首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Urease was encapsulated within alginate beads, coated with poly(methylene co-guanidine) membranes via polyelectrolyte complexation. Membrane thickness increased with reaction time to 53 μm after 80 min, and to 59 μm with an increase in co-guanidine concentration from 2.5 to 20 mg ml−1. A 70% mass and 31% activity yield of urease resulted following encapsulation. Although co-guanidine strongly inhibited freely soluble urease (I0.5=5.8 μg ml−1 co-guanidine), immobilization stabilized the enzyme against inactivation. Encapsulated activity declined as the polycation concentration used for membrane formation increased; however an activity loss of only 35% was observed when the co-guanidine concentration was as high as 5 mg ml−1. Glucose protected against inactivation, with 0.5 increasing to 28.5 μg ml−1 for the freely soluble enzyme. When the beads were coated with co-guanidine in the presence of glucose, encapsulated urease activity was fully retained.  相似文献   

2.
The enzymic activity of plant urease encapsulated into liposomes from egg lecithin was studied. Liposomes contained 3-5% of the initial enzymic preparation. Incorporation of urease into liposomes increases the permeability of the lecithin membrane for urea. The liposome membrane provides protection of the incorporated material from the inhibitory action of heavy metal ions. Kinetics of the reactions catalyzed by the free enzyme and encapsulated one is different. Km for the encapsulated enzyme is 1 X 10(-3) M and for free urease--4 X 10(-4) M, that is related to limited substrate mass transfer rate and as a result of it due to inhomogeneity of the catalysis proceeding in liposomes.  相似文献   

3.
A one-step procedure of immobilizing soluble and aggregated preparations of D-amino acid oxidase from Trigonopsis variabilis (TvDAO) is reported where carrier-free enzyme was entrapped in semipermeable microcapsules produced from the polycation poly(methylene-co-guanidine) in combination with CaCl2 and the polyanions alginate and cellulose sulfate. The yield of immobilization, expressed as the fraction of original activity present in microcapsules, was approximately 52 +/- 5%. The effectiveness of the entrapped oxidase for O2-dependent conversion of D-methionine at 25 degrees C was 85 +/- 10% of the free enzyme preparation. Because continuous spectrophotometric assays are generally not well compatible with insoluble enzymes, we employed a dynamic method for the rapid in situ estimation of activity and relatedly, stability of free and encapsulated oxidases using on-line measurements of the concentration of dissolved O2. Integral and differential modes of data acquisition were utilized to examine cases of fast and slow inactivation of the enzyme, respectively. With a half-life of 60 h, encapsulated TvDAO was approximately 720-fold more stable than the free enzyme under conditions of bubble aeration at 25 degrees C. The soluble oxidase was stabilized by added FAD only at temperatures of 35 degrees C or greater.  相似文献   

4.
Microencapsulation of chloroplast particles   总被引:1,自引:2,他引:1       下载免费PDF全文
Chloroplast and photosystem I particles were encapsulated in small spheres (about 20 μm diameter) with an artificial membrane built up by cross-linking amino groups of protamine with toluenediisocyanate. The artificial membrane was permeable to small substrate and product molecules but not to soluble proteins. Photosystem I activity was retained by the encapsulated chloroplast particles. Washed photosystem I particles were encapsulated with the soluble proteins, ferredoxin, and ferredoxin-NADP oxidoreductase, and the microcapsules photoreduced NADP using ascorbate plus dichlorophenolindophenol as the electron donor. The photosystem I particles were also encapsulated with hydrogenase from Chromatium and a very low rate of photoevolution of hydrogen was obtained. The results show that chloroplast membrane fragments can be encapsulated with soluble proteins that couple transfer reactions to the primary photochemical apparatus.  相似文献   

5.
Crystalline Klebsiella aerogenes urease was found to have less than 0.05% of the activity observed for the soluble enzyme under standard assay conditions. Li2SO4, present in the crystal storage buffer at 2 M concentration, was shown to inhibit soluble urease by a mixed inhibition mechanism (Ki's of 0.38 +/- 0.05 M for the free enzyme and 0.13 +/- 0.02 M for the enzyme-urea complex). However, the activity of crystals was less than 0.5% of the expected value, suggesting that salt inhibition does not account for the near absence of crystalline activity. Dissolution of crystals resulted in approximately 43% recovery of the soluble enzyme activity, demonstrating that protein denaturation during crystal growth does not cause the dramatic diminishment in the catalytic rate. Finally, crushed crystals exhibited only a three-fold increase in activity over that of intact crystals, indicating that the rate of substrate diffusion into the crystals does not significantly limit the enzyme activity. We conclude that urease is effectively inactive in this crystal form, possibly due to conformational restrictions associated with a lid covering the active site, and propose that the small amounts of activity observed arise from limited enzyme activity at the crystal surfaces or trace levels of enzyme dissolution into the crystal storage buffer.  相似文献   

6.
A polyelectrolyte-based enzymatic diagnosticum with a precipitation detection system that can be used as a biosensor was created. The detection method was based on the change in polyelectrolyte microcapsule weight with respect to the urea content. The possibility of biosensor reutilization was demonstrated. The appropriate ionic precipitator causing precipitation of insoluble carbonate within the microcapsules and the optimal microcapsule titre were found. In the solution of monovalent anions (chlorides), the activity of encapsulated urease was shown to increase monotonically as the square root of the ionic strength depending on the elevation of the salt content. The activity drastically increased in a narrow concentration interval (0.6–0.8 mM) of divalent anions (sulfates) and reached the level of the native enzyme activity.  相似文献   

7.
Urease was encapsulated within kappa-carrageenan beads. Various parameters, such as amount of kappa-carrageenan and enzyme activity, were optimized for the immobilization of urease. Immobilized urease was thoroughly characterized for pH, temperature, and storage stabilities and these properties were compared with the free enzyme. The free urease activity quickly decreased and the half time of the activity decay was about 3 days at 4 degrees C. The immobilized urease remained very active over a long period of time and this enzyme lost about 70.43% of its orginal activity over the period of 26 days for storage at 4 degrees C. The Michaelis constant (Km) and maximum reaction velocity (Vmax) were calculated from Lineweaver-Burk plots for both free and immobilized enzyme systems. Vmax = 227.3 U/mg protein, Km = 65.6 mM for free urease and Vmax = 153.9 U/mg protein, Km = 96.42 mM for immobilized urease showed a moderate decrease of enzyme specific activity and change of substrate affinity.  相似文献   

8.
Enzymes can be encapsulated within a semipermeable membrane which allows reactants to enter and the products to diffuse out. The mass transport from the external fluid to the membrane and the combined mass transport and biochemical reaction from the membrane inwards can be modeled with recognized formulations; measurements of the overall reaction rate lead then to estimates of the permeability of the membrane itself. With capsules enclosing catalase, the permeability of collodion membranes to H2O2 is found to be large (<2 × 10?2cm/sec) in comparison to rates in the other two diffusion zones. For this first-order reaction system, an analytical solution to the transient case of the well-stirred finite bath is found using the Laplace transform. With capsules enclosing urease, the nonlinear Michaelis-Menten kinetics apply to the enzymatic step. The steady-state operation of a column packed with urease microcapsules is analyzed with the aid of numerical computation and the membrane permeability for urea is found to be 10?3cm/sec.  相似文献   

9.
Purification of urease from Ureaplasma urealyticum   总被引:5,自引:0,他引:5  
We have purified urease from the Mollicutes, Ureaplasma urealyticum, using high performance liquid chromatography methods and DEAE-Sephadex chromatography. While only small amounts of material could be utilized in these methods, urease was purified at least 180-fold, yield a major band on SDS-PAGE of 66,000 daltons, a minor band of 64,000 daltons, and several faint bands of lower molecular mass. These results suggest that the 380,000 dalton intact urease is a pentamer or hexamer of these two larger subunits. The highly purified urease from DEAE-Sephadex retained full activity for at least 20 days at 4 degrees C in sodium phosphate buffer (pH 7.2) with 1% bovine serum albumin. The estimated specific activity of the DEAE peak fractions, 180 IU/micrograms, is at least 90-fold greater than that of jack bean urease.  相似文献   

10.
The stability of native and immobilized urease isolated from Staphylococcus saprophyticus was studied at 4 degrees and 25 degrees C. The activity yield was 20% and 1.4% on the enzyme immobilization in albumin gel and latex membrane, respectively. Inactivation of native microbial urease proceeded 10 times slower in the solution containing 1 mM EDTA and 30 mM sodium sulfite. This solution contributed to a great extent to stabilization of immobilized urease both during storage in the phosphate buffer solution and in case of lyophilization.  相似文献   

11.
A microencapsulated multi-enzyme system has been used for the conversion of urea and ammonia into an amino acid, glutamate. The microencapsulated multi-enzyme system contains urease (E.C.3.5.1.5), glutamate dehydrogenase (E.C.1.4.1.3), and glucose-6-phosphate dehydrogenase (E.C.1.1.1.49). The conversion of urea into glutamate is achieved by the sequential reaction of urease and glutamate dehydrogenase; while glutamate dehydrogenase and glucose-6-phosphate dehydrogenase allow for the cyclic regeneration of NADP+:NADPH required for the reaction. The rate of production of glutamate is 1.3 μmole per min per ml of microcapsules. The encapsulated multi-enzyme system thus allows for the sequential enzyme reaction for the conversion of urea and ammonia into an amino acid.  相似文献   

12.
Microencapsulation offers a unique potential for high cell density, high productivity mammalian cell cultures. However, for successful exploitation there is the need for microcapsules of defined size, properties and mechanical stability. Four types of alginate/poly-l-Lysine microcapsules, containing recombinant CHO cells, have been investigated: (a) 800 μm liquid core microcapsules, (b) 500 μm liquid core microcapsules, (c) 880 μm liquid core microcapsules with a double PLL membrane and (d) 740 μm semi-liquid core microcapsules. With encapsulated cells a reduced growth rate was observed, however this was accompanied by a 2–3 fold higher specific production rate of the recombinant protein. Interestingly, the maximal intracapsular cell concentration was only 8.7 × 107 cell mL-1, corresponding to a colonization of 20% of the microcapsule volume. The low level of colonization is unlikely to be due to diffusional limitations since reduction of microcapsule size had no effect. Measurement of cell leaching and mechanical properties showed that liquid core microcapsules are not suitable for continuous long-term cultures (>1 month). By contrast semi-liquid core microcapsules were stable over long periods with a constant level of cell colonization (ϕ = 3%). This indicates that the alginate in the core plays a predominant role in determining the level of microcapsule colonization. This was confirmed by experiments showing reduced growth rates of batch suspension cultures of CHO cells in medium containing dissolved alginate. Removal of this alginate would therefore be expected to increase microcapsule colonization.  相似文献   

13.
The incapsulation of proteins into polyelectrolyte microcapsules (PE-microcapsules) has been studied with the aim to develop microdiagnostica for the presence of low-molecular-weight compounds in native biological fluids. The problem was solved using two enzymes: lactate dehydrogenase and urease. Polyelectrolyte microcapsules were prepared using two polyanions: polystyrene sulfonate (PSS) and dextran sulfate (DS), and two polycations: polyallylamine (PAA) and polydiallylmethylammonium (PDADMA). CaCO3 microspherulites with the incapsulated enzyme served as a "core" in the formation of polyelectrolyte microcapsules. It was shown that the main problem in the preparation of a polyelectrolyte microdiagnosticum is the selection of an oppositely charged pair of polyelectrolytes optimal for the active functioning of the enzyme. It follows from the results obtained that the best polyelectrolyte pairs for the formation of the envelope of a PE-microcapsule are PAA/DS and PAA/PSS for lactate dehydrogenase and PSS/PDADMA for urease. Taking into account these data, we designed enzyme-containing microcapsules with different polyelectrolyte compositions and different numbers of layers and studied their properties.  相似文献   

14.
Urease from dehusked seeds of watermelon was immobilized in 1.5% agarose gel with 53.9% entrapment. There was negligible leaching (<10% at 4°C) and the same gel membrane could repeatedly be used for seven days. The immobilization exhibited no apparent change in the optimum pH but there was a significant decrease in the optimum temperature (50°C as compared to 65°C for soluble urease). The immobilized urease revealed an apparentK m of 9.3±0.3 mM; 1.2 times lower than the soluble enzyme (11.4±0.2 mM). Unlike soluble enzyme which was inhibited at 200 mM urea, the immobilized urease was inhibited at 600 mM of urea and above, and about 47% activity was retained at 2 M urea. The time-dependent thermal inactivation kinetics at 48 and 52°C was found to be biphasic, in which half of the initial activity was destroyed more rapidly than the remaining half. These gel membranes were also used for estimating the urea content of the blood samples from the University hospital. The results obtained matched well with those obtained by the usual method employed in the clinical pathology laboratory. The significance of these observations is discussed.  相似文献   

15.
I Wada  S Eto  M Himeno  K Kato 《Journal of biochemistry》1987,101(5):1077-1085
5'-Nucleotidase was found in purified rat liver tritosomes. When tritosomes were subfractionated into the membrane and soluble contents fractions, 73% of the total 5'-nucleotidase activity was found in the membrane fraction and 24% in the soluble contents fraction. Immunoblotting using specific polyclonal antibodies against the rat liver plasma membrane 5'-nucleotidase showed that the mobilities on SDS-polyacrylamide gel electrophoresis of both 5'-nucleotidases in the membrane and contents fractions were identical to that of the enzyme in the plasma membranes (Mr = 72,000). 5'-Nucleotidases in the membrane and contents fractions were sensitive to neuraminidase and converted into a form that was 4 kDa smaller after digestion, as observed in the case of plasma membrane enzyme. 5'-Nucleotidases, both from the membrane and contents fractions, were purified using immunoaffinity chromatography, and the isoelectric points, heat stability, and oligomeric structure of the purified enzymes were compared. Isoelectric focusing and the heat stability test indicated the resemblance of the soluble enzyme to the membrane-bound enzyme. However, the membrane-bound enzyme aggregated in the absence of Triton X-100, whereas the soluble enzyme behaved as a dimer. The topography of 5'-nucleotidase in the tritosomal membranes was studied using antibodies against 5'-nucleotidase and neuraminidase treatment. The inhibition of 5'-nucleotidase were not observed in the intact tritosomal fraction until the tritosomes had been disrupted by osmotic shock. These results show that the active sites and the oligosaccharide chains of 5'-nucleotidase are located on the inside surface of the tritosomal membranes.  相似文献   

16.
The behaviour of alginate immobilized and soluble watermelon (Citrullus vulgaris) urease in water miscible organic solvents like, acetonitrile, dimethylformamide (DMF), ethanol, methanol, and propanol is described. The organic solvents exhibited a concentration dependent inhibitory effect on both the immobilized and the soluble urease in the presence of urea. Pretreatment of soluble enzyme preparations with organic solvents in the absence of substrate for 10 min at 30°C led to rapid loss in the activity, while similar pretreatment of immobilized urease with 50% (v/v) of ethanol, propanol, and acetonitrile was ineffective. Time-dependent inactivation of immobilized urease, both in the presence and in the absence of urea, revealed stability for longer duration of time even at very high concentration of organic solvents. The soluble enzyme, on the other hand, was rapidly inactivated even at fairly lower concentrations. The results suggest that the immobilization of watermelon urease in calcium alginate make it suitable for its application in organic media. the observations are discussed.  相似文献   

17.
The urea-hydrolyzing activity of a T-strain mycoplasma was studied in experiments using whole cells and cell-free enzyme preparations by measuring the release of 14CO2 from [14C]urea. Under the conditions used, the urea concentration optimum is approximately 5.6 X 10(-3) M urea. The activity is soluble and not membrane bound. It is stable at -70 C for several weeks but is more labile at higher temperatures. The pH optimum is between 5.0 and 6.0. The effect of several inhibitors on the activity was tested and revealed similarities, as well as differences, between T-strain mycoplasma urease activity and the urease activity of other organisms and plants.  相似文献   

18.
Microencapsulation technology is a convenient method to alter and regulate cell product formation. In order to probe the metabolic response of different osmo-sensitive Sacchromyces cerevisiae to ACA microcapsule, the hyper-osmo-sensitive type S. cerevisiae (Y02724) and wild type S. cerevisiae (BY4741) were encapsulated into liquid core ACA microcapsules. The behavior of cell growth, glucose consumption, ethanol production and the yields of glycerol and organic acids were determined. Free cell culture was used as control. The enzyme activities of NADP+-glutamate dehydrogenase (GDH), glutamine synthetase (GS) and glutamate synthase (GOGAT) on microencapsulation cells and free cultured cells were measured too. The results demonstrated that the growth of Y02724 in both aerobic and anaerobic conditions was seriously inhibited by ACA microcapsule, while the ethanol and acetatic acid yield of microencapsulation Y02724 in anaerobic condition were significantly higher than that of suspended cultivation. For Y02724, the microencapsulation cultivation significantly increased the GS and GOGAT activities and decreased the GDH activity in comparison with control group. ACA microcapsules did not significantly change the growth behavior and metabolic performance of BY4741, but decreased the GS activity. In conclusion, microcapsules microenvironment significantly changes the metabolism behavior of hyper-osmo-sensitive type S. cerevisiae (Y02724), but nearly had no effect on BY4741.  相似文献   

19.
A cellobiohydrolase (CBH) with a molecular mass of 66 kD was purified from Trichoderma pseudokiningii S-38. Papain digestion produced a 59- to 60-kD core domain with 54% of intact activity on crystalline cellulose and with full activity against soluble substrates. Digestion products also included two small peptides with molecular mass of about 3–4 kD, which are heavily glycosylated and difficult to purify; the mixed peptides displayed the capacity to disorganize the cellulose fiber. The sequencing results indicated that the intact enzyme had a blocked N-terminal and there was a 10-amino-acid sequence in the N-terminal of the core protein of Ser-Gly-Thr-Ala-Val-Thr-Cys-Leu-Ala-Asp. Fluoresence and circular dichroism properties indicated that the core protein has an independent conformation and is conformationally similar to intact enzyme, suggesting that the spectroscopic properties of the intact enzyme come from the core protein.  相似文献   

20.
Standard alginate-polylysine microcapsules containing isolated rat hepatocytes were prepared. These capsules were intraperitoneally implanted into mice, and retrieved after seven days. Histological sections of the recovered microcapsules showed peritoneal lymphocyte and macrophage infiltration. Additional microscopic observations at various stages of the microencapsulation procedure, and histological observations of control non-implanted microcapsules; illustrate that encapsulated cells became embedded within the microcapsular membrane matrix. The microcapsular membrane at these sites appeared thin and often poorly formed. The cellular infiltration into the implanted microcapsules can occur through holes developed in these thin and poorly formed areas found in the microcapsular membrane. Similar observations were seen in microcapsules prepared with 20 x 10(6) and at a lower cell concentration of 10 x 10(6) suspended cells per millilitre of sodium alginate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号