共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Dermatan sulfate inhibits osteoclast formation by binding to receptor activator of NF-kappa B ligand
Shinmyouzu K Takahashi T Ariyoshi W Ichimiya H Kanzaki S Nishihara T 《Biochemical and biophysical research communications》2007,354(2):447-452
Dermatan sulfate (DS) is a major component of extracellular matrices in mammalian tissues. In the present study, DS demonstrated a high level of binding activity to receptor activator of NF-kappaB ligand (RANKL) and obstructed the binding of RANK to RANKL, determined using a quartz-crystal microbalance (QCM) technique. Further, when mouse bone marrow cells were cultured with RANKL and macrophage colony-stimulating factor, DS suppressed tartrate-resistant acid phosphatase-positive multinucleated cell formation in a dose-dependent manner. In addition, immunoblot analyses revealed that DS reduced the levels of phosphorylation of p38 mitogen-activated protein kinase and extracellular signal-regulated kinase protein in mouse osteoclast progenitor cells stimulated with RANKL. Together, these results indicate that DS regulates osteoclast formation through binding to RANKL and inhibition of signal transduction in osteoclast progenitor cells, suggesting that it has an important role in bone metabolism in pathological conditions. 相似文献
3.
Fukamizo T Amano S Yamaguchi K Yoshikawa T Katsumi T Saito J Suzuki M Miki K Nagata Y Ando A 《Journal of biochemistry》2005,138(5):563-569
To identify the amino acids responsible for the substrate binding of chitosanase from Bacillus circulans MH-K1 (MH-K1 chitosanase), Tyr148 and Lys218 of the chitosanase were mutated to serine and proline, respectively, and the mutated chitosanases were characterized. The enzymatic activities of Y148S and K218P were found to be 12.5% and 0.16% of the wild type, respectively. When the (GlcN)3 binding ability to the chitosanase was evaluated by fluorescence spectroscopy and thermal unfolding experiments, the binding abilities of both mutant enzymes were markedly reduced as compared with the wild type enzyme. The affinity of the enzyme for the trisaccharide decreased by 1.0 kcal/mol of binding free energy for Y148S, and 3.7 kcal/mol for K218P. The crystal structure of K218P revealed that Pro218 forms a cis-peptide bond and that the state of the flexible loop containing the 218th residue is considerably affected by the mutation. Thus, we conclude that the flexible loop containing Lys218 plays an important role in substrate binding, and that the role of Tyr148 is less critical, but still important, due to a stacking interaction or hydrogen bond. 相似文献
4.
Youqiang Sun Yuhao Liu Wei He Chao Wang Jennifer Tickner Vincent Kuek Chi Zhou Haibin Wang Xuting Zou Zhinan Hong Fan Yang Min Shao Leilei Chen Jiake Xu 《Journal of cellular physiology》2019,234(7):11792-11804
Osteoporosis is a form of osteolytic disease caused by an imbalance in bone homeostasis, with reductions in osteoblast bone formation, and augmented osteoclast formation and resorption resulting in reduced bone mass. Cajaninstilbene acid (CSA) is a natural compound derived from pigeon pea leaves. CSA possesses beneficial properties as an anti-inflammatory, antibacterial, antihepatitis, and anticancer agent; however, its potential to modulate bone homeostasis and osteoporosis has not been studied. We observed that CSA has the ability to suppress RANKL-mediated osteoclastogenesis, osteoclast marker gene expression, and bone resorption in a dose-dependent manner. Mechanistically, it was revealed that CSA attenuates RANKL-activated NF-κB and nuclear factor of activated T-cell pathways and inhibited phosphorylation of key signaling mediators c-Fos, V-ATPase-d2, and ERK. Moreover, in osteoclasts, CSA blocked RANKL-induced ROS activity as well as calcium oscillations. We further evaluated the therapeutic effect of CSA in a preclinical mouse model and showed that in vivo treatment of ovariectomized C57BL/6 mice with CSA protects the mice from osteoporotic bone loss. Thus, this study demonstrates that osteolytic bone diseases can potentially be treated by CSA. 相似文献
5.
Lüersen K 《FEBS letters》2005,579(24):5347-5352
Thialysine N(epsilon)-acetyltransferases and spermidine/spermine N-acetyltransferases (SSAT) are closely related members of the GCN5-related N-acetyltransferase superfamily. Accordingly, a putative orthologue from the human protozoan parasite Leishmania major exhibits an almost equal similarity to human SSAT and thialysine N(epsilon)-acetyltransferase. Characterisation of the recombinantly expressed L. major protein indicated that it represents a thialysine N(epsilon)-acetyltransferase, preferring thialysine (S-aminoethyl-l-cysteine) and structurally related amino acids as acceptor molecules. The known thialysine N(epsilon)-acetyltransferases contain five conserved amino acid residues that are replaced in SSAT sequences. Kinetic analyses of the respective recombinant mutant proteins suggest that Ser(82) and Thr(83) of L. major thialysine N(epsilon)-acetyltransferase are key residues for acceptor binding. In addition, the conserved Leu(130) is tentatively involved in specific interaction with the sulphur-containing side chain of thialysine. The presence of these three amino acid residues is suggested to be a means by which thialysine N(epsilon)-acetyltransferases can be distinguished from SSAT sequences. 相似文献
6.
The nature of amino acid 482 of human ABCG2 affects substrate transport and ATP hydrolysis but not substrate binding 总被引:3,自引:0,他引:3
Ejendal KF Diop NK Schweiger LC Hrycyna CA 《Protein science : a publication of the Protein Society》2006,15(7):1597-1607
Several members of the ATP-binding cassette (ABC) transporter superfamily, including P-glycoprotein and the half-transporter ABCG2, can confer multidrug resistance to cancer cells in culture by functioning as ATP-dependent efflux pumps. ABCG2 variants harboring a mutation at arginine 482 have been cloned from several drug-resistant cell lines, and these variants differ in their substrate transport phenotype. In this study, we changed the wild-type arginine 482 in human ABCG2 to each one of the 19 other standard amino acids and expressed each one transiently in HeLa cells. Using the 5D3 antibody that recognizes a cell surface epitope of ABCG2, we observed that all the mutants were expressed at the cell surface. However, the mutant ABCG2 proteins differed markedly in transport activity. All of the variants were capable of transporting one or more of the substrates used in this study, with the exception of the R482K mutant, which is completely devoid of transport ability. Six of the mutants (R482G, R482H, R482K, R482P, R482T, and R482Y) and the wild-type protein (R482wt) were selected for studies of basal and stimulated ATPase activity and photoaffinity labeling with the substrate analog [125I]iodoarylazidoprazosin. Whereas these seven ABCG2 variants differed markedly in ATPase activity, all were able to specifically bind the substrate analog [125I]iodoarylazidoprazosin. These data suggest that residue 482 plays an important role in substrate transport and ATP turnover, but that the nature of this amino acid may not be important for substrate recognition and binding. 相似文献
7.
Oligomerization is a functional requirement for many proteins. The interfacial interactions and the overall packing geometry of the individual monomers are viewed as important determinants of the thermodynamic stability and allosteric regulation of oligomers. The present study focuses on the role of the interfacial interactions and overall contact topology in the dynamic features acquired in the oligomeric state. To this aim, the collective dynamics of enzymes belonging to the amino acid kinase family both in dimeric and hexameric forms are examined by means of an elastic network model, and the softest collective motions (i.e., lowest frequency or global modes of motions) favored by the overall architecture are analyzed. Notably, the lowest-frequency modes accessible to the individual subunits in the absence of multimerization are conserved to a large extent in the oligomer, suggesting that the oligomer takes advantage of the intrinsic dynamics of the individual monomers. At the same time, oligomerization stiffens the interfacial regions of the monomers and confers new cooperative modes that exploit the rigid-body translational and rotational degrees of freedom of the intact monomers. The present study sheds light on the mechanism of cooperative inhibition of hexameric N-acetyl-L-glutamate kinase by arginine and on the allosteric regulation of UMP kinases. It also highlights the significance of the particular quaternary design in selectively determining the oligomer dynamics congruent with required ligand-binding and allosteric activities. 相似文献
8.
Ioannis Vangelatos Dimitrios Vlachakis George Diallinas 《Molecular membrane biology》2013,30(5-7):356-370
The Amino acid-Polyamine-Organocation (APC) superfamily is the main family of amino acid transporters found in all domains of life and one of the largest families of secondary transporters. Here, using a sensitive homology threading approach and modelling we show that the predicted structure of APC members is extremely similar to the crystal structures of several prokaryotic transporters belonging to evolutionary distinct protein families with different substrate specificities. All of these proteins, despite having no primary amino acid sequence similarity, share a similar structural core, consisting of two V-shaped domains of five transmembrane domains each, intertwined in an antiparallel topology. Based on this model, we reviewed available data on functional mutations in bacterial, fungal and mammalian APCs and obtained novel mutational data, which provide compelling evidence that the amino acid binding pocket is located in the vicinity of the unwound part of two broken helices, in a nearly identical position to the structures of similar transporters. Our analysis is fully supported by the evolutionary conservation and specific amino acid substitutions in the proposed substrate binding domains. Furthermore, it allows predictions concerning residues that might be crucial in determining the specificity profile of APC members. Finally, we show that two cytoplasmic loops constitute important functional elements in APCs. Our work along with different kinetic and specificity profiles of APC members in easily manipulated bacterial and fungal model systems could form a unique framework for combining genetic, in-silico and structural studies, for understanding the function of one of the most important transporter families. 相似文献
9.
REV1 is a member of the Y-family DNA polymerases, but is atypical in utilizing only dCTP with a preference for guanine (G) as the template. Crystallography of the REV1-DNA-dCTP ternary complex has revealed a unique mechanism by which template G is evicted from the DNA helix and incoming dCTP is recognized by an arginine residue in an α-loop, termed the N-digit. To better understand functions of its individual amino acid residues, we made a series of mutant human REV1 proteins. We found that R357 and L358 play vital roles in template binding. Furthermore, extensive mutation analysis revealed a novel function of R357 for substrate discrimination, in addition to previously proposed specific interaction with incoming dCTP. We found that the binding pocket for dCTP of REV1 has also significant but latent affinity for dGTP. The results suggest that the positive charge on R357 could prevent interaction with dGTP. We propose that both direct and indirect mechanisms mediated by R357 ensure specificity for dCTP. 相似文献
10.
Ghrelin is a small peptide hormone that undergoes a unique posttranslational modification, serine octanoylation, to play its physiological roles in processes including hunger signaling and glucose metabolism. Ghrelin O-acyltransferase (GOAT) catalyzes this posttranslational modification, which is essential for ghrelin to bind and activate its cognate GHS-R1a receptor. Inhibition of GOAT offers a potential avenue for modulating ghrelin signaling for therapeutic effect. Defining the molecular characteristics of ghrelin that lead to binding and recognition by GOAT will facilitate the development and optimization of GOAT inhibitors. We show that small peptide mimics of ghrelin substituted with 2,3-diaminopropanoic acid in place of the serine at the site of octanoylation act as submicromolar inhibitors of GOAT. Using these chemically modified analogs of desacyl ghrelin, we define key functional groups within the N-terminal sequence of ghrelin essential for binding to GOAT and determine GOAT’s tolerance to backbone methylations and altered amino acid stereochemistry within ghrelin. Our study provides a structure-activity analysis of ghrelin binding to GOAT that expands upon activity-based investigations of ghrelin recognition and establishes a new class of potent substrate-mimetic GOAT inhibitors for further investigation and therapeutic interventions targeting ghrelin signaling. 相似文献
11.
Amino acid activation reaction with valyl-tRNA synthetase (EC 6.1.1.9) from Bacillus stearothermophilus was studied kinetically by measuring ATP-PPi exchange to find the order of the binding of substrate to the enzyme. The effects of the concentration of the substrates (L-valine and ATP) and two dead-end inhibitors (L-valinol and adenosine) on the reaction rate were analyzed. The results indicate that L-valine and ATP are bound to the enzyme in a random sequence. This conclusion is consistent with the one previously suggested by static binding experiments. 相似文献
12.
Osada Y Hashimoto T Nishimura A Matsuo Y Wakabayashi T Iwatsubo T 《The Journal of biological chemistry》2005,280(9):8596-8605
CLAC (collagenous Alzheimer amyloid plaque component) is a proteolytic fragment derived from a novel membrane-bound collagen, CLAC-P/collagen type XXV, that deposits in senile plaques associated with amyloid beta peptides (Abeta) in the brains of patients with Alzheimer's disease. We previously showed that CLAC binds to the fibrillized form of Abeta in vitro, although the mechanism and the subdomains that mediate interaction of CLAC with Abeta as well as the effect of binding of CLAC on amyloid fibril formation remain unknown. Here we show that the collagenous domain 1 of CLAC, which is rich in positively charged amino acid residues, mediates its interaction with Abeta and that this binding is mediated by an electrostatic interaction and requires formation of the triple helix structure of CLAC. The soluble form of CLAC purified from the media of cells transfected with CLAC-P inhibited fibrillization of Abeta in vitro, especially in its elongation phase. These results suggest the anti-amyloidogenic roles of CLAC in the pathophysiology of Alzheimer's disease. 相似文献
13.
14.
Wnt signaling inhibits adipogenesis through beta-catenin-dependent and -independent mechanisms 总被引:1,自引:0,他引:1
Wnt signaling has been reported to block apoptosis and regulate differentiation of mesenchymal progenitors through inhibition of glycogen synthase kinase 3 and stabilization of beta-catenin. The effects of Wnt in preadipocytes may be mediated through Frizzled (Fz) 1 and/or Fz2 as these Wnt receptors are expressed in preadipocytes and their expression declines upon induction of differentiation. We ectopically expressed constitutively active chimeras between Wnt8 and Fz1 or Fz2 in preadipocytes and mesenchymal precursor cells. Our results indicated that activated Fz1 increases stability of beta-catenin, inhibits apoptosis, induces osteoblastogenesis, and inhibits adipogenesis. Although activated Fz2 does not influence apoptosis or osteoblastogenesis, it inhibits adipogenesis through a mechanism independent of beta-catenin. An important mediator of the beta-catenin-independent pathway appears to be calcineurin because inhibitors of this serine/threonine phosphatase partially rescue the block to adipogenesis caused by Wnt3a or activated Fz2. These data supported a model in which Wnt signaling inhibits adipogenesis through both beta-catenin-dependent and beta-catenin-independent mechanisms. 相似文献
15.
T Tomic T Botton M Cerezo G Robert F Luciano A Puissant P Gounon M Allegra C Bertolotto J-M Bereder S Tartare-Deckert P Bahadoran P Auberger R Ballotti S Rocchi 《Cell death & disease》2011,2(9):e199
Metformin is the most widely used antidiabetic drug because of its proven efficacy and limited secondary effects. Interestingly, recent studies have reported that metformin can block the growth of different tumor types. Here, we show that metformin exerts antiproliferative effects on melanoma cells, whereas normal human melanocytes are resistant to these metformin-induced effects. To better understand the basis of this antiproliferative effect of metformin in melanoma, we characterized the sequence of events underlying metformin action. We showed that 24 h metformin treatment induced a cell cycle arrest in G0/G1 phases, while after 72 h, melanoma cells underwent autophagy as demonstrated by electron microscopy, immunochemistry, and by quantification of the autolysosome-associated LC3 and Beclin1 proteins. In addition, 96 h post metformin treatment we observed robust apoptosis of melanoma cells. Interestingly, inhibition of autophagy by knocking down LC3 or ATG5 decreased the extent of apoptosis, and suppressed the antiproliferative effect of metformin on melanoma cells, suggesting that apoptosis is a consequence of autophagy. The relevance of these observations were confirmed in vivo, as we showed that metformin treatment impaired the melanoma tumor growth in mice, and induced autophagy and apoptosis markers. Taken together, our data suggest that metformin has an important impact on melanoma growth, and may therefore be beneficial in patients with melanoma. 相似文献
16.
17.
The thermal polymerization of amino-acid mixtures was studied at various temperatures and reaction times with specific emphasis on the formation of fluorescent chromophores. The reaction conditions appeared to have a pronounced effect on the ratio of synthesized chromophores and biuret-positive material. During thermolysis of equimolar mixtures of lysine, alanine and glycine or lysine, aspartic acid and glycine small amounts of pteridines and flavines are formed, which are often covalently linked to the thermal oligomer. These heterocyclic compounds are likely formed by condensation reactions of the amino acid break-down and conversion products. Reaction schemes that describe the processes are proposed. The significance of these chromoproteinoids is discussed in respect to prebiotic redox reactions and photoinduced processes. 相似文献
18.
Homology of Escherichia coli B glutathione synthetase with dihydrofolate reductase in amino acid sequence and substrate binding site 总被引:1,自引:0,他引:1
Glutathione synthetase from Escherichia coli B showed amino acid sequence homology with mammalian and bacterial dihydrofolate reductases over 40 residues, although these two enzymes are different in their reaction mechanisms and ligand requirements. The effects of ligands of dihydrofolate reductase on the reaction of E. coli B glutathione synthetase were examined to find resemblances in catalytic function to dihydrofolate reductase. The E. coli B enzyme was potently inhibited by 7,8-dihydrofolate, methotrexate, and trimethoprim. Methotrexate was studied in detail and proved to bind to an ATP binding site of the E. coli B enzyme with K1 value of 0.1 mM. The homologous portion of the amino acid sequence in dihydrofolate reductases, which corresponds to the portion coded by exon 3 of mammalian dihydrofolate reductase genes, provided a binding site of the adenosine diphosphate moiety of NADPH in the crystal structure of dihydrofolate reductase. These analyses would indicate that the homologous portion of the amino acid sequence of the E. coli B enzyme provides the ATP binding site. This report gives experimental evidence that amino acid sequences related by sequence homology conserve functional similarity even in enzymes which differ in their catalytic mechanisms. 相似文献
19.
20.
《生物化学与生物物理学报:生物膜》2015,1848(2):502-509
Lipid oxidation leads to endothelial dysfunction, inflammation, and foam cell formation during atherogenesis. Glucose also contributes to lipid oxidation and promotes pathologic changes in membrane structural organization, including the development of cholesterol crystalline domains. In this study, we tested the comparative effects of eicosapentaenoic acid (EPA), an omega-3 fatty acid indicated for the treatment of very high triglyceride (TG) levels, and other TG-lowering agents (fenofibrate, niacin, and gemfibrozil) on lipid oxidation in human low-density lipoprotein (LDL) as well as membrane lipid vesicles prepared in the presence of glucose (200 mg/dL). We also examined the antioxidant effects of EPA in combination with atorvastatin o-hydroxy (active) metabolite (ATM). Glucose-induced changes in membrane structural organization were measured using small angle x-ray scattering approaches and correlated with changes in lipid hydroperoxide (LOOH) levels. EPA was found to inhibit LDL oxidation in a dose-dependent manner (1.0–10.0 µM) and was distinguished from the other TG-lowering agents, which had no significant effect as compared to vehicle treatment alone. Similar effects were observed in membrane lipid vesicles exposed to hyperglycemic conditions. The antioxidant activity of EPA, as observed in glucose-treated vesicles, was significantly enhanced in combination with ATM. Glucose treatment produced highly-ordered, membrane-restricted, cholesterol crystalline domains, which correlated with increased LOOH levels. Of the agents tested in this study, only EPA inhibited glucose-induced cholesterol domain formation. These data demonstrate that EPA, at pharmacologic levels, inhibits hyperglycemia-induced changes in membrane lipid structural organization through a potent antioxidant mechanism associated with its distinct, physicochemical interactions with the membrane bilayer. 相似文献