首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Transformation of Bacillus megaterium by electroporation   总被引:1,自引:0,他引:1  
Summary Plasmidic DNA was introduced into intact cells of Bacillus megaterium by electroporation. The procedure showed an efficiency of 103 transformants g–1 DNA.  相似文献   

2.
3.
4.
Strains of Bacillus cereus can produce a heat-stable toxin (cereulide). In this study, 101 Bacillus strains representing 7 Bacillus species were tested for production of heat-stable toxins. Strains of B. megaterium, B. firmus and B. simplex were found to produce novel heat-stable toxins, which showed varying levels of toxicity. B. cereus strains (18 out of 54) were positive for toxin production. Thirteen were of serovar H1, and it was of interest that some were of clinical origin. Two were of serovars 17B and 20, which are not usually implicated in the emetic syndrome. Partial purification of the novel B. megaterium, B. simplex and B. firmus toxins showed they had similar physical characteristics to the B. cereus emetic toxin, cereulide.  相似文献   

5.
6.
Evidence for the existence of an energy-dependent urea uptake system in Bacillus megaterium DSM 90 was obtained by studying the uptake of 14C-urea. In vivo urea uptake and in vitro urease activity differed significantly with respect to temperature- and pH-dependence, kinetic parameters and response towards metabolic inhibitors. Highest uptake activities were observed during exponential growth, and a rapid decrease in urea uptake occurred when cells entered the stationary growth phase and started to sporulate. Significant differences in the uptake rates were observed during growth with different nitrogen sources, suggesting that the formation of the system is under nitrogen control.  相似文献   

7.
Cells of Bacillus megaterium take up inorganic pyrophosphate, employing a saturable carrier which is sensitive to sulfhydryl reagents, orthophosphate, and arsenate. Uptake is stimulated by proton ionophores, including CCCP and nigericin, indicating that proton cotransport can lead to an opposing gradient. Inhibitor sensitivity, as well a relatively high Km for inorganic pyrophosphate render it likely that uptake is mediated by an orthophosphate transport system.  相似文献   

8.
Bacillus megaterium RB-05 was grown on glucose and on “tossa-daisee” (Corchorus olitorius)-derived jute, and production and composition of extracellular polysaccharide (EPS) were monitored. An EPS yield of 0.065 ± 0.013 and of 0.297 g ± 0.054 g−1 substrate after 72 h was obtained for glucose and jute, respectively. EPS production in the presence of jute paralleled bacterial cellulase activity. High performance liquid chromatography (HPLC), matrix assisted LASER desorption/ionization-time of flight (MALDI-ToF) mass spectroscopy, and fourier transform infrared (FT-IR) spectroscopy demonstrated that the EPS synthesized in jute culture (JC) differed from that synthesized in glucose mineral salts medium (GMSM). While fucose was only a minor constituent (4.9 wt.%) of EPS from GMSM, it a major component (41.9 wt.%) of EPS synthesized in JC. This study establishes jute as an effective fermentation substrate for EPS production by a cellulase-producing bacterium.  相似文献   

9.
10.
11.
The effect of pH on the kinetic parameters for the chloroperoxidase-catalyzed N-demethylation of N,N-dimethylaniline supported by ethyl hydroperoxide was investigated from pH 3.0 to 7.0. Chloroperoxidase was found to be stable throughout the pH range studied. Initial rate conditions were determined throughout the pH range. The Vmax for the demethylation reaction exhibited a pH optimum at approximately 4.5. The Km for N,N-dimethylaniline increased with decreasing pH, while the Km for ethyl hydroperoxide varied in a manner paralleling Vmax. Comparison of the VmaxKm values for N,N-dimethylaniline and ethyl hydroperoxide indicated that the interaction of N,N-dimethylaniline with chloroperoxidase compound I was rate-limiting below pH 4.5, while compound I formation was rate-limiting above pH 4.5. The log of the VmaxKm for ethyl hydroperoxide was independent of pH, indicating that chloroperoxidase compound I formation is not affected by ionizations in this pH range. The plot of the log of the VmaxKm for N,N-dimethylaniline versus pH indicated an ionization on compound I with a pK of approximately 6.8. The plot of the log of the Vmax versus pH indicated an ionization on the compound I-N,N-dimethylaniline complex, with a pK of approximately 3.1. The results show that chloroperoxidase can demethylate both the protonated and neutral forms of N,N-dimethylaniline (pK approximately 5.0), suggesting that hydrophobic binding of the arylamine substrate is more important in catalysis than ionic bonding of the amine moiety. For optimal catalysis, a residue in the chloroperoxidase compound I-N,N-dimethylaniline complex with a pK of approximately 3.1 must be deprotonated, while a residue in compound I with a pK of approximately 6.8 must be protonated.  相似文献   

12.
13.
14.
Foerster, Harold F. (The University of Texas, Austin), and J. W. Foster. Endotrophic calcium, strontium, and barium spores of Bacillus megaterium and Bacillus cereus. J. Bacteriol. 91:1333-1345. 1966.-Spores were produced by washed vegetative cells suspended in deionized water supplemented with CaCl(2), SrCl(2), or BaCl(2). Normal, refractile spores were produced in each case; a portion of the barium spores lost refractility and darkened. Thin-section electron micrographs revealed no apparent anatomical differences among the three types of spores. Analyses revealed that the different spore types were enriched specifically in the metal to which they were exposed during sporogenesis. The calcium content of the strontium and the barium spores was very small. From binary equimolar mixtures of the metal salts, endotrophic spores accumulated both metals to nearly the same extent. Viability of the barium spores was considerably less than that of the other two types. Strontium and barium spores were heat-resistant; however, calcium was essential for maximal heat resistance. Significant differences existed in the rates of germination; calcium spores germinated fastest, strontium spores were slower, and barium spores were slowest. Calcium-barium and calcium-strontium spores germinated readily. Endotrophic calcium and strontium spores germinated without the prior heat activation essential for growth spores. Chemical germination of the different metal-type spores with n-dodecylamine took place at the same relative rates as physiological germination. Heat-induced release of dipicolinic acid occurred much faster with barium and strontium spores than with calcium spores. The washed "coat fraction" from disrupted spores contained little of the spore calcium but most of the spore barium. The metal in this fraction was released by dilute acid. The demineralized coats reabsorbed calcium and barium at neutral pH.  相似文献   

15.
16.
We present a simple and rapid method for introducing exogenous DNA into a bacterium, Bacillus megaterium, utilizing the recently developed biolistic process. A suspension of B. megaterium was spread onto the surface of nonselective medium. Plasmid pUB110 DNA, which contains a gene that confers kanamycin resistance, was precipitated onto tungsten particles. Using a biolistic propulsion system, the coated particles were accelerated at high velocities into the B. megaterium recipient cells. Selection was done by use of an agar overlay containing 50 micrograms of kanamycin per ml. Antibiotic-resistant transformants were recovered from the medium interface after 72 h of incubation, and the recipient strain was shown to contain the delivered plasmid by agarose gel electrophoresis of isolated plasmid DNA. All strains of B. megaterium tested were successfully transformed by this method, although transformation efficiency varied among strains. Physical variables of the biolistic process and biological variables associated with the target cells were optimized, yielding greater than 10(4) transformants per treated plate. This is the first report of the biolistic transformation of a procaryote.  相似文献   

17.
Aims: To determine the mechanism of wet heat killing of spores of Bacillus cereus and Bacillus megaterium. Methods and Results: Bacillus cereus and B. megaterium spores wet heat‐killed 82–99% gave two bands on equilibrium density gradient centrifugation. The lighter band was absent from spores that were not heat‐treated and increased in intensity upon increased heating times. These spores lacked dipicolinic acid (DPA) were not viable, germinated minimally and had much denatured protein. The spores in the denser band had viabilities as low as 2% of starting spores but retained normal DPA levels and most germinated, albeit slowly. However, these largely dead spores outgrew poorly if at all and synthesized little or no ATP following germination. Conclusions: Wet heat treatment appears to kill spores of B. cereus and B. megaterium by denaturing one or more key proteins, as has been suggested for wet heat killing of Bacillus subtilis spores. Significance and Impact of the Study: This work provides further information on the mechanisms of killing of spores of Bacillus species by wet heat, the most common method for spore inactivation.  相似文献   

18.
电脉冲穿孔法将几丁质酶基因导入巨大芽胞杆菌   总被引:1,自引:0,他引:1  
为了探索适宜于巨大芽胞杆菌电脉冲转化条件,将带有沙雷氏菌几丁质酶编码基因的穿梭质粒转化到植病生防菌—巨大芽胞杆菌B1301中。以芽胞杆菌B1301对数期细胞为感受态细胞,采用不同的电击转化条件进行转化,通过转化率和几丁质酶活性表达认为巨大芽胞杆菌的最佳电击转化条件为电压1000 V/mm,电容25μF,电阻400Ω,转化率为9.6×104/μg质粒,几丁质酶活性表达的菌株几率为41.67%。  相似文献   

19.
In this study, a high yield production bioprocess with recombinant Bacillus megaterium for the production of the extracellular enzyme levansucrase (SacB) was developed. For basic optimization of culture parameters and nutrients, a recombinant B. megaterium reporter strain that produced green fluorescent protein under control of a vector-based xylose-inducible promoter was used. It enabled efficient microtiter plate-based screening via fluorescence analysis. A pH value of pH?6, 20 % of dissolved oxygen, 37 °C, and elevated levels of biotin (100 μg?L?1) were found optimal with regard to high protein yield and reduced overflow metabolism. Among the different compounds tested, fructose and glycerol were identified as the preferred source of carbon. Subsequently, the settings were transferred to a B. megaterium strain recombinantly producing levansucrase SacB based on the plasmid-located xylose-inducible expression system. In shake flask culture under the optimized conditions, the novel strain already secreted the target enzyme in high amounts (14 U?mL?1 on fructose and 17.2 U?mL?1 on glycerol). This was further increased in high cell density fed-batch processes up to 55 U?mL?1, reflecting a levansucrase concentration of 0.52 g?L?1. This is 100-fold more than previous efforts for this enzyme in B. megaterium and more than 10-fold higher than reported values of other extracellular protein produced in this microorganism so far. The recombinant strain could also handle raw glycerol from biodiesel industry which provided the same amount and quality of the recombinant protein and suggests future implementation into existing biorefinery concepts.  相似文献   

20.
Pathogenic Clostridium difficile produces two major protein toxins, toxin A and toxin B. We used the Bacillus megaterium expression system for expression of recombinant toxin A. The construct for the toxin A gene was obtained by the following cloning strategy: the gene for toxin A was generated in three parts, each of them ligated into a cloning vector. The three parts were sequentially fused to the complete gene. The holotoxin gene was ligated into the expression vector pWH1520. This vector was modified to generate a toxin with a C-terminally located His-tag. Gene expression in the B. megaterium system resulted in an approximate 300 kDa protein, which was identified by specific antibody as toxin A. Recombinant, His-tagged toxin A was purified by Ni(2+) as well as thyroglobulin affinity chromatography. Characterization of the recombinant toxin A showed identical cytotoxicity and in vitro-glucosyltransferase activity as the native toxin A from C. difficile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号