首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Polypeptides present in a membrane fraction of the marine macroalga Ulva sp. were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and tested for cross-reactivity with antibodies raised against the human red-blood-cell anion exchanger (AE1). A polypeptide of ca. 95 kDa was identified with a monoclonal, as well as two polyclonal (one against the C-terminus and one against the whole protein) antibodies, indicating that it shares homologous domains with AE1. These findings complement an earlier study which indicated that a plasmalemma-bound, disulfonic stilbenesensitive, protein was functionally involved in HCO 3 - transport into the photosynthesizing cells of Ulva (Z. Drechsler et al. 1993, Planta 191, 34–40). It is thus suggested here that a similar protein has evolved, and has been conserved, in marine photosynthetic organisms and mammalian red blood cells for the purpose of HCO 3 - transport.Abbreviations AE1 anion exchanger 1 (of red blood cells) - CI inorganic carbon This paper is in partial fulfillment of a Ph.D. study by R. Sharkia. Supported by the Israel Academy of Sciences, grant 441/93 (to S.B.)  相似文献   

2.
The marine macroalgaUlva sp. can take up HCO 3 - via a process which chemically resembles that of anion exchange in red blood cells (Drechsler et al. 1993, Planta191, 34–40). In this work we explore the possibility that high-pK amino-acid residues could be functionally involved in the binding/transport of HCO 3 - . It was found that the specific arginyl-reacting agents phenylglyoxal and 2,3-butanedione inhibited photosynthesis ofUlva competitively with inorganic carbon at pH 8.2–8.4 (which is close to the pH of normal seawater), where HCO 3 - was the predominant inorganic carbon form taken up. The inhibition by phenylglyoxal was irreversible at 32°C and high pH values, while that of butanedione became irreversible in the presence of borate. These interactions, as well as the protection of the irreversible phenylglyoxal-inhibition by inorganic carbon and by the membrane-impermeant agents 4,4-diisothiocyanostilbene 2,2-disulfonate and 4,4-dinitrostilbene-2,2-disulfonate indicate that arginine (and possibly also lysine) are involved in the HCO 3 - uptake process, probably at the plasmalemma level. The photosynthetic affinity ofUlva to external inorganic carbon gradually decreased with increasing pH from 8.2 to 10.5, and this decrease parallels the decline in protonation of amino acids with a pK of around 10. Based on this information, as well as the inhibition studies, it is suggested that arginine and lysine residues are essential proteinaceous constituents involved in anionic inorganic carbon (HCO 3 - and possibly also CO 3 2- ) uptake into theUlva cells.Abbreviations AE1 anion exchanger 1 (of red blood cells) - BD 2,3-butanedione - CA carbonic anhydrase - CI inorganic carbon - DIDS 4,4-diisothiocyanostilbene-2,2-disulfonate - DNDS 4,4-dinitrostilbene-2,2-disulfonate - PG phenylglyoxal This paper is in partial fulfillment of a Ph.D. study by R. Sharkia. Supported by the Israel Academy of Sciences, grant 441/93 (to S.B.), and by the Fund for Encouragement of Research, Histadrut, Israel (to R.S.).  相似文献   

3.
4.
Physiological and immuno-blotting experiments were used to determine whether the red blood cell membrane of a primitive vertebrate, the sea lamprey Petromyzon marinus, contained a counterpart similar to the vertebrate anion exchange protein known as AE1 or band 3. Results of the physiological experiments which measured CO2 production after adding H14CO 3 - to the extracellular saline, indicated significant transmembrane bicarbonate movement in lamprey blood which unlike that in most vertebrates, was insensitive to inhibition by 4,4 diisothiocyanatostilbene-2,2 disulfonic acid. The present study also showed that lamprey red blood cells possess acetazolamide-sensitive carbonic anhydrase which is an important component of CO2 production by vertebrate red blood cells. Polyclonal immunoglobulins against a 12 amino acid domain in the C-terminus of the mouse AE1 recognized a trout red blood cell membrane protein with a relative molecular mass of 97 kDa, but failed to immunoreact with any membrane proteins from the red blood cells of lamprey. Antibodies against trout AE1 immunoreacted with trout red blood cell membrane proteins of approximately 97 kDa, 200 kDa and >200 kDa. Interestingly, only a 200-kDa membrane protein from the red blood cells of the primitive lamprey immunoreacted with the trout anti-AE1 immunoglobulin proteins. Therefore, lamprey red blood cells appear to possess an AE1-like protein that may be physiologically different than that in most other vertebrates.  相似文献   

5.
Short-term (up to 5 h) transfers of shade-adapted (100 mol · m–2 · s–1) clonal tissue of the marine macroalga Ulva rotundata Blid. (Chlorophyta) to higher irradiances (1700, 850, and 350 mol · m–2 · s–1) led to photoinhibition of room-temperature chlorophyll fluorescence and O2 evolution. The ratio of variable to maximum (Fv/Fm) and variable (Fv) fluorescence, and quantum yield () declined with increasing irradiance and duration of exposure. This decline could be resolved into two components, consistent with the separation of photoinhibition into energy-dissipative processes (photoprotection) and damage to photosystem II (PSII) by excess excitation. The first component, a rapid decrease in Fv/Fm and in Fv, corresponds to an increase in initial (Fo) fluorescence and is highly sensitive to 1 mM chloramphenicol. This component is rapidly reversible under dim (40 mol · m–2 · s–1) light, but is less reversible with increasing duration of exposure, and may reflect damage to PSII. The second (after 1 h exposure) component, a slower decline in Fv/Fm and Fv with declining Fo, appears to be associated with the photoprotective interconversion of violaxanthin to zeaxanthin and is sensitive to dithiothreitol. The accumulation of zeaxanthin in U. rotundata is very slow, and may account for the predominance of increases in Fo at high irradiances.Abbreviations and Symbols CAP chloramphenicol - DTT dithiothreitol - Fo, Fm, Fv initial, maximum, and variable fluorescence - quantum yield - PFD photon flux density - PSII photosystem II To whom correspondence should be addressedWe are grateful to O. Björkman and S. Thayer, Carnegie Institution of Washington, Stanford, Cal., USA, for analysis of xanthophyll pigments reported here. This research was supported by National Science Foundation grant OCE-8812157 to C.B.O. and J.R. Support for G.L. was provided by a NSF-CNRS (Centre National de la Recherche Scientifique) exchange fellowship.  相似文献   

6.
The relationships between photoinhibition and photoprotection in high and low-light-grown Ulva were examined by a combination of chlorophyll-fluorescence-monitoring techniques. Tissues were exposed to a computer-controlled sequence of 5-min exposures to red light, followed by 5-min darkness, with stepwise increases in photon flux. Coefficients of chlorophyll fluorescence quenching (1?qP and NPQ) were calculated following a saturating pulse of white light near the end of each 5-min light treatment. Dark-adapted chlorophyll fluorescence parameters (F0 and FV/FM) were calculated from a saturating pulse at the end of each 5-min dark period. Low-light-grown Ulva showed consistently higher 1?qP, i.e. higher reduction status of Q (high primary acceptor of photosystem II), and lower capacity for nonphotochemical quenching (NPQ) at saturating light than did high-light-grown plants. Consequently, low-light plants rapidly displayed photoinhibitory damage (increased F0) at light saturation in seawater. Removal of dissolved inorganic carbon from seawater also led to photoinhibitory damage of high-light-grown Ulva at light saturation, and addition of saturating amounts of dissolved inorganic carbon protected low-light-grown plants against photoinhibitory damage. A large part of NPQ was abolished by treatment with 3 mM dithiothreitol and the processes so inhibited were evidently photoprotective, because dithiothreitol treatment accelerated photoinhibitory damage in both low- and high-light-grown Ulva. The extent of photoinhibitory damage in Ulva was exacerbated by treatment with chloramphenicol (1 mM) without much effect on chlorophyll-quenching parameters, evidently because this inhibitor of chloroplast protein synthesis reduced the rate of repair processes.  相似文献   

7.
The present study demonstrates the presence of different amino acid carriers in the membrane of trout red cells. Most glycine is taken up through the Na+-dependent system ASC, although the nearly specific Gly system is also active. Besides these carriers, glycine is taken up by means of Na+-independent transporters, system l being the most important. A system asc of high affinity and low capacity has been found, and band 3 is unable to transport glycine under physiological conditions. These results suggest that although all these carriers are already present in primitive vertebrates, several differences exist in their properties with respect to those found in mammalian cells.We would like to express our sincere thanks to Mr. Antonino Clemente (Piscifactoria de Bagà, Medi Natural, Generalitat de Catalunya) for his help and logistical assistance and to Mr. Robin Rycroft for his editorial help.This work was supported by a grant of Comisió Interdepartamental de Recerca i Technologia (AR90-3.3394). M.A.G. is recipient of a fellowship from the Generalitat de Catalunya.  相似文献   

8.
The kinetic parameters of ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase (EC 4.1.1.39) in wheat (Triticum aestivum L.) and rice (Oryza sativa L.) were determined by rapidly assaying the leaf extracts. The respective K m and V max values for carboxylase and oxygenase activities were significantly higher for wheat than for rice. In particular, the differences in the V max values between the two species were greater. When the net activity of CO2 exchange was calculated at the physiological CO2-O2 concentration from these kinetic parameters, it was 22% greater in wheat than in rice. This difference in the in-vitro RuBP-carboxylase/oxygenase activity between the two species reflected a difference in the CO2-assimilation rate per unit of RuBP-carboxylase protein. However, there was no apparent difference in the CO2-assimilation rate for a given leaf-nitrogen content between the two species. When the RuBP-carboxylase/oxygenase activity was estimated at the intercellular CO2 pressure from the enzyme content and kinetic parameters, these estimated enzyme activities in wheat and rice were similar to each other for the same rate of CO2 assimilation. These results indicate that the difference in the kinetic parameters of RuBP carboxylase between the two species was offset by the differences in RuBP-carboxylase content and conductance for a given leaf-nitrogen content.Abbreviations DTT dithiothreitol - EDTA ethylenediamine-tetraacetic - PAR photosynthetically active radiation - RuBP ribulose-1,5-bisphosphate  相似文献   

9.
The precise nature of band 3 protein and its involvement in oxalate exchange in the red blood cells (RBCs) of renal failure patients has not been studied in detail. Therefore, here we studied the oxalate exchange and binding by band 3 protein in RBCs of humans with conditions of acute and chronic renal failure (ARF and CRF). The RBCs of ARF and CRF patients exhibited abnormal red cell morphology and an increased resistance to osmotic hemolysis. Further, an increase in the cholesterol content and decrease in the activities of Na+-K+-, Ca2+-, and Mg2+-ATPases of membranes were observed in the RBCs of ARF and CRF patients. A decrease in the oxalate flux was observed in the RBCs of ARF and CRF patients. The oxalate-binding activities of the RBC membranes were significantly lower in ARF (20 pmoles/mg protein) and CRF (5.3 pmoles/mg protein) patients as compared to that in the normal subjects (36 pmoles/mg protein). DEAE-cellulose and Sephadex G-200 column chromatography purification profiles revealed a distinctive shift in oxalate-binding activity of band 3 protein of RBCs of ARF and CRF patients as compared to that of the normal subjects. It was also observed from the binding studies with a fluorescent dye, eosin-5-maleimide, which specifically binds to band 3 protein, that the RBCs of ARF and CRF patients exhibited only 53 and 32% of abundance of band 3 protein, respectively, as compared to that in the RBCs of the normal subjects, thus revealing a decrease in the band 3 protein content in ARF and CRF patients. These results for the first time showed a decrease in the oxalate exchange in RBCs of patients with ARF and CRF, which was also concomitant with the low levels of abundance of band 3 protein.  相似文献   

10.
In the marine green alga Ulva mutabilis Føyn, large daily fluctuations in respiratory and photosynthetic rates are found after the induction of synchronous formation of gametes and zoospores. A sharp reduction in photosynthetic capacity preceeds the zooid-forming cell divisions. During the same period, samples for polyacrylamide electrophoresis show an initial increase followed by a decrease in the amount of ribulose-1,5-bisphosphate carboxylase. Some other transient protein changes were also noted. A new protein band with MW 51,400 appears in the 48-h sample and becomes a prominent constituent of gametes and zoospores; it may represent tubulin.Abbreviations PAGE polyacrylamide gel electrophoresis - SDS sodium dodecylsulphate To whom correspondence should be addressed  相似文献   

11.
Soluble proteins from haploid gametophytes and diploid sporophytes of the marine green alga Ulva mutabilis Føyn have been reexamined, using polyacrylamide gel electrophoresis and isoelectric focusing. A two-dimensional system resolved about 150 protein spots. In contrast to an earlier report (Hoxmark (1976) Planta 130, 327–332), no major differences could be detected between soluble proteins from the two generation types by any of the methods used.To whom correspondence should be addressed  相似文献   

12.
Summary A membrane protein that is immunochemically similar to the red cell anion exchange protein, band 3, has been identified on the basolateral face of the outer medullary collecting duct (MCD) cells in rabbit kidney. In freshly prepared separated rabbit MCD cells, M.L. Zeidel, P. Silva and J.L. Seifter (J. Clin. Invest. 77:1682–1688, 1986) found that Cl/HCO 3 - exchange was inhibited by the stilbene anion exchange inhibitor, DIDS (4,4-diisothiocyano-2,2-disulfonic stilbene), with aK 1 similar to that for the red cell. We have measured the binding affinities of a fluorescent stilbene inhibitor, DBDS (4,4-dibenzamido-2,2-disulfonic stilbene), to MCD cells in 28.5 mM citrate and have characterized both a high-affinity site (K 1 s =93±24 mM) and a lower affinity site (K 2 s =430±260 nM), which are closely similar to values for the red cell of 110±51 nM for the high-affinity site and 980±200 nM for the lower affinity site (A.S. Verkman, J.A. Dix & A.K. Solomon,J. Gen. Physiol. 81:421–449, 1983). When Cl replaces citrate in the buffer, the two sites collapse into a single one withK 1 s =1500±400 nM, similar to the singleK 1 s =1200±200 nM in the red cell (J.A. Dix, A.S. Verkman & A.K. Solomon,J. Membrane Biol. 89:211–223, 1986). The kinetics of DBDS binding to MCD cells at 0.25 M–1 are characterized by a fast process, =0.14±0.03 sec, similar to =0.12±0.03 sec in the red cell. These similarities show that the physical chemical characteristics of stilbene inhibitor binding to MCD cell band 3 closely resemble those for red cell band 3, which suggests that the molecular structure is highly conserved.  相似文献   

13.
In order to estimate photosynthetic and respiratory rates in illuminated photoautotrophic cells of carnation (Dianthus caryophyllus L.), simultaneous measurements of CO2 and O2 gas exchange were performed using 18O2, 13CO2 and a mass-spectrometry technique. This method allowed the determination, and thus the comparison, of unidirectional fluxes of O2 and CO2. In optimum photosynthetic conditions (i.e. in the presence of high light and a saturating level of CO2), the rate of CO2 influx represented 75±5% of the rate of gross O2 evolution. After a dark-to-light transition, the rate of CO2 efflux was inhibited by 50% whereas the O2-uptake rate was little affected. The effect of a recycling of respiratory CO2 through photosynthesis on the exchange of CO2 gas was investigated using a mathematical model. The confliction of the experimental data with the simulated gas-exchange rates strongly supported the view that CO2 recycling was a minor event in these cells and could not be responsible for the observed inhibition of CO2 efflux. On the basis of this assumption it was concluded that illumination of carnation cells resulted in a decrease of substrate decarboxylations, and that CO2 efflux and O2 uptake were not as tightly coupled in the light as in the dark. Furthermore, it could be calculated from the rate of gross photosynthesis that the chloroplastic electron-transport chain produced enough ATP in the light to account for the measured CO2-uptake rate without involving cyclic transfer of electrons around PS I or mitochondrial supplementation.Abbreviations Chl chlorophyll - Kd permeability coefficient The authors thank Drs A. Vermeglio and P. Thibault, Dépt. de Biologie, CEN-Cadarache, St. Paul Lez Durance, France, for helpful discussions.  相似文献   

14.
Photosynthetic mechanisms have been compared in leaves and, separately, in stems of Egeria densa Planch. In order to correlate the structural and functional characteristics of the two organs (1) the ultrastructural features of leaves and stems have been studied and (2) their photosynthetic activity has been evaluated by measuring in vivo both oxygen evolution and the kinetics of chlorophyll fluorescence. The results confirm the aquatic behaviour of the leaf which is able to utilize inorganic C supplied both as CO2 and HCO 3 . In this respect, the different wall organization found in the two cell layers of the leaf is particularly interesting, since it could be related to the known polar mechanism of inorganic-C uptake. The stem, by contrast, behaves rather as an aerial organ, needing very high CO2 concentrations in the aquatic environment in order to carry out photosynthesis. In the stem, the aerenchyma plays a role in supplying the green cells with gaseous respiratory CO2, thus facilitating the photosynthetic activity of the submerged stems.The authors are grateful to C.U.G.A.S. (University of Padua) for the use of the scanning electron microscope. They also wish to thank Mr. Claudio Furlan and Mr. Giorgio Varotto for helpful technical assistance. This work was supported by a grant from C.N.R. and M.P.I, and was developed within the cooperation agreement between the Universities of Padova (Italy) and Innsbruck (Austria).  相似文献   

15.
The exchange of O2 and CO2 by photoautotrophic cells of Euphorbia characias L. was measured using a mass-spectrometry technique. During a dark-tolight transition the O2 uptake rate was little affected whereas CO2 efflux was decreased by 40%. In order to differentiate eventual superimposed O2-uptake processes, the kinetics of O2 exchange resulting from brief illuminations were measured with a highly sensitive device. When the cells were exposed to a saturating light for short periods, the rate of O2 uptake passed through a series of transients: there was first a stimulation occurring 2–3 s after the appearance of O2 from water-splitting, followed 30 s later by an inhibition. These two transients were reduced 80% by 3-(3,4-dichlorophenyl)1, 1-dimethylurea (DCMU), indicating that they relied on the linear transport of electrons in the chloroplasts. The first transient (stimulation of an O2 uptake) was little affected by mitochondrial inhibitors such as antimycin A and oligomycin or the uncoupler carbonylcyanide m-chlorophenylhydrazone (CCCP) but was increased in presence of KCN. When spaced flashes (2 us duration; 100-ms intervals) were used instead of continuous light, this transient was almost suppressed indicating that it was dependent on the saturation of some component of the chloroplastic chain. The second transient (inhibition of O2 uptake) was present when spaced flashes were used instead of continuous light. It was markedly decreased by addition of CCCP and mitochondrial inhibitors (antimycin A, oligomycin, KCN) which strongly indicates that it relied on mitochondrial respiration. It is concluded from these experiments that illumination of the cells resulted in an inhibition of mitochondrial respiration, but the resulting inhibition of O2 uptake was hidden by the appearance of an O2-uptake process of extramitochondrial origin, presumably located in the chloroplast.Abbreviations CCCP carbonylcyanide mchlorophenylhydrazone - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - Rubisco ri-bulose-1,5-bisphosphate carboxylase/oxygenase The authors thank Drs A. Vermeglio, P. Thibault and P. Gans for helpful discussions.  相似文献   

16.
17.
The aim of this work was to investigate the mechanism of formation of triose phosphates and 3-phosphoglycerate during photosynthetic induction in leaves of Zea mays. Simultaneous measurements of gas exchange, chlorophyll a fluorescence and metabolite contents of maize leaves were made. Leaves illuminated in the absence of CO2 showed a build-up of triose phosphates during the first 2 min of illumination which was comparable to the build-up observed in the presence of CO2. Isolated mesophyll protoplasts, which lack the Calvin cycle, also showed a build-up of triose phosphates upon illumination. Leaves contained amounts of phosphoglycerate mutase and enolase adequate to account for the formation of triose phosphates and 3-phosphoglycerate from intermediates of the C4 cycle and their precursors.  相似文献   

18.
John Kobza  Gerald E. Edwards 《Planta》1987,171(4):549-559
The photosynthetic induction response was studied in whole leaves of wheat (Triticum aestivum L.) following 5-min, 30-min and 10-h dark periods. After the 5-min dark treatment there was a rapid burst in the rate of photosynthesis upon illumination (half of maximum after 30s), followed by a slight decrease after 1.5 more min and then a gradual rise to the maximum rate. During this initial burst in photosynthesis, there was a rapid rise in the level of 3-phosphoglycerate (PGA) and a high PGA/triose-phosphate (triose-P) ratio was obtained. In addition, after the 5-min dark treatment, ribulose-1,5-bisphosphate carboxylase (Rubisco, EC 4.1.1.39), ribulose-5-phosphate kinase (EC 2.7.1.19) and chloroplastic fructose-1,6-bisphosphatase (EC 3.1.3.11) maintained a relatively high state of activation, and maximum activation occurred within 1 min of illumination. The results indicate there is a high capacity for CO2 fixation in the cycle upon illumination but attaining maximum rates requires an increase in the ribulose-1,5-bisphosphate (RuBP) pool (adjustment in triose-P utilization for carbohydrate synthesis versus RuBP synthesis). With both the 30-min and 10-h dark pretreatments there was only a slight rise in photosynthesis upon illumination, followed by a lag, then a gradual increase to steady-state (half-maximum rate after 6 min). In contrast to the 5-min dark treatment, the level of PGA was low and actually decreased initially, whereas the level of RuBP increased and was high during induction, indicating that Rubisco is limiting. This regulation via the carboxylase was not reflected in the initial extractable activity, which reached a maximum by 1 min after illumination. The light activation of chloroplastic fructose-1,6-bisphosphatase in leaves darkened for 30 min and 10 h prior to illumination was relatively slow (reaching a maximum after 8 min). However, this was not considered to limit carbon flux through the carbon-fixation cycle during induction since RuBP was not limiting. When photosynthesis approached the maximum steady-state rate, a high PGA/triose-P ratio and a high PGA/RuBP ratio were obtained. This may allow a high rate of photosynthesis by producing a favorable mass-action ratio for the reductive phase (the conversion of PGA to triose phosphate) while stimulating starch and sucrose synthesis.Abbreviations Chl chlorophyll - FBP fructose-1,6-bisphosphate - FBPase fructose-1,6-bisphosphatase - Fru6P fructose-6-phosphate - Glc6P glucose-6-phosphate - PGA 3-phosphoglycerate - Pi inoganic phosphate - Rubisco RuBP carboxylase/oxygenase - RuBP ribulose-1,5-bisphosphate - Ru5P ribulose-5-phosphate - triose-P triose phosphates (dihydroxyacetone phosphate+glyceraldehyde-3-phosphate)  相似文献   

19.
The kinetics of the uptake of [3H]gibberellin A1 (GA1) by light- and dark-grown suspension-cultured cells of Spinacia oleracea (spinach) have been studied. Use of nonradioactive GA1 and gibberellic acid (GA3) show that the uptake has a saturable and a nonsaturable component. The nonsaturable component increases as the pH is lowered at a fixed concentration of [3H]GA1 and is probably caused by non-mediated diffusion of the uncharged protonated species of GA1. The saturable component is not the result of metabolic transformation or to GA1 binding to the cell wall and is suggested to represent the operation of a transport carrier for which GA1 and GA3 are substrates. Auxin, abscisic acid and a cytokinin did not alter the GA1 uptake. The Km is approx. 0.3 mol dm-3 at pH 4.4 in light- and dark-grown cells. The Vmax of the carrier is higher in the light-grown cells. The optimum pH for the carrier at a physiological GA1 concentration (3 nmol dm-3) was pH 4.0, with no activity detectable at pH 7.0. Both saturable and nonsaturable components were decreased by protonophores indicating that the pH gradient between the cells and the medium may be a component of the driving forces for both types of transport. Both the permeability coefficient for the undissociated GA1 and the ratio V max/K m for the carrier are lower than the corresponding values for the indole-3-acetic acid and abscisic acid carriers studied in other species.Abbreviations and symbols ABA abscisic acid - DMO 5,5-dimethyloxazolidine-2,4-dione - GA gibberellin - GA3 gibberellic acid - IAA indole-3-acetic acid - P permeability coefficient  相似文献   

20.
Previously Syntrophomonas species had been described as the bacteria those did not form spores, however, in our previous studies, a newly isolated S. erecta subsp. sporosyntropha JCM13344T was found to form spores in the co-culture with methanogens, while not in mono-culture or in co-culture with sulfate reducer. In this study, we examined the sporulation stimulus conferred by methanogens in the co-culture. By reducing bicarbonate in mono-culture and sulfate-reducing co-culture, we could induce S. erecta subsp. sporosyntropha JCM13344T to form spores, so that bicarbonate at lower concentration was determined as another stimulus for sporulation. Based on the substrate degradation by strain JCM13344T in different concentration of bicarbonate vs at different pHs, it was suggested that bicarbonate could stimulate the sporulation by mediating a nutrient deprivation but not pH drop. To further confirm the sporulation potential of this group of bacteria, spo0A fragments were amplified from strain JCM13344T as well as all the recognized Syntrophomonas species, confirming that they were members of the spore-forming group. Since sporulation is a kind of response of spore-forming bacteria to environmental stresses, the observation in this work implies that stresses can be created even between the mutual beneficial partners, in this case, inducing sporulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号