首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The possible interaction among different sensory units in the frog tongue was studied using several single papillae dually innervated by the medial and lateral branches of the glossopharyngeal (IXth) nerve. The afferent activity in one branch exposed to NaCl stimulation of the papilla revealed marked inhibition after antidromic electrical stimulation (100 Hz, 30 s, and 3 V) of the other branch. The degree of inhibition depended on the number of sensory responses observed in the electrically stimulated branch as well as the nature of the stimulated sensory units. Statistical analysis suggested that antidromic activation of gustatory units conducting the responses to NaCl and quinine and slowly adapting mechanosensitive units produced a large antidromic inhibition amounting to 19-25%, but that of gustatory units conducting the responses to acetic acid and rapidly adapting mechanosensitive units gave rise to only a slight inhibition. To examine the differential effects of these sensory units in antidromic inhibition, antidromic impulses were evoked by chemical stimulation of the adjacent papilla neuronally connected with the dually innervated papilla under study. Antidromic volleys of impulses elicited by NaCl or quinine stimulation produced a large inhibition of the afferent activity in the other branch, as induced by NaCl stimulation of the dually innervated papilla. Plausible mechanisms of synaptic interaction in peripheral gustatory systems are considered.  相似文献   

2.
From time of embryonic emergence, the gustatory papilla types on the mammalian tongue have stereotypic anterior and posterior tongue locations. Furthermore, on anterior tongue, the fungiform papillae are patterned in rows. Among the many molecules that have potential roles in regulating papilla location and pattern, Sonic hedgehog (Shh) has been localized within early tongue and developing papillae. We used an embryonic, tongue organ culture system that retains temporal, spatial, and molecular characteristics of in vivo taste papilla morphogenesis and patterning to study the role of Shh in taste papilla development. Tongues from gestational day 14 rat embryos, when papillae are just beginning to emerge on dorsal tongue, were maintained in organ culture for 2 days. The steroidal alkaloids, cyclopamine and jervine, that specifically disrupt the Shh signaling pathway, or a Shh-blocking antibody were added to the standard culture medium. Controls included tongues cultured in the standard medium alone, and with addition of solanidine, an alkaloid that resembles cyclopamine structurally but that does not disrupt Shh signaling. In cultures with cyclopamine, jervine, or blocking antibody, fungiform papilla numbers doubled on the dorsal tongue with a distribution that essentially eliminated inter-papilla regions, compared with tongues in standard medium or solanidine. In addition, fungiform papillae developed on posterior oral tongue, just in front of and beside the single circumvallate papilla, regions where fungiform papillae do not typically develop. The Shh protein was in all fungiform papillae in embryonic tongues, and tongue cultures with standard medium or cyclopamine, and was conspicuously localized in the basement membrane region of the papillae. Ptc protein had a similar distribution to Shh, although the immunoproduct was more diffuse. Fungiform papillae did not develop on pharyngeal or ventral tongue in cyclopamine and jervine cultures, or in the tongue midline furrow, nor was development of the single circumvallate papilla altered. The results demonstrate a prominent role for Shh in fungiform papilla induction and patterning and indicate differences in morphogenetic control of fungiform and circumvallate papilla development and numbers. Furthermore, a previously unknown, broad competence of dorsal lingual epithelium to form fungiform papillae on both anterior and posterior oral tongue is revealed.  相似文献   

3.
We have earlier shown that the taste-bud-bearing fungiform papillaeform a stable pattern on the tongue of rats. In this study theeffect of removal of the fungiform papillae in rats was investigated.The fungiform papillae on a 10 x 5-mm area on one side of thetongue were removed after mapping of both sides under an operatingmicroscope. Serial sections of five rat tongues within 1 dayof biopsy showed that all but one papilla were gone. After 4,6 and 12 months an average of seven papillae with taste-budswere found in the operated area, compared to 20, 26 and 23 inthe controls. Comparison of tongue maps before and after theseperiods showed that papillae had not migrated from areas outsidethe area of the biopsies. To test the assumption that the extentof biopsy determined the amount of regeneration, only the upperpart of the papillae with their taste buds were removed in 15rats. Complete regeneration of papillae and taste buds was obtainedwithin 14 days. The function of the regenerated taste buds wastested by bilateral recording from the chorda tympani propernerves. No difference in response amplitudes was observed betweenthe sides. When, however, the whole papilla including its basewas removed, neither the papilla nor the taste-bud regenerated.The results show that the ability of the fungiform papilla andthe taste-bud to regenerate after removal of the papilla isrelated to the extent of the biopsy. If the entire papilla includingits base is removed, it will not regenerate. If only the upperpart is removed, complete regeneration of both papilla and itstaste-bud will occur.  相似文献   

4.
Receptive fields and responsiveness of single fibers of the glossopharyngeal (IXth) nerve were investigated using electrical, gustatory (NaCl, quinine HCl, acetic acid, water, sucrose, and CaCl2), thermal, and mechanical stimulation of the single fungiform papillae distributed on the dorsal tongue surface in frogs. 172 single fibers were isolated. 58% of these fibers (99/172) were responsive to at least one of the gustatory stimuli (taste fibers), and the remaining 42% (73/172) were responsive only to touch (touch fibers). The number of papillae innervated by a single fiber (receptive field) was between 1 and 17 for taste fibers and between 1 and 10 for touch fibers. The mean receptive field of taste fibers (X = 6.6, n = 99) was significantly larger than that of touch fibers (X = 3.6, n = 73) (two-tailed t test, P less than 0.001). In experiments with natural stimulation of single fungiform papillae, it was found that every branch of a single fiber has a similar responsiveness. Taste fibers were classified into 14 types (Type N, Q, A, NA, NCa, NCaA, NCaW, NCaAW, NCaWS, NQ, NQA, NQAS, NQWarm, Multiple) on the basis of their responses to gustatory and thermal stimuli. The time course of the response in taste fibers was found to be characteristic of their types. For example, the fibers belonging to Type NQA showed phasic responses, those in Type NCa showed tonic responses, etc. These results indicate that there are several groups of fibers in the frog IXth nerve and that every branch of an individual fiber has a similar responsiveness to the parent fiber.  相似文献   

5.
Two experiments were conducted to investigate the psychophysicalresponse characteristics of single circumvallate papillae. InExperiment 1, 12 circumvallate papillae in four subjects werechemically stimulated to assess identification of taste qualities.Single circumvallate papillae were found to mediate multipletaste qualities, and the taste profiles obtained from differentpapillae were similar within the same subject. Moreover, sucrose,quinine monohydrochloride and citric acid elicited unitary andcharacteristic quality responding in these papillae from allsubjects, whereas NaCl elicited predominantly sour and/or bitterresponses from three of the four subjects. Experiment 2 directly compared responses obtained from singlecircumvallate papillae with those obtained from fungiform regionsof the tongue. Data for 10 subjects showed significantly greatersour responses to citric acid and NaCl in circumvallate papillaeand significantly greater salty responses to these compoundson the anterior tongue. In addition, the taste profiles forcitric acid and NaCl were distinct for circumvallate papillae,while those from the anterior tongue were similar. These datasuggest that the bitterness and sweetness of quinine and sugar,respectively, can be identified on the basis of sensory informationarising from either circumvallate or fungiform regions, butthat differentiation of the tastes of salts and acids may dependon a comparison of the input from both regions and/or additionalinformation arising from foliate regions.  相似文献   

6.
Subepithelial blood vessels of the rat lingual papillae and their spatial relations to the connective tissue papillae and surface structures were demonstrated by light and scanning electron microscopy. In the rat, four types of papillae were distinguished on the dorsal surface of the tongue, i.e. the filiform, fungiform, foliate and circumvallate papillae. Vascular beds of various appearance were found in all four types of lingual papillae: a simple or twisted capillary loop in the filiform papilla; a basket- or petal-like network in the fungiform papilla; a ring-like network in the foliate papilla, and a conglomerated network surrounded by double heart-shaped capillary networks in the circumvallate papilla. These characteristic vascular beds corresponded to the shape of the connective tissue papillae and surface structures. The vascular bed beneath the gustatory epithelium in the fungiform, foliate and circumvallate papilla consisted of fine capillary networks next to the taste buds.  相似文献   

7.
Taste papillae are ectodermal specializations that serve to house and distribute the taste buds and their renewing cell populations in specific locations on the tongue. We previously showed that Sonic hedgehog (Shh) has a major role in regulating the number and spatial pattern of fungiform taste papillae on embryonic rat tongue, during a specific period of papilla formation from the prepapilla placode. Now we have immunolocalized the Shh protein and the Patched receptor protein (Ptc), and have tested potential roles for Shh in formation of the tongue, emergence of papilla placodes, development of papilla number and size, and maintenance of papillae after morphogenesis is advanced. Cultures of entire embryonic mandible or tongues from gestational days 12 to 18 [gestational or embryonic days (E)12-E18] were used, in which tongues and papillae develop with native spatial, temporal, and molecular characteristics. The Shh signaling pathway was disrupted with addition of cyclopamine, jervine, or the 5E1 blocking antibody. Shh and Ptc proteins are diffuse in prelingual tissue and early tongue swellings, and are progressively restricted to papilla placodes and then to regions of developing papillae. Ptc encircles the dense Shh immunoproduct in papillae at various stages. When the Shh signal is disrupted in cultures of E12 mandible, tongue formation is completely prevented. At later stages of tongue culture initiation, Shh signal disruption alters development of tongue shape (E13) and results in a repatterned fungiform papilla distribution that does not respect normally papilla-free tongue regions (E13-E14). Only a few hours of Shh signal disruption can irreversibly alter number and location of fungiform papillae on anterior tongue and elicit papilla formation on the intermolar eminence. However, once papillae are well formed (E16-E18), Shh apparently does not have a clear role in papilla maintenance, nor does the tongue retain competency to add fungiform papillae in atypical locations. Our data not only provide evidence for inductive and morphogenetic roles for Shh in tongue and fungiform papilla formation, but also suggest that Shh functions to maintain the interpapilla space and papilla-free lingual regions. We propose a model for Shh function at high concentration to form and maintain papillae and, at low concentration, to activate between-papilla genes that maintain a papilla-free epithelium.  相似文献   

8.
Brain-derived neurotrophic factor (BDNF) and neurotrophin-4 (NT4) are essential for the survival of geniculate ganglion neurons, which provide the sensory afferents for taste buds of the anterior tongue and palate. To determine how these target-derived growth factors regulate gustatory development, the taste system was examined in transgenic mice that overexpress BDNF (BDNF-OE) or NT4 (NT4-OE) in basal epithelial cells of the tongue. Overexpression of BDNF or NT4 caused a 93 and 140% increase, respectively, in the number of geniculate ganglion neurons. Surprisingly, both transgenic lines had severe reduction in fungiform papillae and taste bud number, primarily in the dorsal midregion and ventral tip of the tongue. No alterations were observed in taste buds of circumvallate or incisal papillae. Fungiform papillae were initially present on tongues of newborn BDNF-OE animals, but many were small, poorly innervated, and lost postnatally. To explain the loss of nerve innervation to fungiform papillae, the facial nerve of developing animals was labeled with the lipophilic tracer DiI. In contrast to control mice, in which taste neurons innervated only fungiform papillae, taste neurons in BDNF-OE and NT4-OE mice innervated few fungiform papillae. Instead, some fibers approached but did not penetrate the epithelium and aberrant innervation to filiform papillae was observed. In addition, some papillae that formed in transgenic mice had two taste buds (instead of one) and were frequently arranged in clusters of two or three papillae. These results indicate that target-derived BDNF and NT4 are not only survival factors for geniculate ganglion neurons, but also have important roles in regulating the development and spatial patterning of fungiform papilla and targeting of taste neurons to these sensory structures.  相似文献   

9.
When the glossopharyngeal (GP) nerve of the frog was stimulated electrically, electropositive slow potentials were recorded from the tongue surface and depolarizing slow potentials from taste cells in the fungiform papillae. The amplitude of the slow potentials was stimulus strength- and the frequency-dependent. Generation of the slow potentials was not related to antidromic activity of myelinated afferent fibers in the GP nerve, but to orthodromic activity of autonomic post-ganglionic C fibers in the GP nerve. Intravenous injection of atropine abolished the positive and depolarizing slow potentials evoked by GP nerve stimulation, suggesting that the slow potentials were induced by the activity of parasympathetic post-ganglionic fibers. The amplitude and polarity of the slow potentials depended on the concentration of adapting NaCl solutions applied to the tongue surface. These results suggest that the slow potentials recorded from the tongue surface and taste cells are due to the liquid junction potential generated between saliva secreted from the lingual glands by GP nerve stimulation and the adapting solution on the tongue surface.  相似文献   

10.
Although canonical Wnt signaling is known to regulate taste papilla induction and numbers, roles for noncanonical Wnt pathways in tongue and taste papilla development have not been explored. With mutant mice and whole tongue organ cultures we demonstrate that Wnt5a protein and message are within anterior tongue mesenchyme across embryo stages from the initiation of tongue formation, through papilla placode appearance and taste papilla development. The Wnt5a mutant tongue is severely shortened, with an ankyloglossia, and lingual mesenchyme is disorganized. However, fungiform papilla morphology, number and innervation are preserved, as is expression of the papilla marker, Shh. These data demonstrate that the genetic regulation for tongue size and shape can be separated from that directing lingual papilla development. Preserved number of papillae in a shortened tongue results in an increased density of fungiform papillae in the mutant tongues. In tongue organ cultures, exogenous Wnt5a profoundly suppresses papilla formation and simultaneously decreases canonical Wnt signaling as measured by the TOPGAL reporter. These findings suggest that Wnt5a antagonizes canonical Wnt signaling to dictate papilla number and spacing. In all, distinctive roles for Wnt5a in tongue size, fungiform papilla patterning and development are shown and a necessary balance between non-canonical and canonical Wnt paths in regulating tongue growth and fungiform papillae is proposed in a model, through the Ror2 receptor.  相似文献   

11.
Fungiform papillae are epithelial specializations that develop in a linear pattern on the anterior mammalian tongue and differentiate to eventually contain taste buds. Little is known about morphogenetic and pattern regulation of these crucial taste organs. We used embryonic rat tongue, organ cultures to test roles for bone morphogenetic proteins, BMP2, 4 and 7, and antagonists noggin and follistatin, in development of papillae from a stage before morphological initiation (E13) or from a stage after the pre-papilla placodes have formed (E14). BMPs and noggin proteins become progressively restricted to papilla locations during tongue development. In E13 cultures, exogenous BMPs or noggin induce increased numbers of fungiform papillae, in a concentration-dependent manner, compared to standard tongue cultures; BMPs, but not noggin, lead to a decreased tongue size at this stage. In E14 cultures, however, exogenous BMP2, 4 or 7 each inhibits papilla formation so that there is a decrease in papilla number. Noggin substantially increases number of papillae in E14 cultures. Using beads for a highly localized protein delivery, papillae are inhibited in the surround of BMP-soaked beads and induced in large clusters around noggin-soaked beads. Follistatin, presented in culture medium or by bead, does not alter papilla formation or number. In all fungiform papillae that form under various culture conditions, the molecular marker, sonic hedgehog, is within each papilla. However, the BMP inhibitory effect on papillae is not prevented by disrupting sonic hedgehog signaling through addition of cyclopamine to cultures. BMPs and noggin alter cell proliferation in tongue epithelium in opposite ways, demonstrated with Ki67 immunostaining. We propose that the BMPs and noggin, colocalized within papilla placodes and the fungiform papillae per se, have opposing inhibitory and activating or inducing roles in papilla development in linear patterns. We present a model for these effects.  相似文献   

12.
During development, axons of the chorda tympani nerve navigate to fungiform papillae where they penetrate the lingual epithelium, forming a neural bud. It is not known whether or not all chorda tympani axons initially innervate fungiform papillae correctly or if mistakes are made. Using a novel approach, we quantified the accuracy with which gustatory fibers successfully innervate fungiform papillae. Immediately following initial targeting (E14.5), innervation was found to be incredibly accurate: specifically, 94% of the fungiform papillae on the tongue are innervated. A mean of five papillae per tongue were uninnervated at E14.5, and the lingual tongue surface was innervated in 17 places that lack fungiform papillae. To determine if these initial errors in papillae innervation were later refined, innervation accuracy was quantified at E16.5 and E18.5. By E16.5 only two papillae per tongue remained uninnervated. Innervation to inappropriate regions was also removed, but not until later, between E16.5 and E18.5 of development. Therefore, even though gustatory fibers initially innervate fungiform papillae accurately, some errors in targeting do occur that are then refined during later embryonic periods. It is likely that trophic interactions between gustatory neurons and developing taste epithelium allow appropriate connections to be maintained and inappropriate ones to be eliminated.  相似文献   

13.
1. Regional changes in the diameter of single myelinated afferent nerve fibres innervating the taste disc of the fungiform papillae on the bullfrog tongue were investigated morphologically and functionally. 2. The diameter of myelinated afferents in the medial lingual branch of the glossopharyngeal nerve averaged 8.4 microns at the proximal end of the tongue and gradually decreased at the rate of 0.8 micron/cm length of the fibres as they ran in the apical direction of the tongue. 3. The conduction velocity of single myelinated afferent fibres within the tongue decreased gradually as they ran peripherally. 4. Electrophysiological inspection of neural connections between the fungiform papillae suggests that a gradual centrifugal decrease in the diameter of a single myelinated afferent fibre is not due to multiple bifurcations of the fibre at various sites within the tongue, but due to a natural gradual decrease in the thickness of the myelin sheath and the diameter of axon.  相似文献   

14.
A possibility of efferent innervation of gustatory and mechanosensitive afferent fiber endings was studied in frog fungiform papillae with a suction electrode. The amplitude of antidromic impulses in a papillary afferent fiber induced by antidromically stimulating an afferent fiber of glossopharyngeal nerve (GPN) with low voltage pulses was inhibited for 40 s after the parasympathetic efferent fibers of GPN were stimulated orthodromically with high voltage pulses at 30 Hz for 10 s. This implies that electrical positivity of the outer surface of papillary afferent membrane was reduced by the efferent fiber-induced excitatory postsynaptic potential. The inhibition of afferent responses in the papillae was blocked by substance P receptor blocker, L-703,606, indicating that substance P is probably released from the efferent fiber terminals. Slow negative synaptic potential, which corresponded to a slow depolarizing synaptic potential, was extracellularly induced in papillary afferent terminals for 45 s by stimulating the parasympathetic efferent fibers of GPN with high voltage pulses at 30 Hz for 10 s. This synaptic potential was also blocked by L-703,606. These data indicate that papillary afferent fiber endings are innervated by parasympathetic efferent fibers.  相似文献   

15.
To study the dorsal surface of the human tongue using a scanning electron microscopy (SEM), tissue specimens were taken from the anterior part of the tongues of 15 individuals aged from 21- to 28-years-old. The formalin-fixed samples were processed routinely for SEM. With SEM the surface of the normal tongue mucosa was shown to be rather evenly covered by filiform papillae, with some fungiform papillae scattered among them. Filiform papillae consisted of two parts: the body and hairs. The mucosal surface of the body was smooth; the squamous epithelial cells were polygonal, and their boundaries were prominent. On the surface of the superficial epithelial cells were parallel or branching microplicae. Each filiform papilla had 6-10 hairs, which were scaled and covered by an extensive plaque of microorganism. The upper surface of the fungiform papillae was smooth; only a few desquamating cells were seen. The superficial cells had a pitted appearance and cell boundaries overlapped. Taste pores, up to 3 pores in a single papilla, were found on the upper surface. Desquamation was more pronounced on the base of the fungiform papillae than on the upper surface. In almost all fungiform papillae some hairs protruded from the base. Parallel microplicae were found on the surface of the superficial cells of the base. The structure and function of the human tongue, as well as the microplicae of its superficial cells, are compared to those of various species of animals.  相似文献   

16.
Taste bud quantitation may provide useful parameters for interspecies comparisons of the gustatory system. The present study is a morphometric analysis of bovine taste papillae. Circumvallate and fungiform papillae from six bovine tongues were serially sectioned and, following staining, analyzed. Circumvallate papillae were found to have a mean volume of 3.66 +/- 2.82 mm3, a mean number of taste buds per papilla of 445 +/- 279, and a mean taste bud density of 155 +/- 112 buds/mm3. Values for lateral fungiform papillae for the same three parameters were 0.384 +/- 0.184 mm3, 13.2 +/- 13.4, and 40.8 +/- 46.6 buds/mm3, respectively. Values for dorsal fungiform papillae were 0.438 +/- 0.246 mm3, 4.39 +/- 4.78, and 14.0 +/- 17.1 buds/mm3, respectively. Circumvallate papillae were found to have a significantly greater volume, number of taste buds per papilla, and taste bud density than either type of fungiform papilla. These data should serve as background for biochemical, endocrinological, or neurological studies involving the bovine tongue.  相似文献   

17.
18.
Distribution density of the taste disks of the fungiform papillae in the frog tongue was larger at the proximal portion than at the apical and middle portions. The number of myelinated afferent nerve fibres and taste cells per cm2 area of the tongue increased in the order of proximal greater than middle greater than apical portion. The amplitudes of gustatory neural responses for 0.5 M NaCl, 0.5 M KCl, 0.5 M NH4Cl, 0.05 M CaCl2, 1 mM acetic acid and 1 mM quinine-HCl (Q-HCl) were significantly larger with lingual stimulation of the proximal region than with the stimulation of the apical region. With these stimuli the mean ratio of the apical response to the proximal response was 1.00:1.54. On the other hand, this ration with deionized water was 1.00:5.00. The mean magnitudes of receptor potentials in taste cells for 1 mM acetic acid and 10 mM Q-HCl were the same among the apical, middle and proximal portions of the tongue. The mean magnitudes of receptor potentials for 0.5 M NaCl were significantly larger at the apical portion than at the other portions, whereas those for deionized water tended to be the largest at the proximal portion. It is concluded that the larger magnitude of the gustatory neural responses at the proximal portion of the tongue is due to morphological and physiological properties of the taste organ.  相似文献   

19.
Three-dimensional characteristics of the epithelial cell layer and connective tissue interface of the tongue were studied using scanning electron microscopy. In this study, the fragments of tongue were fixed in modified Karnovsky's fixative solution. Subsequently, the specimens were treated with 10% NaOH solution for 4-7 days at room temperature and postfixed in 1% OsO4 in 0.1 M phosphate buffer (pH 7.4) for 2 hours at 4 degrees C. They were dehydrated through a graded ethanol series, and critical-point dried with CO2. The specimens were coated with gold and observed in a scanning electron microscope, JEOL JSM-6100. The results showed numerous papillae on the dorsal surface of the tongue divided into four groups (filiform, fungiform, foliate and vallate papillae). Filiform papillae are conically shaped; fungiform papillae have an irregular round surface; foliate papillae are oval in shape and have some parallel projections; and vallate papillae are located in the posterior part of the tongue and have a depression around the center. After the treatment with 10% NaOH solution, the original arrangements of connective papillae could be seen. This characteristic three-dimensional distribution of the collagen fiber bundles is typical for each superficial papillae depending on whether it is filiform, fungiform, foliate or vallate.  相似文献   

20.
M A Qayyum  M A Beg 《Acta anatomica》1975,93(4):554-567
The anatomy and neurohistology of the tongue of the Indian goat, Capra aegagrus, have been described. The apex linguae is notched in the centre. The foramen caecum is found to be absent. The sublingua could not be traced. The filiform papillae are the most common and divided into three types: the simple, giant, and true filiform papillae. The true filiform papillae are the most developed of the three types. The foliate papillae are absent. There are 13--14 circumvallate papillae arranged in two rows in a V-shaped pattern. The fungiform papillae are large and could easily be seen with the naked eye. They are scattered over the entire dorsum, being in abundance at the tip. The tongue of the goat is richly innervated. On the dorsum, the lamina propria is innervated by thick nerve fibres. In the fungiform papillae quite a large number of nerve fibres could be seen. The circumvallate papillae are also abundantly provided with nerves. A few ganglion cells are found below the circumvallate papillae. Thick nerve fibres are seen across the numerous glands and their ducts. Muscle fibres and connective tissue are also richly innervated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号