首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The two cellular retinoic acid binding proteins, CRABP I and CRABP II, belong to a family of small cytosolic lipid binding proteins and are highly conserved during evolution. Both proteins are expressed during embryogenesis, particularly in the developing nervous system, craniofacial region and limb bud. CRABP I is also expressed in several adult tissues, however, in contrast, CRABP II expression appears to be limited to the skin. It is likely that these proteins serve as regulators in the transport and metabolism of retinoic acid in the developing embryo and throughout adult life. It has been proposed that CRABP I sequesters retinoic acid in the cytoplasm and prevents nuclear uptake of retinoic acid. A role in catabolism of retinoic acid has also been proposed. Recent gene targeting experiments have shown that neither of the two CRABPs are essential for normal embryonic development or adult life. Examination of CRABP I expression at subcellular resolution reveals a differential cytoplasmic and/or nuclear localization of the protein. A regulated nuclear uptake of CRABP I implies a role for this protein in the intracellular transport of retinoic acid. A protein mediated mechanism which controls the nuclear uptake of retinoic acid may play an important role in the transactivation of the nuclear retinoic acid receptors.  相似文献   

2.
We previously demonstrated the presence of cellular retinoic acid binding protein II, chick-CRABP II, in chick embryos. In the present study, we investigated the distribution of chick-CRABP II in 14-day chick embryos by means of immunoblot analysis. Chick-CRABP II was expressed in skin, muscle, bone with tendon of the embryos, but not expressed in the nervous system. In adult chick tissues, chick-CRABP II was not detected on immunoblotting; Chick-CRABP II in adults amounts to less than 10 ng/mg soluble protein. These observations suggest that chick- CRABP II is an embryonic protein involved in the development of specific tissues, such as bone, muscle and skin.  相似文献   

3.
4.
Cellular RA binding proteins are thought to play important roles in the (RA), a hormonally active metabolite of vitamin A that has profound effects on cell growth, + differentiation and morphogenesis. Binding of RA to type II human cellular RA binding proteins (CRABPII) has been investigated by NMR spectroscopy. The sequential resonance assignments of +CRABPII in the presence of RA were established by heteronuclear three-dimensional NMR at pH 7.3. The resonance assignments of the bound RA were achieved by homonucl NMR. The secondary structures of holo-CRABPII determined by NMR were ess as revealed by the crystal structure of holo-CRABPII. Most of the nuclear Overhauser effects (NOEs) between CRABPII and the bound RA were consistent with those predicted crystal structure of holo-CRABPII. The results suggested that the conformations in solution and in the crystalline state are highly similar. Compared to the ligand binding pocket, especially the ligand entrance, was stabilize Ser12-Leu18, one of the structure elements that constitute the ligand binding pocket, became more mobile upon binding of RA. Intramolecular NOEs between protons of the bo the carboxylate end of the bound RA is well fixed but the β-ionone  相似文献   

5.
Cellular retinoic acid binding proteins are considered to be involved in retinoic acid (RA) signaling pathways. Our aim was to compare the expression and localization of cellular retinoic acid binding proteins I and II (CRABP I and II) in embryonic mouse hearts during normal development and after a single teratogenic dose of RA. Techniques such as real-time PCR, RT-PCR, Western blots and immunostaining were employed to examine hearts from embryos at 9-17 dpc. RA treatment at 8.5dpc affects production of CRABP I and II in the heart in the 48-h period. Changes in expression of mRNA for retinaldehyde dehydrogenase II (Raldh2), Crabp1 and Crabp2 genes also occur within the same time window (i.e. 10-11dpc) after RA treatment. In the embryonic control heart these proteins are localized in groups of cells within the outflow tract (OT), and the atrioventricular endocardial cushions. A gradient of labeling is observed with CRABP II but not for CRABP I along the myocardium of the looped heart at 11 dpc; this gradient is abolished in hearts treated with RA, whereas an increase of RALDH2 staining has been observed at 10 dpc in RA-treated hearts. Some populations of endocardial endothelial cells were intensively stained with anti-CRABP II whereas CRABP I was negative in these structures. These results suggest that CRABP I and II are independently regulated during heart development, playing different roles in RA signaling, essential for early remodeling of the heart tube and alignment of the great arteries to their respective ventricles.  相似文献   

6.
7.
Peroxiredoxin 6 (Prx6) belongs to the family of thiol-dependent peroxidases that catalyze the reduction of hydrogen peroxide, organic peroxides, and peroxynitrite. Peroxiredoxins (Prxs) are increasingly recognized as a multi-functional proteins involved in various cellular processes. Accordingly, individual Prxs have been found to interact with multiple partners. Although the list of Prxs-binding proteins is rapidly growing, interactions reported so far show very limited overlap with each other. Our earlier studies indicated that Prx6 is a major cytosolic protein of rat olfactory epithelium and an important component of antioxidant defense system in this tissue. Here we used a combination of biochemical methods including pull-down assay, chemical cross-linking with a tri-functional cross-linker sulfo-SBED, co-immunoprecipitation, and mass spectrometry-based detection to conduct a random search for the Prx6-binding partners in water-soluble extracts from rat olfactory epithelium. Our findings showed that recombinant Prx6 formed complexes with peroxiredoxin 1, cytoskeletal proteins actin and tubulin, metabolic protein glyceraldehyde-3-phosphate dehydrogenase, heat shock proteins 70 and 90, and native Prx6. A common property of the identified proteins is the presence of conserved redox-sensitive Cys residue in their molecules. Novel interactions of rat Prx6 were validated by several independent methods, thus eliminating technical false-positives. However, the conventional methodological approaches to capture reproducibly real physical interactions have intrinsic limitations in distinguishing between randomly and functionally associated proteins, since not all of the naturally occurring protein complexes necessarily bear functional significance. We hypothesize that protein-protein interactions of Prx6 in vivo might induce conformational changes in its molecule, thus increasing the accessibility of the active-site Cys to general cellular reducing agents, such as thioredoxin or glutathione.  相似文献   

8.
The binding of retinoic acid to mutants of Cellular Retinoic Acid Binding Protein II (CRABPII) was evaluated to better understand the importance of the direct protein/ligand interactions. The important role of Arg111 for the correct structure and function of the protein was verified and other residues that directly affect retinoic acid binding have been identified. Furthermore, retinoic acid binding to CRABPII mutants that lack all previously identified interacting amino acids was rescued by providing a carboxylic acid dimer partner in the form of a Glu residue. Proteins 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

9.
Free retinoids suffer promiscuous metabolism in vitro. Diverse enzymes are expressed in several subcellular fractions that are capable of converting free retinol (retinol not sequestered with specific binding proteins) into retinal or retinoic acid. If this were to occur in vivo, regulating the temporal-spatial concentrations of functionally-active retinoids, such as RA (retinoic acid), would be enigmatic. In vivo, however, retinoids occur bound to high-affinity, high-specificity binding proteins, including cellular retinol-binding protein, type I (CRBP) and cellular retinoic acid-binding protein, type I (CRABP). These binding proteins, members of the superfamily of lipid binding proteins, are expressed in concentrations that exceed those of their ligands. Considerable data favor a model pathway of RA biosynthesis and metabolism consisting of enzymes that recognize CRBP (apo and holo) and holo-CRABP as substrates and/or affecters of activity. This would restrict retinoid access to enzymes that recognize the appropriate binding protein, imparting specificity to RA homeostasis; preventing, e.g. opportunistic RA synthesis by alcohol dehydrogenases with broad substrate tolerances. An NADP-dependent microsomal retinol dehydrogenase (RDH) catalyzes the first reaction in this pathway. RDH recognizes CRBP as substrate by the dual criteria of enzyme kinetics and chemical crosslinking. A cDNA of RDH has been cloned, expressed and characterized as a short-chain alchol dehydrogenase. Retinal generated in microsomes from holo-CRBP by RDH supports cytosolic RA synthesis by an NAD-dependent retinal dehydrogenase (RalDH). RalDH has been purified, characterized with respect to substrate specificity, and its cDNA has been cloned. CRABP is also important to modulating the steady-state concentrations of RA, through sequestering RA and facilitating its metabolism, because the complex CRABP/RA acts as a low Km substrate.  相似文献   

10.
Structural and dynamic properties from a series of 300 ns molecular dynamics, MD, simulations of two intracellular lipid binding proteins, iLBPs, (Fatty Acid Binding Protein 5, FABP5, and Cellular Retinoic Acid Binding Protein II, CRABP-II) in both the apo form and when bound with retinoic acid reveal a high degree of protein and ligand flexibility. The ratio of FABP5 to CRABP-II in a cell may determine whether it undergoes natural apoptosis or unrestricted cell growth in the presence of retinoic acid. As a result, FABP5 is a promising target for cancer therapy. The MD simulations presented here reveal distinct differences in the two proteins and provide insight into the binding mechanism. CRABP-II is a much larger, more flexible protein that closes upon ligand binding, where FABP5 transitions to an open state in the holo form. The traditional understanding obtained from crystal structures of the gap between two β-sheets of the β-barrel common to iLBPs and the α-helix cap that forms the portal to the binding pocket is insufficient for describing protein conformation (open vs. closed) or ligand entry and exit. When the high degree of mobility between multiple conformations of both the ligand and protein are examined via MD simulation, a new mode of ligand motion that improves understanding of binding dynamics is revealed.  相似文献   

11.
Sjoelund V  Kaltashov IA 《Biochemistry》2007,46(46):13382-13390
Transport proteins must bind their ligands reversibly to enable release at the point of delivery, while irreversible binding is usually associated with the extreme cases of ligand sequestration. Protein conformational dynamics is an important modulator of binding kinetics, as increased flexibility in the regions adjacent to the binding site may facilitate both association and dissociation processes. Ligand entry to, and exit from, the internal binding site of the cellular retinoic acid binding protein I (CRABP I) occurs via a flexible portal region, which functions as a dynamic aperture. We designed and expressed a CRABP I mutant (A35C/T57C), in which a small-scale conformational switch caused by the ligand binding event triggers formation of a disulfide bond in the portal region, thereby arresting structural fluctuations and effectively locking the ligand inside the binding cavity. At the same time, no formation of the disulfide bond is observed in the apo form of the mutant, and most characteristics of the mutant, including protein stability, are very similar to those of the wild-type protein in the absence of retinoic acid. The mutation does not alter the kinetics of retinoic acid binding to the protein, although the disulfide formation makes the binding effectively irreversible, as suggested by the absence of retinoic acid transfer from the holo form of the mutant to lipid vesicles in the absence of a reducing agent. Taken together, these data suggest that the disulfide bond formation in the portal region arrests large-scale structural fluctuations, which are required for retinoic acid release from the protein. The unique properties of the CRABP I mutant described in this work can be used to inspire and guide a design of nanodevices for multiple tasks ranging from sequestering small-molecule toxins in both tissue and circulation to nutrient deprivation of pathogens.  相似文献   

12.
Burns LL  Ropson IJ 《Proteins》2001,43(3):292-302
The folding mechanisms of cellular retinol binding protein II (CRBP II), cellular retinoic acid binding protein I (CRABP I), and cellular retinoic acid binding protein II (CRABP II) were examined. These beta-sheet proteins have very similar structures and higher sequence homologies than most proteins in this diverse family. They have similar stabilities and show completely reversible folding at equilibrium with urea as a denaturant. The unfolding kinetics of these proteins were monitored during folding and unfolding by circular dichroism (CD) and fluorescence. During unfolding, CRABP II showed no intermediates, CRABP I had an intermediate with nativelike secondary structure, and CRBP II had an intermediate that lacked secondary structure. The refolding kinetics of these proteins were more similar. Each protein showed a burst-phase change in intensity by both CD and fluorescence, followed by a single observed phase by both CD and fluorescence and one or two additional refolding phases by fluorescence. The fluorescence spectral properties of the intermediate states were similar and suggested a gradual increase in the amount of native tertiary structure present for each step in a sequential path. However, the rates of folding differed by as much as 3 orders of magnitude and were slower than those expected from the contact order and topology of these proteins. As such, proteins with the same final structure may not follow the same route to the native state.  相似文献   

13.
Cellular retinoic acid binding protein I (CRABPI) belongs to the family of intracellular lipid binding proteins (iLBPs), all of which bind a hydrophobic ligand within an internal cavity. The structures of several iLBPs reveal minimal structural differences between the apo (ligand-free) and holo (ligand-bound) forms, suggesting that dynamics must play an important role in the ligand recognition and binding processes. Here, a variety of nuclear magnetic resonance (NMR) spectroscopy methods were used to systematically study the dynamics of both apo and holo CRABPI at various time scales. Translational and rotational diffusion constant measurements were used to study the overall motions of the proteins. Both apo and holo forms of CRABPI tend to self-associate at high (1.2 mM) concentrations, while at low concentrations (0.2 mM), they are predominantly monomeric. Rapid amide exchange rate and laboratory frame relaxation rate measurements at two spectrometer field strengths (500 and 600 MHz) were used to probe the internal motions of the individual residues. Several residues in the apo form, notably within the ligand recognition region, exhibit millisecond time scale motions that are significantly arrested in the holo form. In contrast, no significant differences in the high-frequency motions were observed between the two forms. These results provide direct experimental evidence for dynamics-induced ligand recognition and binding at a specifically defined time scale. They also exemplify the importance of dynamics in providing a more comprehensive understanding of how a protein functions.  相似文献   

14.
E V Parfenova 《Tsitologiia》1986,28(5):570-573
Two types of cytosol receptors of 3H-estradiol with high affinity and limited quantity of binding sites (KDI = 1-2 nM, BmaxI = 8 fmoles/mg protein; KDII = 10 nM, BmaxII = 8 fmoles/mg protein) were determined in the rat olfactory tissue. The amount of high affinity receptors of type I does not change with maturation of the rats, and has no sex difference. The role of estradiol receptors in the olfactory tissue of the rats is discussed.  相似文献   

15.
H Shinohara  K Kato  T Asano 《Acta anatomica》1992,144(2):167-171
The immunohistochemical localization of proteins Gi1 (plus Gi3). Gi2 and Go was studied in the olfactory epithelium and the main olfactory bulb of rats, using purified antibodies to the respective alpha subunits and beta gamma subunits of these G proteins. In the olfactory epithelium, only a restricted population of olfactory cells was immunopositive for Gi2 alpha, but others were not. The immunoreactivity for Gi1 alpha/Gi3 alpha was not observed. The olfactory epithelium was immunopositive for both Go alpha and beta gamma, but its apical surface was immunopositive only for beta gamma. In the main olfactory bulb, all layers were intensely immunopositive for Go alpha and beta gamma but weakly for Gi2 alpha. In contrast to the negative or weak immunostainings in the olfactory nerve fiber layer and glomeruli, the molecular and the internal granular layers were intensely immunopositive for Gi1 alpha/Gi3 alpha. These findings suggest the functional difference among Gi1/Gi3, Gi2 and Go in the signal transduction in the olfactory system.  相似文献   

16.
17.
Cellular retinoic acid binding protein (CRABP) is a member of intracellular lipid-binding protein (iLBP), and closely associated with retinoic acid (RA) activity. We have cloned the CRABP gene from silkworm pupae and studied the interaction between Bombyx mori CRABP (BmCRABP) and all-trans retinoic acid (atRA). The MTT assay data indicated that when BmCRABP is overexpressed in Bm5 cells, the cells dramatically resisted to atRA-induced growth inhibition. Conversely, the cells were sensitive to atRA treatment upon knocking down the BmCRABP expression. Subcellular localization revealed that BmCRABP is a cytoplasm protein, even when treated with atRA, the CRABP still remained in the cytoplasm. These data demonstrated that the function of BmCRABP have an effect on the physiological function of atRA.  相似文献   

18.
19.
Binding proteins for retinoic acid and retinol were separated from a supernatant prepared from bovine retina. Fraction IV from DEAE-cellulose chromatography bound exogenous [3H] retinoic acid which could not be effectively displayed by retinol, retinal, retinyl acetate or palmitate, but which was readily displaced with excess retinoic acid. [3H] Retinol was bound by fraction V from DEAE-cellulose chromatography and was not displaced by retinal, retinoic acid, retinyl acetate or retinyl palmitate, but was readily displaced by excess retinol. Unlike bovine serum retinol-binding protein, neither intracellular binding protein formed a complex with purified human serum prealbumin. The supernatant from bovine retinas was estimated to contain five times more retinoic acid binding than retinol binder.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号