首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Li H  Fung KL  Jin DY  Chung SS  Ching YP  Ng IO  Sze KH  Ko BC  Sun H 《Proteins》2007,67(4):1154-1166
The deleted in liver cancer 2 (DLC2) is a tumor suppressor gene, frequently found to be underexpressed in hepatocellular carcinoma. DLC2 is a multidomain protein containing a sterile alpha-motif (SAM) domain, a GTPase-activating protein (GAP) domain, and a lipid-binding StAR-related lipid-transfer (START) domain. The SAM domain of DLC2, DLC2-SAM, exhibits a low level of sequence homology (15-30%) with other SAM domains, and appears to be the prototype of a new subfamily of SAM domains found in DLC2-related proteins. In the present study, we have determined the three-dimensional solution structure of DLC2-SAM using NMR methods together with molecular dynamics simulated annealing. In addition, we performed a backbone dynamics study. The DLC2-SAM packed as a unique four alpha-helical bundle stabilized by interhelix hydrophobic interactions. The arrangement of the four helices is distinct from all other known SAM domains. In contrast to some members of the SAM domain family which form either dimers or oligomers, both biochemical analyses and rotational correlation time (tau(c)) measured by backbone 15N relaxation experiments indicated that DLC2-SAM exists as a monomer in solution. The interaction of DLC2-SAM domain with sodium dodecyl sulfate (SDS) micelles and 1,2-dimyristoyl-sn-glycerol-3-phosphatidylglycerol (DMPG) phospholipids was examined by CD and NMR spectroscopic techniques. The DLC2-SAM exhibits membrane binding properties accompanied by minor loss of the secondary structure of the protein. Deletion studies showed that the self-association of DLC2 in vivo does not require SAM domain, instead, a protein domain consisting of residues 120-672 mediates the self-association of DLC2.  相似文献   

2.
Pathogenic prion proteins (PrP(Sc)) are thought to be produced by alpha-helical to beta-sheet conformational changes in the normal cellular prion proteins (PrP(C)) located solely in the caveolar compartments. In order to inquire into the possible conformational changes due to the influences of hydrophobic environments within caveolae, the secondary structures of prion protein peptides were studied in various kinds of detergents by CD spectra. The peptides studied were PrP(129-154) and PrP(192-213); the former is supposed to assume beta-sheets and the latter alpha-helices, in PrP(Sc). The secondary structure analyses for the CD spectra revealed that in buffer solutions, both PrP(129-154) and PrP(192-213) mainly adopted random-coils (approximately 60%), followed by beta-sheets (30%-40%). PrP(129-154) showed no changes in the secondary structures even in various kinds of detergents such as octyl-beta-D-glucopyranoside (OG), octy-beta-D-maltopyranoside (OM). sodium dodecyl sulfate (SDS), Zwittergent 3-14 (ZW) and dodecylphosphocholine (DPC). In contrast, PrP(192-213) changed its secondary structure depending on the concentration of the detergents. SDS, ZW, OG and OM increased the alpha-helical content, and decreased the beta-sheet and random-coil contents. DPC also increased the alpha-helical content, but to a lesser extent than did SDS, ZW, OG or OM. These results indicate that PrP(129-154) has a propensity to adopt predominantly beta-sheets. On the other hand, PrP(192-213) has a rather fickle propensity and varies its secondary structure depending on the environmental conditions. It is considered that the hydrophobic environments provided by these detergents may mimic those provided by gangliosides in caveolae, the head groups of which consist of oligosaccharide chains containing sialic acids. It is concluded that PrP(C) could be converted into a nascent PrP(Sc) having a transient PrP(Sc) like structureunder the hydrophobic environments produced by gangliosides.  相似文献   

3.
The relative stability of alpha-helix and beta-sheet secondary structure in the solid state was investigated using poly(L-alanine) (PLA) as a model system. Protein folding and stability has been well studied in solution, but little is known about solid-state environments, such as the core of a folded protein, where peptide packing interactions are the dominant factor in determining structural stability. (13)C cross-polarization with magic angle spinning (CPMAS) NMR spectroscopy was used to determine the backbone conformation of solid powder samples of 15-kDa and 21.4-kDa PLA before and after various sample treatments. Reprecipitation from helix-inducing solvents traps the alpha-helical conformation of PLA, although the method of reprecipitation also affects the conformational distribution. Grinding converts the secondary structure of PLA to a final steady-state mixture of 55% beta-sheet and 45% alpha-helix at room temperature regardless of the initial secondary structure. Grinding PLA at liquid nitrogen temperatures leads to a similar steady-state mixture with 60% beta-sheet and 40% alpha-helix, indicating that mechanical shear force is sufficient to induce secondary structure interconversion. Cooling the sample in liquid nitrogen or subjecting it to high pressure has no effect on secondary structure. Heating the sample without grinding results in equilibration of secondary structure to 50% alpha-helix/50% beta-sheet at 100 degrees C when starting from a mostly alpha-helical state. No change was observed upon heating a beta-sheet sample, perhaps due to kinetic effects and the different heating rate used in the experiments. These results are consistent with beta-sheet approximately 260 J/mol more stable than alpha-helix in solid-state PLA.  相似文献   

4.
Molecular dynamics simulations have been used to investigate the behavior of the peripheral membrane protein, cytochrome c, covalently tethered to hydrophobic (methyl-terminated) and hydrophilic (thiol-terminated) self-assembled monolayers (SAMs). The simulations predict that the protein will undergo minor structural changes when it is tethered to either surface, and the structures differ qualitatively on the two surfaces: the protein is less spherical on the hydrophilic SAM where the polar surface residues reach out to interact with the SAM surface. The protein is completely excluded from the hydrophobic SAM but partially dissolves in the hydrophilic SAM. Consequently, the surface of the thiol-terminated SAM is considerably less ordered than that of the methyl-terminated SAM, although a comparable, high degree of order is maintained in the bulk of both SAMs: the chains exhibit collective tilts in the nearest-neighbor direction at angles of 20 degrees and 17 degrees with respect to the surface normal in the hydrophobic and the hydrophilic SAMs, respectively. On the hydrophobic SAM the protein is oriented so that the heme plane is more nearly parallel to the surface, whereas on the hydrophilic surface it is more nearly perpendicular. The secondary structure of the protein, dominated by alpha helices, is not significantly affected, but the structure of the loops as well as the helix packing is slightly modified by the surfaces.  相似文献   

5.
Short-term temperature effects on the aerobic metabolism of glycogen-accumulating organisms (GAO) were investigated within a temperature range from 10 to 40 degrees C. Candidatus Competibacter Phosphatis, known GAO, were the dominant microorganisms in the enriched culture comprising 93 +/- 1% of total bacterial population as indicated by fluorescence in situ hybridization (FISH) analysis. Between 10 and 30 degrees C, the aerobic stoichiometry of GAO was insensitive to temperature changes. Around 30 degrees C, the optimal temperature for most of the aerobic kinetic rates was found. At temperatures higher than 30 degrees C, a decrease on the aerobic stoichiometric yields combined with an increase on the aerobic maintenance requirements were observed. An optimal overall temperature for both anaerobic and aerobic metabolisms of GAO appears to be found around 30 degrees C. Furthermore, within a temperature range (10-30 degrees C) that covers the operating temperature range of most of domestic wastewater treatment systems, GAOs aerobic kinetic rates exhibited a medium degree of dependency on temperature (theta = 1.046-1.090) comparable to that of phosphorus accumulating organisms (PAO). We conclude that GAO do not have metabolic advantages over PAO concerning the effects of temperature on their aerobic metabolism, and competitive advantages are due to anaerobic processes.  相似文献   

6.
Yeast cytochrome c (YCC) can be covalently tethered to, and thereby vectorially oriented on, the soft surface of a mixed endgroup (e.g., -CH3/-SH = 6:1, or -OH/-SH = 6:1) organic self-assembled monolayer (SAM) chemisorbed on the surface of a silicon substrate utilizing a disulfide linkage between its unique surface cysteine residue and a thiol endgroup. Neutron reflectivities from such monolayers of YCC on Fe/Si or Fe/Au/Si multilayer substrates with H2O versus D2O hydrating the protein monolayer at 88% relative humidity for the nonpolar SAM (-CH3/-SH = 6:1 mixed endgroups) surface and 81% for the uncharged-polar SAM (-OH/-SH = 6:1mixed endgroups) surface were collected on the NG1 reflectometer at NIST. These data were analyzed using a new interferometric phasing method employing the neutron scattering contrast between the Si and Fe layers in a single reference multilayer structure and a constrained refinement approach utilizing the finite extent of the gradient of the profile structures for the systems. This provided the water distribution profiles for the two tethered protein monolayers consistent with their electron density profile determined previously via x-ray interferometry (Chupa et al., 1994).  相似文献   

7.
Oku H  Yamada K  Katakai R 《Biopolymers》2008,89(4):270-283
The depsipeptides Boc-Leu-Lac-OEt (1) and Boc-(Leu-Leu-Lac)(n)-OEt (n = 1, 2) (2 and 3, respectively) (Boc = tert-butyloxycarbonyl, Lac = L-lactic acid residue) has been synthesized and studied by crystallographic, CD spectroscopic, and ESI-MS analyses. In the packing cells, those three compounds adopt beta-strand conformations. Each molecule is linked into a dimer (1) or an infinite assembly (2 and 3) by tight hydrogen bonds of the type NH...O==C. Interestingly, the hexamer, 3 shows the first example of antiparallel pleated beta-sheet crystal structure for a depsipeptide molecule. In the packing cells, especially for 3, the ester groups O--C==O are perpendicularly oriented to the amide groups NH--C==O and beta-sheet planes to avoid the interaction between --O--(ester) and O==C. Therefore, when the chain length become longer, the O...O==C repulsion interaction works as a beta-sheet breaker and hence promotes an alpha-helical structure as observed for Boc-(Leu-Leu-Lac)(3)-Leu-Leu-OEt (4) (Oku et al. Biopolymers 2004, 75, 242-254) and Boc-(Leu-Leu-Lac)(n)-OEt (n = 4-6) (5-7) (Katakai et al., Biopolymers 1996, 38, 285-290), in which the O...O==C repulsion does not cause significant structural changes in alpha-helical main chains. Therefore from the structural and spectroscopic analyses, we have found governing factors for the specificity in the beta-sheet and alpha-helix decision in this series of depsipeptides, -(Leu-Leu-Lac)(n)-.  相似文献   

8.
The present study was undertaken to investigate whether millimeter waves (MMWs) at 61.22 GHz can modulate the effect of cyclophosphamide (CPA), an anti-cancer drug, on the immune functions of mice. During the exposure each mouse's nose was placed in front of the center of the antenna aperture (1.5 x 1.5 cm) of MMW generator. The device produced 61.22 +/- 0.2 GHz wave radiation. Spatial peak Specific Absorption Rate (SAR) at the skin surface and spatial peak incident power density were measured as 885 +/- 100 W/kg and 31 +/- 5 mW/cm(2), respectively. Duration of the exposure was 30 min each day for 3 consecutive days. The maximum temperature elevation at the tip of the nose, measured at the end of 30 min, was 1 degrees C. CPA injection (100 mg/kg) was given intraperitoneally on the second day of exposure to MMWs. The animals were sacrificed 2, 5, and 7 days after CPA administration. MMW exposure caused upregulation in tumor necrosis factor-alpha (TNF-alpha) production in peritoneal macrophages suppressed by CPA administration. MMWs also caused a significant increase in interferon-gamma (IFN-gamma) production by splenocytes and enhanced proliferative activity of T-cells. Conversely, no changes were observed in interleukin-10 (IL-10) level and B-cell proliferation. These results suggest that MMWs accelerate the recovery process selectively through a T-cell-mediated immune response.  相似文献   

9.
To investigate the effect of backbone length and amphiphilicity on the 3D structure, membrane permeability, and antibacterial properties of trichogins, a subclass of lipopeptaibols, we prepared, by the segment condensation approach in solution and chemically characterized, a set of N(alpha)-1-octanoylated -X-(GLUG)(n)-I-L- ( X=G or U where U=Aib; n=1-4) sequential peptide esters. In parallel, the 12-mer (UGGL)(3) aneurism peptide, an analogue of the 11-mer sequential peptide (n=2) with an amino acid insertion was also synthesized and studied. By FT-IR absorption technique, we clearly showed that, in CDCl(3) solution, all peptides essentially populate intramolecularly H-bonded, helical conformations. Moreover, CD spectroscopy indicates that all peptides, with the single exception of the shortest oligomer (the heptamer), adopt mixed 3(10)-/alpha-helical structures, to an extent approximately correlating with main-chain length, in MeOH solution and sodium dodecylsulfate (SDS) micelles. Significant membrane permeability properties were found only for the three longest GLUG-based peptides, with the 15-mer oligomer (n=4) resulting the most active. The lack of activity exhibited by the aneurism peptide in this experiment strongly suggests a relevant role for the sequence amphiphilicity. In addition, antibacterial activity and selectivity were highlighted and demonstrated to be dependent on peptide main-chain length and amphiphilicity, in the sense that the two shortest GLUG-based homologues are active against Gram-positive strains, whereas the two longest homologues are able to penetrate the membranes of the Gram-negative strains, and the UGGL-based aneurism peptide is inactive.  相似文献   

10.
Li HT  Du HN  Tang L  Hu J  Hu HY 《Biopolymers》2002,64(4):221-226
Amyloid-like aggregation of alpha-synuclein and deposit in Lewy bodies are thought to be the major cause of Parkinson's disease. Here we describe the secondary structural transformation and aggregation of human alpha-synuclein and its C-terminus truncated fragments in trifluoroethanol. Proteins containing the NAC (non-amyloid component) segment undergo a three-state transition: from native random coil to beta-sheet and to alpha-helical structure, while the NAC deficient fragment and gamma-synuclein undergo a typical two-state coil-to-alpha transition. The beta-sheet form is highly hydrophobic that strongly binds to 1-anilinonaphthalene-8-sulfonic acid (ANS) and is prone to self-aggregation. The results suggest that the NAC sequence is essential to beta-sheet formation and the aggregation originates from the beta-sheet intermediate, which may be implicated in the pathogenesis of Parkinson's disease.  相似文献   

11.
A surface plasmon resonance (SPR) based immunosensor using self-assembled protein G was developed for the detection of Salmonella paratyphi. In order to endow a solid substrate binding affinity to protein G, the free amine (-NH2) of protein G was substituted into thiol (-SH) using 2-iminothiolane. Thus, self-assembled protein G was fabricated on gold (Au) substrate. The formation of protein G layer on Au surface, and the binding of antibody and antigen in series were confirmed by SPR spectroscopy. The surface morphology analysis of the protein G layer on Au surface was performed by atomic force microscope (AFM). Consequently, an immunosensor based on SPR for the detection of S. paratyphi using self-assembled protein G was developed with a detection range of 10(2)-10(7) CFU/ml. The current fabrication technique of a SPR immunosensor for the detection of S. paratyphi could be applied to construct other immnosensors or protein chips.  相似文献   

12.
We fabricated a self-assembled monolayer (SAM) of a chimeric protein created as a novel model protein for an artificial light-harvesting complex (LHC) composed of two proteins, cytochrome b(562) (cytb(562)) mutated for SAM fabrication (cytb(562), N22C, G82C) and enhanced green fluorescent protein (EGFP). The SAM formation of chimeric protein on a single-crystalline Au(111) substrate was confirmed by atomic force microscopy (AFM) measurement. The rectified photocurrent of the chimeric protein SAM on a gold substrate was detected by light-illumination scanning tunneling microscopy (LI-STM) co-operated with a lock-in technique. The photocurrent generation of the chimeric protein SAM was wavelength-specific to the light-illumination (488 nm), which indicated that the EGFP part of the chimera plays a role as a sensitizer in the photo-induced electron transfer process.  相似文献   

13.
Cation-pi interactions are common in proteins, but their contribution to the stability and specificity of protein structure has not been well established. In this study, we examined the impact of cation-pi interactions in a diagonal position of a beta-hairpin peptide through comparison of the interaction of Phe or Trp with Lys or Arg. The diagonal interactions ranged from -0.20 to -0.48 kcal/mole. Our experimental values for the diagonal cation-pi interactions are similar to those found in alpha-helical studies. Upfield shifting of the Lys and Arg side chains indicates that the geometries of cation-pi interactions adopted in the 12-residue beta-hairpin are comparable to those found in protein structures. The Lys was found to interact through the polarized Cepsilon, and the Arg is stacked against the aromatic ring of Phe or Trp. Folding of these peptides was found to be enthalpically favorable (DeltaH degrees equals approximately -3 kcal/mole) and entropically unfavorable (DeltaS degrees equals approximately -8 cal mole(-1) K(-1)).  相似文献   

14.
Peptide foldamers based on alpha,alpha-disubstituted glycyl residues were synthesized and chemically characterized to investigate the effects of the electric field generated by a 3(10)-helix on the rate of intramolecular photoinduced electron-transfer reactions. To this end, two new octapeptides having identical sequences were suitably side-chain functionalized with the same electron-transfer donor-acceptor pair, but inverting the position of the pair along the main chain. The electron-transfer rate constants, measured by time-resolved spectroscopy techniques (nanosecond transient absorption and time-resolved fluorescence), indicated that, in the case of the 3(10)-helix, the electrostatic effect is significant, but smaller than that obtained for alpha-helical peptides. This finding can be likely ascribed to the distortion of the H-bond network with respect to the helical axis taking place in the former secondary structure. Overall, these results could have implications on electron-transfer phenomena in model and biomembranes facilitated by peptaibiotics.  相似文献   

15.
To test, at the level of individual amino acids, the conformation of an exchangeable apolipoprotein in aqueous solution and in the presence of an osmolyte trimethylamine-N-oxide (TMAO), six synthetic peptide analogues of human apolipoprotein C-1 (apoC-1, 57 residues) containing point mutations in the predicted alpha-helical regions were analyzed by circular dichroism (CD). The CD spectra and the melting curves of the monomeric wild-type and plasma apoC-1 in neutral low-salt solutions superimpose, indicating 31 +/- 4% alpha-helical structure at 22 degrees C that melts reversibly with T(m,WT) = 50 +/- 2 degrees C and van't Hoff enthalpy deltaH(v,WT)(Tm) = 18 +/- 2 kcal/mol. G15A substitution leads to an increased alpha-helical content of 42 +/- 4% and an increased T(m,G15A) = 57 +/- 2 degrees C, which corresponds to stabilization by delta deltaG(app) = +0.4 +/- 1.5 kcal/mol. G15P mutant has approximately 20% alpha-helical content at 22 degrees C and unfolds with low cooperativity upon heating to 90 degrees C. R23P and T45P mutants are fully unfolded at 0-90 degrees C. In contrast, Q31P mutation leads to no destabilization or unfolding. Consequently, the R23 and T45 locations are essential for the stability of the cooperative alpha-helical unit in apoC-1 monomer, G15 is peripheral to it, and Q31 is located in a nonhelical linker region. Our results suggest that Pro mutagenesis coupled with CD provides a tool for assigning the secondary structure to protein groups, which should be useful for other self-associating proteins that are not amenable to NMR structural analysis in aqueous solution. TMAO induces a reversible cooperative coil-to-helix transition in apoC-1, with the maximal alpha-helical content reaching 74%. Comparison with the maximal alpha-helical content of 73% observed in lipid-bound apoC-1 suggests that the TMAO-stabilized secondary structure resembles the functional lipid-bound apolipoprotein conformation.  相似文献   

16.
Staphylococcal α-hemolysin is expressed as a water-soluble monomeric protein and assembles on membranes to form a heptameric pore structure. The heptameric pore structure of α-hemolysin can be prepared from monomer in vitro only in the presence of deoxycholate detergent micelles, artificially constructed phospholipid bilayers, or erythrocytes. Here, we succeeded in preparing crystals of the heptameric form of α-hemolysin without any detergent but with 2-methyl-2,4-pentanediol (MPD), and determined its structure. The structure of the heptameric pore was similar to that reported previously. In the structure, two molecules of MPD were bound around Trp179, around which phospholipid head groups were bound in the heptameric pore structure reported previously. Size exclusion chromatography showed that α-hemolysin did not assemble spontaneously even when stored for 1 year. SDS-PAGE analysis revealed that, among the compounds in the crystallizing buffer, MPD could induce heptamer formation. The concentration of MPD that most efficiently induced oligomerization was between 10 and 30%. Based on these observations, we propose MPD as a reagent that can facilitate heptameric pore formation of α-hemolysin without membrane binding.  相似文献   

17.
Starch phosphorylase from Corynebacterium callunae is a dimeric protein in which each mol of 90 kDa subunit contains 1 mol pyridoxal 5'-phosphate as an active-site cofactor. To determine the mechanism by which phosphate or sulfate ions bring about a greater than 500-fold stabilization against irreversible inactivation at elevated temperatures (> or = 50 degrees C), enzyme/oxyanion interactions and their role during thermal denaturation of phosphorylase have been studied. By binding to a protein site distinguishable from the catalytic site with dissociation constants of Ksulfate = 4.5 mM and Kphosphate approximately 16 mM, dianionic oxyanions induce formation of a more compact structure of phosphorylase, manifested by (a) an increase by about 5% in the relative composition of the alpha-helical secondary structure, (b) reduced 1H/2H exchange, and (c) protection of a cofactor fluorescence against quenching by iodide. Irreversible loss of enzyme activity is triggered by the release into solution of pyridoxal 5'-phosphate, and results from subsequent intermolecular aggregation driven by hydrophobic interactions between phosphorylase subunits that display a temperature-dependent degree of melting of secondary structure. By specifically increasing the stability of the dimer structure of phosphorylase (probably due to tightened intersubunit contacts), phosphate, and sulfate, this indirectly (1) preserves a functional active site up to approximately 50 degrees C, and (2) stabilizes the covalent protein cofactor linkage up to approximately 70 degrees C. The effect on thermostability shows a sigmoidal and saturatable dependence on the concentration of phosphate, with an apparent binding constant at 50 degrees C of approximately 25 mM. The extra stability conferred by oxyanion-ligand binding to starch phosphorylase is expressed as a dramatic shift of the entire denaturation pathway to a approximately 20 degrees C higher value on the temperature scale.  相似文献   

18.
The alpha-aminoisobutyric (Aib) residue has generally been considered to be a strongly helicogenic residue as evidenced by its ability to promote helical folding in synthetic and natural sequences. Crystal structures of several peptide natural products, peptaibols, have revealed predominantly helical conformations, despite the presence of multiple helix-breaking Pro or Hyp residues. Survey of synthetic Aib-containing peptides shows a preponderance of 3(10)-, alpha-, and mixed 3(10)/alpha-helical structures. This review highlights the examples of Aib residues observed in nonhelical conformations, which fall 'primarily' into the polyproline II (P(II)) and fully extended regions of conformational space. The achiral Aib residue can adopt both left (alpha(L))- and right (alpha(R))-handed helical conformations. In sequences containing chiral amino acids, helix termination can occur by means of chiral reversal at an Aib residue, resulting in formation of a Schellman motif. Examples of Aib residues in unusual conformations are illustrated by surveying a database of Aib-containing crystal structures.  相似文献   

19.
The protein folding problem represents one of the most challenging problems in computational biology. Distance constraints and topology predictions can be highly useful for the folding problem in reducing the conformational space that must be searched by deterministic algorithms to find a protein structure of minimum conformational energy. We present a novel optimization framework for predicting topological contacts and generating interhelical distance restraints between hydrophobic residues in alpha-helical globular proteins. It should be emphasized that since the model does not make assumptions about the form of the helices, it is applicable to all alpha-helical proteins, including helices with kinks and irregular helices. This model aims at enhancing the ASTRO-FOLD protein folding approach of Klepeis and Floudas (Journal of Computational Chemistry 2003;24:191-208), which finds the structure of global minimum conformational energy via a constrained nonlinear optimization problem. The proposed topology prediction model was evaluated on 26 alpha-helical proteins ranging from 2 to 8 helices and 35 to 159 residues, and the best identified average interhelical distances corresponding to the predicted contacts fell below 11 A in all 26 of these systems. Given the positive results of applying the model to several protein systems, the importance of interhelical hydrophobic-to-hydrophobic contacts in determining the folding of alpha-helical globular proteins is highlighted.  相似文献   

20.
The conformationally constrained f-L-Met-Ac(n)c-L-Phe-OMe (n = 4,9-12) tripeptides, analogues of the chemoattractant f-L-Met-L-Leu-L-Phe-OH, were synthesized in solution by classical methods and fully characterized. These compounds and the published f-L-Met-Xxx-L-Phe-OMe (Xxx = Aib and Ac(n)c where n = 3, 5-8) analogues were compared to determine the combined effect of backbone preferred conformation and side-chain bulkiness at position 2 on the relation of 3D-structure to biological activity. A conformational study of all the analogues was performed in solution by FT-IR absorption and 1H-NMR techniques. In parallel, each peptide was tested for its ability to induce chemotaxis, superoxide anion production and lysozyme secretion from human neutrophils. The biological and conformational data are discussed in relation to the proposed model of the chemotactic receptor on neutrophils, in particular of the hydrophobic pocket accommodating residue 2 of the tripeptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号