首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inhibition of enzyme activity by high concentrations of substrate and/or cofactor is a general phenomenon demonstrated in many enzymes, including aldehyde dehydrogenases. Here we show that the uncharacterized protein BetB (SA2613) from Staphylococcus aureus is a highly specific betaine aldehyde dehydrogenase, which exhibits substrate inhibition at concentrations of betaine aldehyde as low as 0.15 mM. In contrast, the aldehyde dehydrogenase YdcW from Escherichia coli, which is also active against betaine aldehyde, shows no inhibition by this substrate. Using the crystal structures of BetB and YdcW, we performed a structure-based mutational analysis of BetB and introduced the YdcW residues into the BetB active site. From a total of 32 mutations, those in five residues located in the substrate binding pocket (Val288, Ser290, His448, Tyr450, and Trp456) greatly reduced the substrate inhibition of BetB, whereas the double mutant protein H448F/Y450L demonstrated a complete loss of substrate inhibition. Substrate inhibition was also reduced by mutations of the semiconserved Gly234 (to Ser, Thr, or Ala) located in the BetB NAD+ binding site, suggesting some cooperativity between the cofactor and substrate binding sites. Substrate docking analysis of the BetB and YdcW active sites revealed that the wild-type BetB can bind betaine aldehyde in both productive and nonproductive conformations, whereas only the productive binding mode can be modeled in the active sites of YdcW and the BetB mutant proteins with reduced substrate inhibition. Thus, our results suggest that the molecular mechanism of substrate inhibition of BetB is associated with the nonproductive binding of betaine aldehyde.  相似文献   

2.
Aldehyde dehydrogenases catalyze the oxidation of aldehyde substrates to the corresponding carboxylic acids. Lactaldehyde dehydrogenase from Escherichia coli (aldA gene product, P25553) is an NAD(+)-dependent enzyme implicated in the metabolism of l-fucose and l-rhamnose. During the heterologous expression and purification of taxadiene synthase from the Pacific yew, lactaldehyde dehydrogenase from E. coli was identified as a minor (相似文献   

3.
The NAD+-dependent animal betaine aldehyde dehydrogenases participate in the biosynthesis of glycine betaine and carnitine, as well as in polyamines catabolism. We studied the kinetics of inactivation of the porcine kidney enzyme (pkBADH) by the drug disulfiram, a thiol-reagent, with the double aim of exploring the enzyme dynamics and investigating whether it could be an in vivo target of disulfiram. Both inactivation by disulfiram and reactivation by reductants were biphasic processes with equal limiting amplitudes. Under certain conditions half of the enzyme activity became resistant to disulfiram inactivation. NAD+ protected almost 100% at 10 μM but only 50% at 5 mM, and vice versa if the enzyme was pre-incubated with NAD+ before the chemical modification. NADH, betaine aldehyde, and glycine betaine also afforded greater protection after pre-incubation with the enzyme than without pre-incubation. Together, these findings suggest two kinds of active sites in this seemingly homotetrameric enzyme, and complex, unusual ligand-induced conformational changes. In addition, they indicate that, in vivo, pkBADH is most likely protected against disulfiram inactivation.  相似文献   

4.
Porcine kidney betaine aldehyde dehydrogenase (EC 1.2.1.8) kinetic properties were determined at low substrate concentrations. The double-reciprocal plots of initial velocity versus substrate concentration are linear and intersect at the left of the 1/v axis and showed substrate inhibition with betaine aldehyde. Studies of inhibition by NADH and dead-end analogs showed that NADH is a mixed inhibitor against NAD(+) and betaine aldehyde. AMP is competitive with respect to NAD(+) and mixed with betaine aldehyde. Choline is competitive against betaine aldehyde and uncompetitive with respect to NAD(+). The kinetic behavior is consistent with an Iso-Ordered Bi-Bi Steady-State mechanism.  相似文献   

5.
The first primary structure of a plant aminoaldehyde dehydrogenase (AMADH, EC 1.2.1.19) is reported. The enzyme of pea (Pisum sativum) seedlings subjected to our study oxidises ω-aminoaldehydes to the corresponding ω-amino acids. Although pea does not accumulate betaine aldehyde as a compatible osmolyte, the N-terminal sequence of a purified pea AMADH resembles those of plant betaine aldehyde dehydrogenases (BADHs). On the basis of an anticipated pea AMADH homology to these enzymes, degenerated oligonucleotide primers were designed and used for PCR amplification. Two cDNA fragments were obtained in initial 5′ RACE experiments. Subsequent 5′and 3′ RACE performed with specific non-degenerated primers provided two putative cDNAs of the plant BADH family. Both encoded protein sequences (AMADH1 and AMADH2) are highly homologous to those of plant BADHs. They show 81% identity and 92% in mutual alignment. As a deduced product of the first cDNA, AMADH1 completely matches the N-terminal sequence of pea AMADH analysed previously by Edman degradation. AMADH 2 represents a putative AMADH or BADH that has not yet been isolated and characterised. We also tried to identify essential amino acid residues of a purified pea AMADH by both determination of its dissociation constants and evaluation of inhibition effects of specific modification reagents. From our results, it is clear that there are Cys (pK = 8.0) and Glu/Asp residues at the active site participating in the catalysis. This is in accordance with the presence of the conserved Glu and Cys active site regions of plant BADHs in both AMADH1 and AMADH2.  相似文献   

6.
The aldehyde dehydrogenases (ALDHs) are a superfamily of multimeric enzymes which catalyse the oxidation of a broad range of aldehydes into their corresponding carboxylic acids with the reduction of their cofactor, NAD or NADP, into NADH or NADPH. At present, the only known structures concern NAD-dependent ALDHs. Three structures are available in the Protein Data Bank: two are tetrameric and the other is a dimer. We solved by molecular replacement the first structure of an NADP-dependent ALDH isolated from Streptococcus mutans, in its apo form and holo form in complex with NADP, at 1.8 and 2.6 A resolution, respectively. Although the protein sequence shares only approximately 30 % identity with the other solved tetrameric ALDHs, the structures are very similar. However, a large local conformational change in the region surrounding the 2' phosphate group of the adenosine moiety is observed when the enzyme binds NADP, in contrast to the NAD-dependent ALDHs.Structure and sequence analyses reveal several properties. A small number of residues seem to determine the oligomeric state. Likewise, the nature (charge and volume) of the residue at position 180 (Thr in ALDH from S. mutans) determines the cofactor specificity in comparison with the structures of NAD-dependent ALDHs. The presence of a hydrogen bond network around the cofactor not only allows it to bind to the enzyme but also directs the side-chains in a correct orientation for the catalytic reaction to take place. Moreover, a specific part of this network appears to be important in substrate binding. Since the enzyme oxidises the same substrate, glyceraldehyde-3-phosphate (G3P), as NAD-dependent phosphorylating glyceraldehyde-3-phosphate dehydrogenases (GAPDH), the active site of GAPDH was compared with that of the S. mutans ALDH. It was found that Arg103, Arg283 and Asp440 might be key residues for substrate binding.  相似文献   

7.
Concentrated urine formation in the kidney is accompanied by conditions that favor the accumulation of reactive oxygen species (ROS). Under hyperosmotic conditions, medulla cells accumulate glycine betaine, which is an osmolyte synthesized by betaine aldehyde dehydrogenase (BADH, EC 1.2.1.8). All BADHs identified to date have a highly reactive cysteine residue at the active site, and this cysteine is susceptible to oxidation by hydrogen peroxide. Porcine kidney BADH incubated with H(2)O(2) (0-500 μM) lost 25% of its activity. However, pkBADH inactivation by hydrogen peroxide was limited, even after 120 min of incubation. The presence of coenzyme NAD(+) (10-50 μM) increased the extent of inactivation (60%) at 120 min of reaction, but the ligands betaine aldehyde (50 and 500 μM) and glycine betaine (100 mM) did not change the rate or extent of inactivation as compared to the reaction without ligand. 2-Mercaptoethanol and dithiothreitol, but not reduced glutathione, were able to restore enzyme activity. Mass spectrometry analysis of hydrogen peroxide inactivated BADH revealed oxidation of M278, M243, M241 and H335 in the absence and oxidation of M94, M327 and M278 in the presence of NAD(+). Molecular modeling of BADH revealed that the oxidized methionine and histidine residues are near the NAD(+) binding site. In the presence of the coenzyme, these oxidized residues are proximal to the betaine aldehyde binding site. None of the oxidized amino acid residues participates directly in catalysis. We suggest that pkBADH inactivation by hydrogen peroxide occurs via disulfide bond formation between vicinal catalytic cysteines (C288 and C289).  相似文献   

8.
Formamides are unreactive analogues of the aldehyde substrates of alcohol dehydrogenases and are useful for structure-function studies and for specific inhibition of alcohol metabolism. They bind to the enzyme-NADH complex and are uncompetitive inhibitors against varied concentrations of alcohol. Fourteen new branched chain and chiral formamides were prepared and tested as inhibitors of purified Class I liver alcohol dehydrogenases: horse (EqADH E), human (HsADH1C*2), and mouse (MmADH1). In general, larger, substituted formamides, such as N-1-ethylheptylformamide, are better inhibitors of HsADH1C*2 and MmADH1 than of EqADH, reflecting a few differences in amino acid residues that change the sizes of the active sites. In contrast, the linear, alkyl (n-propyl and n-butyl) formamides are better inhibitors of EqADH and MmADH1 than of HsADH1C*2, probably because water disrupts van der Waals interactions. These enzymes are also inhibited strongly by sulfoxides and 4-substituted pyrazoles. The structure of EqADH complexed with NADH and (R)-N-1-methylhexylformamide was determined by x-ray crystallography at 1.6 A resolution. The structure resembles the expected Michaelis complex with NADH and aldehyde, and shows for the first time that the reduced nicotinamide ring of NADH is puckered, as predicted for the transition state for hydride transfer. Metabolism of ethanol in mice was inhibited by several formamides. The data were fitted with kinetic simulation to a mechanism that describes the non-linear progress curves and yields estimates of the in vivo inhibition constants and the rate constants for elimination of inhibitors. Some small formamides, such as N-isopropylformamide, may be useful inhibitors in vivo.  相似文献   

9.
Sheep liver cytoplasmic aldehyde dehydrogenase was purified to homogeneity to give a sample with a specific activity of 380 nmol NADH min(-1) mg(-1). An amino acid analysis of the enzyme gave results similar to those reported for aldehyde dehydrogenases from other sources. The isoelectric point was at pH 5.25 and the enzyme contained no significant amounts of metal ions. On the binding of NADH to the enzyme there is a shift in absorption maximum of NADH to 344 nm, and a 5.6-fold enhancement of nucleotide fluorescence. The protein fluorescence (lambdaexcit = 290 nm, lambdaemisson = 340 nm) is quenched on the binding of NAD+ and NADH. The enhancement of nucleotide fluorescence on the binding of NADH has been utilised to determine the dissociation constant for the enzyme . NADH complex (Kd = 1.2 +/- 0.2 muM). A Hill plot of the data gave a straight line with a slope of 1.0 +/- 0.3 indicating the absence of co-operative effects. Ellman's reagent reacted only slowly with the enzyme but in the presence of sodium dodecylsulphate complete reaction occurred within a few minutes to an extent corresponding to 36 thiol groups/enzyme. Molecular weights were determined for both cytoplasmic and mitochondrial aldehyde dehydrogenases and were 212 000 +/- 8 000 and 205 000 respectively. Each enzyme consisted of four subunits with molecular weight of 53 000 +/- 2 000. Properties of the cytoplasmic and mitochondrial aldehyde dehydrogenases from sheep liver were compared with other mammalian liver aldehyde dehydrogenases.  相似文献   

10.
The kinetic mechanism of betaine aldehyde dehydrogenase from leaves of the plant Amaranthus hypochondriacus is ordered with NAD(+) adding first. NADH is a noncompetitive inhibitor against NAD(+), which was interpreted before as evidence of an iso mechanism, in which NAD(+) and NADH binds to different forms of free enzyme. With the aim of testing the proposed kinetic mechanism, we have now investigated the ability of NADH to form different complexes with the enzyme. By initial velocity and equilibrium binding studies, we found that the steady-state levels of E.glycine betaine are negligible, ruling out binding of NADH to this complex. However, NADH readily bind to E.betaine aldehyde, whose levels most likely are kinetically significant given its low dissociation constant. Also, NADH combined with E.NADH and E.NAD(+). Finally, NADH was not able to revert the hydride transfer step, what suggest that there is no acyl-enzyme intermediate, i.e. the release of the reduced dinucleotide takes place after the deacylation step. Although formation of the complex E.NAD(+).NADH would produce an uncompetitive effect in the inhibition of NADH against NAD(+), the iso mechanism cannot be conclusively discarded.  相似文献   

11.
The betaine aldehyde dehydrogenases (BADH; EC 1.2.1.8) are so-called because they catalyze the irreversible NAD(P)+-dependent oxidation of betaine aldehyde to glycine betaine, which may function as (i) a very efficient osmoprotectant accumulated by both prokaryotic and eukaryotic organisms to cope with osmotic stress, (ii) a metabolic intermediate in the catabolism of choline in some bacteria such as the pathogen Pseudomonas aeruginosa, or (iii) a methyl donor for methionine synthesis. BADH enzymes can also use as substrates aminoaldehydes and other quaternary ammonium and tertiary sulfonium compounds, thereby participating in polyamine catabolism and in the synthesis of γ-aminobutyrate, carnitine, and 3-dimethylsulfoniopropionate. This review deals with what is known about the kinetics and structural properties of these enzymes, stressing those properties that have only been found in them and not in other aldehyde dehydrogenases, and discussing their mechanistic and regulatory implications.  相似文献   

12.
The C-terminal 222 residues of human liver aldehyde dehydrogenase can be aligned with the C-terminal 226 residues of a thiol protease from Dictyostelium discoideum to yield 47 residue identities, including matching active site cysteine residues. A multiple alignment with three more aldehyde dehydrogenases and three more thiol proteases yields three regions with clustered residue similarities. In the tertiary structure of papain, these three regions are in close proximity although widely separated in primary structure, and many conserved residues are located in the active site groove. The three-dimensional relationships, the common thiol ester mechanisms of the enzymes, the locations of exon boundaries in the dehydrogenase and protease genes, and the conservation of internal salt-bridging and disulfide-paired residues in papain, all appear compatible with the hypothesis of an ancestral relationship between thiol proteases and aldehyde dehydrogenases.  相似文献   

13.
Betaine aldehyde dehydrogenase has been purified to homogeneity from rat liver mitochondria. The properties of betaine aldehyde dehydrogenase were similar to those of human cytoplasmic E3 isozyme in substrate specificity and kinetic constants for substrates. The primary structure of four tryptic peptides was also similar; only two substitutions, at most, per peptide were observed. Thus, betaine aldehyde dehydrogenase is not a specific enzyme, as formerly believed; activity with betaine aldehyde is a property of aldehyde dehydrogenase (EC 1.2.1.3), which has broad substrate specificity. Up to the present time the enzyme was thought to be cytoplasmic in mammals. This report establishes, for the first time, mitochondrial subcellular localization for aldehyde dehydrogenase, which dehydrogenates betaine aldehyde, and its colocalization with choline dehydrogenase. Betaine aldehyde dehydrogenation is an important function in the metabolism of choline to betaine, a major osmolyte. Betaine is also important in mammalian organisms as a major methyl group donor and nitrogen source. This is the first purification and characterization of mitochondrial betaine aldehyde dehydrogenase from any mammalian species.  相似文献   

14.
The use of substrate analogues as inhibitors provides a way to understand and manipulate enzyme function. Here we report two 1 A resolution crystal structures of liver alcohol dehydrogenase in complex with NADH and two inhibitors: dimethyl sulfoxide and isobutyramide. Both structures present a dynamic state of inhibition. In the dimethyl sulfoxide complex structure, the inhibitor is caught in transition on its way to the active site using a flash-freezing protocol and a cadmium-substituted enzyme. One inhibitor molecule is partly located in the first and partly in the second coordination sphere of the active site metal. A hydroxide ion bound to the active site metal lies close to the pyridine ring of NADH, which is puckered in a twisted boat conformation. The cadmium ion is coordinated by both the hydroxide ion and the inhibitor molecule, providing structural evidence of a coordination switch at the active site metal ion. The structure of the isobutyramide complex reveals the partial formation of an adduct between the isobutyramide inhibitor and NADH. It provides evidence of the contribution of a shift from the keto to the enol tautomer during aldehyde reduction. The different positions of the inhibitors further refine the knowledge of the dynamics of the enzyme mechanism and explain how the crowded active site can facilitate the presence of a substrate and a metal-bound hydroxide ion.  相似文献   

15.
Fan F  Germann MW  Gadda G 《Biochemistry》2006,45(6):1979-1986
Choline oxidase catalyzes the four-electron oxidation of choline to glycine betaine via two sequential FAD-dependent reactions in which betaine aldehyde is formed as an intermediate. The chemical mechanism for the oxidation of choline catalyzed by choline oxidase was recently elucidated by using kinetic isotope effects [Fan, F., and Gadda, G. (2005) J. Am. Chem. Soc. 127, 2067-2074]. In this study, the oxidation of betaine aldehyde has been investigated by using spectroscopic and kinetic analyses with betaine aldehyde and its isosteric analogue 3,3-dimethylbutyraldehyde. The pH dependence of the kcat/Km and kcat values with betaine aldehyde showed that a catalytic base with a pKa of approximately 6.7 is required for betaine aldehyde oxidation. Complete reduction of the enzyme-bound flavin was observed in a stopped-flow spectrophotometer upon anaerobic mixing with betaine aldehyde or choline at pH 8, with similar k(red) values > or = 48 s(-1). In contrast, only 10-26% of the enzyme-bound flavin was reduced by 3,3-dimethylbutyraldehyde between pH 6 and 10. Furthermore, this compound acted as a competitive inhibitor versus choline. NMR spectroscopic analyses indicated that betaine aldehyde exists predominantly (99%) as a diol form in aqueous solution. In contrast, the thermodynamic equilibrium for 3,3-dimethylbutyraldehyde favors the aldehyde (> or = 65%) over the hydrated form in the pH range from 6 to 10. The keto species of 3,3-dimethylbutyraldehyde is reactive toward enzymic nucleophiles, as suggested by the kinetic data with NAD+-dependent yeast aldehyde dehydrogenase. The data presented suggest that choline oxidase utilizes the hydrated species of the aldehyde as substrate in a mechanism for aldehyde oxidation in which hydride transfer is triggered by an active site base.  相似文献   

16.
The kinetic mechanism of betaine aldehyde dehydrogenase from leaves of the plant Amaranthus hypochondriacus is ordered with NAD+ adding first. NADH is a noncompetitive inhibitor against NAD+, which was interpreted before as evidence of an iso mechanism, in which NAD+ and NADH binds to different forms of free enzyme. With the aim of testing the proposed kinetic mechanism, we have now investigated the ability of NADH to form different complexes with the enzyme. By initial velocity and equilibrium binding studies, we found that the steady-state levels of E.glycine betaine are negligible, ruling out binding of NADH to this complex. However, NADH readily bind to E.betaine aldehyde, whose levels most likely are kinetically significant given its low dissociation constant. Also, NADH combined with E.NADH and E.NAD+. Finally, NADH was not able to revert the hydride transfer step, what suggest that there is no acyl-enzyme intermediate, i.e. the release of the reduced dinucleotide takes place after the deacylation step. Although formation of the complex E.NAD+.NADH would produce an uncompetitive effect in the inhibition of NADH against NAD+, the iso mechanism cannot be conclusively discarded.  相似文献   

17.
18.
Structural dynamics associated with cofactor binding have been shown to play key roles in the catalytic mechanism of hydrolytic NAD(P)-dependent aldehyde dehydrogenases (ALDH). By contrast, no information is available for their CoA-dependent counterparts. We present here the first crystal structure of a CoA-dependent ALDH. The structure of the methylmalonate semialdehyde dehydrogenase (MSDH) from Bacillus subtilis in binary complex with NAD(+) shows that, in contrast to what is observed for hydrolytic ALDHs, the nicotinamide ring is well defined in the electron density due to direct and H(2)O-mediated hydrogen bonds with the carboxamide. The structure also reveals that a conformational isomerization of the NMNH is possible in MSDH, as shown for hydrolytic ALDHs. Finally, the adenine ring is substantially more solvent-exposed, a result that could be explained by the presence of a Val residue at position 229 in helix α(F) that reduces the depth of the binding pocket and the absence of Gly-225 at the N-terminal end of helix α(F). Substitution of glycine for Val-229 and/or insertion of a glycine residue at position 225 resulted in a significant decrease of the rate constant associated with the dissociation of NADH from the NADH/thioacylenzyme complex, thus demonstrating that the weaker stabilization of the adenine ring is a key factor in triggering the early NADH release in the MSDH-catalyzed reaction. This study provides for the first time structural insights into the mechanism whereby the cofactor binding mode is responsible at least in part for the different kinetic behaviors of the hydrolytic and CoA-dependent ALDHs.  相似文献   

19.
Human type II hydroxyacyl-CoA dehydrogenase/amyloid-beta binding alcohol dehydrogenase (HADH II/ABAD) is an oxidoreductase whose salient features include broad substrate specificity, encompassing 3-hydroxyacyl-CoA derivatives, hydroxysteroids, alcohols and beta-hydroxybutyrate, and the capacity to bind amyloid-beta peptide, leading to propagation of amyloid-induced cell stress. In this study, we examine the structure and enzymatic activity of the homologous rat HADH II/ABAD enzyme. We report the crystal structure of rat HADH II/ABAD as a binary complex with its NADH cofactor to 2.0 A resolution, as a ternary complex with NAD(+) and 3-ketobutyrate (acetoacetate) to 1.4 A resolution, and as a ternary complex with NADH and 17 beta-estradiol to 1.7 A resolution. This first crystal structure of an HADH II confirms these enzymes are closely related to the short-chain hydroxysteroid dehydrogenases and differ substantially from the classic, type I 3-hydroxyacyl-CoA dehydrogenases. Binding of the ketobutyrate substrate is accompanied by closure of the active site specificity loop, whereas the steroid substrate does not appear to require closure for binding. Despite the different chemical nature of the two bound substrates, the presentation of chemical groups within the active site of each complex is remarkably similar, allowing a general mechanism for catalytic activity to be proposed. There is a characteristic extension to the active site that is likely to accommodate the CoA moiety of 3-hydroxyacyl-CoA substrates. Rat HADH II/ABAD also binds amyloid-beta (1-40) peptide with a K(D) of 21 nM, which is similar to the interaction exhibited between this peptide and human HADH II/ABAD. These studies provide the first structural insights into HADH II/ABAD interaction with its substrates, and indicate the relevance of the rodent enzyme and associated rodent models for analysis of HADH II/ABAD's physiologic and pathophysiologic properties.  相似文献   

20.
T Koivula 《Life sciences》1975,16(10):1563-1569
The subcellular distribution of human liver aldehyde dehydrogenases (E.C. 1.2.1.3) have been studied and the different types have been separated by ion exchange chromatography. The cytoplasmic fraction contained at least two chromatographically separable aldehyde dehydrogenases, which accounted for about 30% of the total activity. One of the cytoplasmic aldehyde dehydrogenases had a high Km for aldehydes (in the millimolar range). A considerable part of the activity found in this fraction was due to an enzyme with a low Km for aldehydes (in the micromolar range). It had properties similar to those of the mitochondrial main enzyme fraction, from where it may have originated as a contamination during subcellular fractionation. Specific betaine aldehyde and formaldehyde dehydrogenases were separated from these unspecific activities in the cytoplasmic fraction. In mitochondria, where more than 50% of the total aldehyde dehydrogenase activity was found, there was also evidence for slight high-Km activity. The microsomal fraction contained only a high-Km aldehyde dehydrogenase, which accounted for about 10% of the total activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号