalline compound agreement is better than 10 %. Experimental two-dimensional nuclear Overhauser effect spectral data for [d-(GGAATTCC)]2 were analyzed by comparison with theoretical two-dimensional nuclear Overhauser effect spectra at each mixing time calculated using the complete 70 × 70 relaxation matrix. The theoretical spectra were calculated using two structures: a standard B-form DNA structure and an energy-minimized structure based on similarity of the octamer's six internal residues with those of [d-(CGCGAATTCGCG)]2, for which the crystal structure has been determined. Neither the standard B-DNA nor the energy-minimized structure yield theoretical two-dimensional nuclear Overhauser effect spectra which accurately reproduce all experimental peak intensities. But many aspects of the experimental spectra can be represented by both the B-DNA and the energy-minimized structure. In general, the energy-minimized structure yields theoretical two-dimensional nuclear Overhauser effect spectra which mimic many, if not all, features of the experimental, spectra including structural characteristics at the purine-pyrimidine junction.  相似文献   

3.
E Suzuki  N Pattabiraman  G Zon  T L James 《Biochemistry》1986,25(22):6854-6865
Pure absorption phase proton two-dimensional nuclear Overhauser effect (2D NOE) spectra at 500 MHz have been obtained for [d(5'ATATATATAT3')]2 in deuterium oxide solution at several mixing times. The 100 nonexchangeable proton resonances have been assigned. The experimental 2D NOE spectra were compared with theoretical spectra calculated by using the complete relaxation matrix analysis method [Keepers, J. W., & James, T. L. (1984) J. Magn. Reson. 57, 404-426] and x-ray diffraction determined molecular coordinates of A, B, alternating B, left-handed B, C, D, and wrinkled D forms of DNA and of energy-minimized structures calculated from the most promising X-ray crystal structures by using the molecular mechanics program AMBER, in which all hydrogens, counterions, and hydration water molecules were included. The analysis of all features of the 2D NOE spectra played an important role in extracting the promising structures, and it was concluded that the wrinkled D form yields the best fit for the 2D NOE data of the A-T decamer. The molecular mechanics calculation indicated that this model structure, whose minor groove is comparatively deep and narrow, may be energetically more stable than the B form for alternating d(A-T) DNA. Interesting features of the structure include possible intra- and interchain sugar-phosphate attractions and a hydration tunnel inside the minor groove capable of accommodating three types of water molecules that aid in helix stabilization via hydrogen bonding. Counterions (sodium) serve to reduce interchain phosphate-phosphate repulsive effects.  相似文献   

4.
R Stolarski  W Egan  T L James 《Biochemistry》1992,31(31):7027-7042
The self-complementary DNA octamer [d(GGAATUFCC)]2, containing the EcoRI recognition sequence with one of the thymines replaced by 5-fluorouracil (UF), was synthesized. Proton homonuclear two-dimensional nuclear Overhauser effect (2D NOE) and double-quantum-filtered correlation (2QF-COSY) spectra, as well as one-dimensional spectra at different temperatures, were recorded for the octamer. Consequently, all proton resonances were assigned. The thermally induced transition from the duplex to single strands has been followed, demonstrating the stability of the duplex containing 5-fluorouracil. Simulations of the 2QF-COSY cross-peaks by means of the programs SPHINX and LINSHA were compared with experimental data, establishing scalar coupling constants for the sugar ring protons and hence sugar pucker parameters. The deoxyribose rings exhibit a dynamic equilibrium of N- and S-type conformers with 75-95% populations of the latter. Two programs used for complete relaxation matrix analysis 2D NOE spectra, CORMA and MARDIGRAS, were modified to account for the influence of the fluorines on dipolar interactions in the proton system. Quantitative assessment of the 2D NOE cross-peak intensities for different mixing times, in conjunction with the program MARDIGRAS, gave a set of interproton distances for each mixing time. The largest and smallest values of each of the interproton distances were chosen as the upper and lower bounds for each distance constraint. The distance bounds define the size of a flat-well potential function term, incorporated into the AMBER force field, which was employed for restrained molecular dynamics calculations. Torsion angle constraints in the form of a flat-well potential were also constructed from the analysis of the sugar pucker data. Several restrained molecular dynamics runs of 35 ps were performed, utilizing 284 experimental distance and torsion angle constraints and two different starting structures, energy-minimized A- and B-DNA. Convergence to similar structures with a root-mean-square deviation of 1.2 A was achieved for the central hexamer of the octamer, starting from A- and B-DNA. The average structure from six different molecular dynamics runs was subjected to final restrained energy minimization. The resulting final structure was in good agreement with the structures derived from different molecular dynamics runs and showed a substantial improvement of the 2D NOE sixth-root residual index in comparison with classical and energy-minimized B-DNA. A detailed analysis of the conformation of the final structure and comparison with structures of similar sequences, obtained by different methods, were performed.  相似文献   

5.
Phase-sensitive two-dimensional nuclear Overhauser effect spectra of [d(GGTATACC)]2 in aqueous deuterium oxide solution at four mixing times were quantified to give all nonoverlapping cross-peak intensities. A structural model for [d(GGTATACC)]2 was built in which the GG- and -CC moieties were in the B-DNA form, while the middle -TATA- moiety was in the wrinkled-D form (BDB model). This model was subjected to energy refinement by molecular mechanics calculations with the program AMBER. Counterions (Na+) were added to neutralize the charges, and water molecules were placed bridging across the minor groove. A complete relaxation matrix analysis was used to calculate two-dimensional nuclear Overhauser effect spectra of [d(GGTATACC)]2 from the above models (before and after energy refinement) and from four other [d(GGTATACC)]2 structural models: regular A, crystalline A, regular B, and energy-minimized B. Among them, the energy-minimized BDB model yielded a set of theoretical spectra that gave the best fit to the experimental spectra. It was also the energetically most stable. Therefore, it is a good representation of the ensemble- and time-averaged structure of the octamer in solution. This model has backbone torsion angles similar to those of B-form DNA in the GG- and -CC moieties and torsion angles similar to those of wrinkled D form DNA in the -TATA- moiety. The base stacking and base pairing are not interrupted at the junctions between the two structural moieties. Its minor groove is narrower than that of B DNA, and the solvent-accessible surface of the minor groove forms a closed hydration tunnel in the middle -TATA- segment.  相似文献   

6.
Two-dimensional nuclear Overhauser effect (2D NOE) spectra have been used as the experimental basis for determining the solution structure of the duplex [d(GTATATAC)]2 employing restrained molecular dynamics (rMD) simulations. The MARDIGRAS algorithm has been employed to construct a set of 233 interproton distance constraints via iterative complete relaxation matrix analysis utilizing the peak intensities from the 2D NOE spectra obtained for different mixing times and model structures. The upper and lower bounds for each of the constraints, defining size of a flat-well potential function term used in the rMD simulations, were conservatively chosen as the largest or smallest value calculated by MARDIGRAS. Three different starting models were utilized in several rMD calculations: energy-minimized A-DNA, B-DNA, and a structure containing wrinkled D-DNA in the interior. Considerable effort was made to define the appropriate force constants to be employed with the NOE terms in the AMBER force field, using as criteria the average constraints deviation, the constraints violation energy and the total energy. Of the 233 constraints, one was generated indirectly, but proved to be crucial in defining the structure: the cross-strand A5-H2 A5-H2 distance. As those two protons resonate isochronously for the self-complementary duplex, the distance cannot be determined directly. However, the general pattern of 2D NOE peak intensities, spin-lattice relaxation time (T1) values, and 31P nuclear magnetic resonance spectra lead to use of the A3-H2 A7-H2 distance for A5-H2 A5-H2 as well. Five rMD runs, with different random number seeds, were made for each of the three starting structures with the full distance constraint set. The average structure from all 15 runs and the five-structure averages from each starting structure were all quite similar. Two rMD runs for each starting structure were made with the A5-H2 A5-H2 constraint missing. The average of these six rMD runs revealed differences in structure, compared to that with the full set of constraints, primarily for the middle two base-pairs involving the missing cross-strand constraint but global deviations also were found. Conformational analysis of the resulting structures revealed that the inner four to six base-pairs differed in structure from the termini. Furthermore, an alternating structure was suggested with features alternating for the A-T and T-A steps.  相似文献   

7.
The DNA octamer [d(GTATAATG].[(CATATTAC)], containing the prokaryotic upstream consensus recognition sequence, has been examined via proton homonuclear two-dimensional nuclear Overhauser effect (2D NOE) and double-quantum-filtered correlation (2QF-COSY) spectra. All proton resonances, except those of H5' and H5" protons, were assigned. A temperature dependence study of one-dimensional nuclear magnetic resonance (NMR) spectra, rotating frame 2D NOE spectroscopy (ROESY), and T1 rho measurements revealed an exchange process that apparently is global in scope. Work at lower temperatures enabled a determination of structural constraints that could be employed in determination of a time-averaged structure. Simulations of the 2QF-COSY cross-peaks were compared with experimental data, establishing scalar coupling constant ranges of the individual sugar ring protons and hence pucker parameters for individual deoxyribose rings. The rings exhibit a dynamic equilibrium of N and S-type conformers with 80 to 100% populations of the latter. A program for iterative complete relaxation matrix analysis of 2D NOE spectral intensities, MARDIGRAS, was employed to give interproton distances for each mixing time. According to the accuracy of the distance determination, upper and lower distance bounds were chosen. The distance bounds define the size of a flat-well potential function term, incorporated into the AMBER force-field, which was employed for restrained molecular dynamics calculations. Torsion angle constraints in the form of a flat-well potential were also constructed from the analysis of the sugar pucker data. Several restrained molecular dynamics runs of 25 picoseconds were performed, utilizing 184 experimental distance constraints and 80 torsion angle constraints; three different starting structures were used: energy minimized A-DNA, B-DNA, and wrinkled D-DNA, another member of the B-DNA family. Convergence to similar structures obtained with root-mean-square deviations between resulting structures of 0.37 to 0.92 A for the central hexamer of the octamer. The average structure from the nine different molecular dynamics runs was subjected to final restrained energy minimization. The resulting final structure was in good agreement with the structures derived from different molecular dynamics runs and exhibited a substantial improvement in the 2D NOE sixth-root residual index in comparison with the starting structures. An approximation of the structure in the terminal base-pairs, which displayed experimental evidence of fraying, was made by maintaining the structure of the inner four base-pairs and performing molecular dynamics simulations with the experimental structural constraints observed for the termini.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Proton homonuclear two-dimensional (2D) NOE spectra were obtained for the decamer [d(ATATATAUAT)]2 as a function of mixing time, and proton resonance assignments were made. Quantitative assessment of the 2D NOE cross-peak intensities was used in conjunction with the program MARDIGRAS, which entails a complete relaxation matrix analysis of the 2D NOE peak intensities, to obtain a set of upper and lower bound interproton distance constraints. The analysis with MARDIGRAS was carried out using three initial models: A-DNA, B-DNA and Z-DNA. The distance constraints determined were essentially the same regardless of initial structure. These experimental structural constraints were used with restrained molecular dynamics calculations to determine the solution structure of the decamer. The molecular dynamics program AMBER was run using A-DNA or B-DNA as starting model. The root-mean-square (rms) difference between these two starting models is 0.504 nm. The two starting models were subjected to 22.5 ps of restrained molecular dynamics calculations. The coordinates of the last 10.5 ps of the molecular dynamics runs were averaged to give two final structures. MDA and MDB. The rms difference between these two structures is 0.09 nm, implying convergence of the two molecular dynamics runs. The 2D NOE spectral intensities calculated for the derived structures are in good agreement with experimental spectra, based on sixth-root residual index analysis of intensities. A detailed examination of the structural features suggests that while the decamer is in the B-family of DNA structures, many torsion angle and helical parameters alternate from purine to pyrimidine, with kinks occurring at the U-A steps.  相似文献   

9.
NMR structures of biomolecules are primarily based on nuclear Overhauser effects (NOEs) between protons. For the interpretation of NOEs in terms of distances, usually the assumption of a single rotational correlation time corresponding to a rigid molecule approximation is made. Here we investigate the effect of fast internal motions of the interproton vectors in the context of the relaxation matrix approach for structure determination of biomolecules. From molecular dynamics simulations generalized order parameters were calculated for the DNA octamer d(GCGTTCGC).d(CGCAACGC), and these were used in the calculation of NOE intensities. The magnitudes of the order parameters showed some variation for the different types of interproton vectors. The lowest values were observed for the interresidue base H6/H8-H2" proton vectors (S2 = 0.60), while the cytosine H5-H6 interproton vectors were among the most motionally restricted (S2 = 0.92). Inclusion of the motion of the interproton vectors resulted in a much better agreement between theoretically calculated NOE spectra and the experimental spectra measured by 2D NOE spectroscopy. The interproton distances changed only slightly, with a maximum of 10%; nevertheless, the changes were significant and resulted in constraints that were better satisfied. The structure of the DNA octamer was determined by using restrained molecular dynamics simulations with H2O as a solvent, with and without the inclusion of local internal motions. Starting from A- or B-DNA, the structures showed a high local convergence (0.86 A), while the global convergence for the octamer was ca. 2.6 A.  相似文献   

10.
B Borah  F B Howard  H T Miles  J S Cohen 《Biochemistry》1986,25(23):7464-7470
Proton one- and two-dimensional nuclear Overhauser enhancement (1D and 2D NOE) spectroscopy has been used to demonstrate that poly(d2NH2A-d5IU) and poly(d2NH2A-d5BrU) are converted from the B to the A conformation in high salt, as found previously for poly(d2NH2A-dT) [Borah, B., Cohen, J. S., Howard, F. B., & Miles, H. T. (1985) Biochemistry 24, 7456-7462]. The 2D NOE and 1D NOE spectra exhibit strong base proton (H8,H6)-H3' cross relaxation, suggesting short interproton distances. These results are indicative of a C3'-endo sugar pucker for both purine and pyrimidine residues in an A or closely related structure. The circular dichroism and UV spectra are consistent with the interpretation of an A conformation in high salt.  相似文献   

11.
Hyperfine 1H NMR signals of the 2Fe-2S* vegetative ferredoxin from Anabaena 7120 have been studied by two-dimensional (2D) magnetization exchange spectroscopy. The rapid longitudinal relaxation rates of these signals required the use of very short nuclear Overhauser effect (NOE) mixing times (0.5-20 ms). The resulting pattern of NOE cross-relaxation peaks when combined with previous 1D NOE results [Dugad, L. B., La Mar, G. N., Banci, L., & Bertini, I. (1990) Biochemistry 29, 2263-2271] led to elucidation of the carbon-bound proton spin systems from each of the four cysteines ligated to the 2Fe-2S* cluster in the reduced ferredoxin. Additional NOE cross peaks were observed that provide information about other amino acid residues that interact with the iron-sulfur cluster. NOE cross peaks were assigned tentatively to Leu27, Arg42, and Ala43 on the basis of the X-ray coordinates of oxidized Anabaena 7120 ferredoxin [Rypniewski, W.R., Breiter, D.R., Benning, M.M., Wesenberg, G., Oh, B.-H., Markley, J.L., Rayment, I., & Holden, H. M. (1991) Biochemistry 30, 4126-4131]. Three chemical exchange cross peaks were detected in magnetization exchange spectra of half-reduced ferredoxin and assigned to the 1H alpha protons of Cys49 and Cys79 [both of whose sulfur atoms are ligated to Fe(III)] and Arg42 (whose amide nitrogen is hydrogen-bonded to one of the inorganic sulfurs of the 2Fe-2S* cluster). The chemical exchange cross peaks provide a means of extending assignments in the spectrum of reduced ferredoxin to assignments in the spectrum of the oxidized protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
13.
In order to obtain insight into the repair mechanism of DNA containing thymine photo-dimer, the conformation of the duplex d(GCGTTGCG) x d(CGCAACGC) with a thymine dimer incorporated has been studied by proton NMR and the results are compared with NMR data of the parent octamer. Two-dimensional nuclear Overhauser enhancement (2D NOE) spectroscopy and two-dimensional homonuclear Hartmann-Hahn spectroscopy have been applied to assign all the non-exchangeable base protons and most of the deoxyribose protons of both duplexes. From these experiments it is clear that indeed a cis-syn cyclobutane-type thymine photodimer is formed by the irradiation of this oligonucleotide with ultraviolet light. Comparison of 2D NOE spectra and the 1H chemical shifts of the damaged and the intact DNA duplexes reveals that formation of a thymine dimer induces small distortions of the B-DNA structure, the main conformational change occurring at the site of the thymine dimer.  相似文献   

14.
K Weisz  R H Shafer  W Egan  T L James 《Biochemistry》1992,31(33):7477-7487
Phase-sensitive two-dimensional nuclear Overhauser enhancement (2D NOE) and double-quantum-filtered correlated (2QF-COSY) spectra were recorded at 500 MHz for the DNA duplex d(CATTTGCATC).d(GATGCAAATG), which contains the octamer element of immunoglobulin genes. Exchangeable and nonexchangeable proton resonances including those of the H5' and H5" protons were assigned. Overall, the decamer duplex adopts a B-type DNA conformation. Scalar coupling constants for the sugar protons were determined by quantitative simulations of 2QF-COSY cross-peaks. These couplings are consistent with a two-state dynamic equilibrium between a minor N- and a major S-type conformer for all residues. The pseudorotation phase angle P of the major conformer is in the range 117-135 degrees for nonterminal pyrimidine nucleotides and 153-162 degrees for nonterminal purine nucleotides. Except for the terminal residues, the minor conformer comprises less than 25% of the population. Distance constraints obtained by a complete relaxation matrix analysis of the 2D NOE intensities with the MARDIGRAS algorithm confirm the dependence of the sugar pucker on pyrimidine and purine bases. Averaging by fast local motions has at most small effects on the NOE-derived interproton distances.  相似文献   

15.
The solution structures of two alternating purine-pyrimidine octamers, [d(G-T-A-C-G-T-A-C)]2 and the reverse sequence [d(C-A-T-G-C-A-T-G)]2, are investigated by using nuclear magnetic resonance spectroscopy and restrained molecular dynamics calculations. Chemical shift assignments are obtained for non-exchangeable protons by a combination of two-dimensional correlation and nuclear Overhauser enhancement (NOE) spectroscopy experiments. Distances between protons are estimated by extrapolating distances derived from time-dependent NOE measurements to zero mixing time. Approximate dihedral angles are determined within the deoxyribose ring from coupling constants observed in one and two-dimensional spectra. Sets of distance and dihedral determinations for each of the duplexes form the bases for structure determination. Molecular dynamics is then used to generate structures that satisfy the experimental restraints incorporated as effective potentials into the total energy. Separate runs start from classical A and B-form DNA and converge to essentially identical structures. To circumvent the problems of spin diffusion and differential motion associated with distance measurements within molecules, models are improved by NOE-based refinement in which observed NOE intensities are compared to those calculated using a full matrix analysis procedure. The refined structures generally have the global features of B-type DNA. Some, but not all, variations in dihedral angles and in the spatial relationships of adjacent base-pairs are observed to be in synchrony with the alternating purine-pyrimidine sequence.  相似文献   

16.
H Robinson  A H Wang 《Biochemistry》1992,31(13):3524-3533
We have developed a simple and quantitative procedure (SPEDREF) for the refinement of DNA structures using experimental two-dimensional nuclear Overhauser effect (2D NOE) data. The procedure calculates the simulated 2D NOE spectrum using the full matrix relaxation method on the basis of a molecular model. The volume of all NOE peaks is measured and compared between the experimental and the calculated spectra. The difference of the experimental and simulated volumes is minimized by a conjugated gradient procedure to adjust the interproton distances in the model. An agreement factor (analogous to the crystallographic R-factor) is used to monitor the progress of the refinement. The procedure is an The agreement is considered to be complete when several parameters, including the R-factor, the energy associated with the molecule, the local conformation (as judged by the sugar pseudorotation), and the global conformation (as judged by the helical x-displacement), are refined to their respective convergence. With the B-DNA structure of d(CGATCG) as an example, we show that DNA structure may be refined to produce calculated NOE spectra that are in excellent agreement with the experimental 2D NOE spectra. This is judged to be effective by the low R-factor of approximately 15%. Moreover, we demonstrate that not only are NOE data very powerful in providing details of the local structure but, with appropriate weighting of the NOE constraints, the global structure of the DNA double helix can also be determined, even when starting with a grossly different model. The reliability and limitations of a DNA structure as determined by NMR spectroscopy are discussed.  相似文献   

17.
31P- and 1H-nmr and laser Raman spectra have been obtained for poly[d(G-T)]·[d(C-A)] and poly[d(A-T)] as a function of both temperature and salt. The 31P spectrum of poly[d(G-T)]·[d(C-A)] appears as a quadruplet whose resonances undergo separation upon addition of CsCl to 5.5M. 1H-nmr measurements are assigned and reported as a function of temperature and CsCl concentration. One dimensional nuclear Overhauser effect (NOE) difference spectra are also reported for poly[d(G-T)]·[d(C-A)] at low salt. NOE enhancements between the H8 protons of the purines and the C5 protons of the pyrimidines, (H and CH3) and between the base and H-2′,2″ protons indicate a right-handed B-DNA conformation for this polymer. The NOE patterns for the TH3 and GH1 protons in H2O indicate a Watson–Crick hydrogen-bonding scheme. At high CsCl concentrations there are upfield shifts for selected sugar protons and the AH2 proton. In addition, laser Raman spectra for poly[d(A-T)] and poly[d(G-T)]·[d(C-A)] indicate B-type conformations in low and high CsCl, with predominantly C2′-endo sugar conformations for both polymers. Also, changes in base-ring vibrations indicate that Cs+ binds to O2 of thymine and possibly N3 of adenine in poly[d(G-T)]·[d(C-A)] but not in poly[d(A-T)]. Further, 1H measurements are reported for poly[d(A-T)] as a function of temperature in high CsCl concentrations. On going to high CsCl there are selective upfield shifts, with the most dramatic being observed for TH1′. At high temperature some of the protons undergo severe changes in linewidths. Those protons that undergo the largest upfield shifts also undergo the most dramatic changes in linewidths. In particular TH1′, TCH3, AH1′, AH2, and TH6 all undergo large changes in linewidths, whereas AH8 and all the H-2′,2″ protons remain essentially constant. The maximum linewidth occurs at the same temperature for all protons (65°C). This transition does not occur for d(G-T)·d(C-A) at 65°C or at any other temperature studied. These changes are cooperative in nature and can be rationalized as a temperature-induced equilibrium between bound and unbound Cs+, with duplex and single-stranded DNA. NOE measurements for poly[d(A-T)] indicate that at high Cs+ the polymer is in a right-handed B-conformation. Assignments and NOE effects for the low-salt 1H spectra of poly[d(A-T)] agree with those of Assa-Munt and Kearns [(1984) Biochemistry 23 , 791–796] and provide a basis for analysis of the high Cs+ spectra. These results indicate that both polymers adopt a B-type conformation in both low and high salt. However, a significant variation is the ability of the phosphate backbone to adopt a repeat dependent upon the base sequence. This feature is common to poly[d(G-T)]·[d(C-A)], poly[d(A-T)], and some other pyr–pur polymers [J. S. Cohen, J. B. Wouten & C. L Chatterjee (1981) Biochemistry 20 , 3049–3055] but not poly[d(G-C)].  相似文献   

18.
Long-[Arg(3)]insulin-like growth factor-I (IGF-I) is a potent analog of insulin-like growth factor-I that has been modified by a Glu(3) --> Arg mutation and a 13-amino acid extension appended to the N terminus. We have determined the solution structure of (15)N-labeled Long-[Arg(3)]-IGF-I using high resolution NMR and restrained molecular dynamics techniques to a precision of 0.82 +/- 0.28 A root mean square deviation for the backbone heavy atoms in the three alpha-helices and 3.5 +/- 0.9 A root mean square deviation for all backbone heavy atoms excluding the 8 N-terminal residues and the 8 C-terminal eight residues. Overall, the structure of the IGF-I domain is consistent with earlier studies of IGF-I with some minor changes remote from the N terminus. The major variations in the structure, compared with IGF-I, occur at the N terminus with a substantial reorientation of the N-terminal three residues of the IGF-I domain. These results are interpreted in terms of the lower binding affinity for insulin-like growth factor-binding proteins. The backbone dynamics of Long-[Arg(3)]IGF-I were investigated using (15)N nuclear spin relaxation and the heteronuclear nuclear Overhauser enhancement (NOE). There is a considerable degree of flexibility in Long-[Arg(3)]IGF-I, even in the alpha-helices, as indicated by an average ((1)H)(15)N NOE of 0.55 for the regions. The largest heteronuclear NOEs are observed in the helical regions, lower heteronuclear NOEs are observed in the C-domain loop separating helix 1 from helix 2, and negative heteronuclear NOEs are observed in the N-terminal extension and at the C terminus. Despite these data indicating conformational flexibility for the N-terminal extension, slow amide proton exchange was observed for some residues in this region, suggesting some transitory structure does exist, possibly a molten helix. A certain degree of flexibility may be necessary in all insulin-like growth factors to enable association with various receptors and binding proteins.  相似文献   

19.
R W Behling  D R Kearns 《Biochemistry》1986,25(11):3335-3346
The structure of poly(dA).poly(dT) in aqueous solution has been studied by using 1H two-dimensional nuclear Overhauser effect (2D NOE) spectroscopy and relaxation rate measurements on the imino and nonexchangeable protons. The assignments of the 1H resonances are determined from the observed cross-relaxation patterns in the 2D NOE experiments. The cross-peak intensities together with the measured relaxation rates show that the purine and pyrimidine strands in poly(dA).poly(dT) are equivalent in aqueous solution. The results are consistent with a right-handed B-form helix where the sugars on both strands are in the C2'-endo/anti configuration. These observations are inconsistent with a proposed heteronomous structure for poly(dA).poly(dT) [Arnott, S., Chandrasekaran, R., Hall, I. H., & Puigjaner, L. C. (1983) Nucleic Acids Res. 11, 4141-4155]. The measured relaxation rates also show that poly(dA).poly(dT) has fast, large-amplitude local internal motions (+/- 20-25 degrees) in solution and that the amplitudes of the base and sugar motions are similar. The motion of the bases in poly(dA).poly(dT) is also similar to that previously reported for poly(dA-dT).poly(dA-dT) and poly(dG-dC).poly(dG-dC) [Assa-Munt, N., Granot, J., Behling, R. W., & Kearns, D. R. (1984) Biochemistry 23, 944-955; Mirau, P. A., Behling, R. W., & Kearns, D. R. (1985) Biochemistry 24, 6200-6211].  相似文献   

20.
Circular dichroism (CD) and nuclear magnetic resonance (NMR) techniques have been used to characterize the structural properties of the two self-complementary DNA octamers d(TGACGTCA) (I) and d(ACTGCAGT) (II). These display as distinctive features reverse sequences and central steps CpG and GpC, respectively. CD experiments lead to B-form DNA spectra characterized by larger magnitude signals in the case of octamer (I). NMR COSY spectra indicate that in the two octamers all the residues are predominantly south, S, (2'-endo) sugar conformation. NMR NOESY spectra show most of the glycosidic angles confined in the range predicted for B-form DNA although important heterogeneity is noticed along the chains, more pronounced in the case of octamer (I). Both the increase of north, N, (3'-endo) sugar conformation and P (pseudorotation phase angle) deviation from its standard B-form DNA value (162 degrees) express local sequence dependent structure distortions, remarkably visible in CpG step of octamer (I) and agreeing with NOESY cross-peaks intensities. Results interpreted according to Calladine's rules indicate higher cross-chain strains in octamer (I) than in octamer (II). All together, we find evidence to support for octamer (I) in solution local structures with A-DNA properties likely dictated by the central CpG step. Such structures could be involved in the DNA recognition by proteins and anticancerous drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号