首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acetyl-CoA enol has been proposed as an intermediate in the citrate synthase (CS) reaction with Asp375 acting as a base, removing a proton from the methyl carbon of acetyl-CoA, and His274 acting as an acid, donating a proton to the carbonyl [Karpusas, M., Branchaud, B., & Remington, S.J. (1990) Biochemistry 29, 2213]. CS-oxaloacetate (OAA) complexes with the transition-state analog inhibitor, carboxymethyl-CoA (CMCoA), mimic those with acetyl-CoA enol. Asp375 and His274 interact intimately with the carboxyl of the bound inhibitor. While enzymes in which these residues have been changed to other amino acids have very low catalytic activity, we find that they retain their ability to form complexes with substrates and the transition-state analog inhibitor. In comparison with the value of the chemical shift of the protonated CMCoA carboxyl in acidic aqueous solutions or its value in the wild-type ternary complex, the values in the Asp375 mutants are unusually low. Model studies suggest that these low values result from complete absence of one hydrogen bond partner for the Gly mutant and distortions in the active site hydrogen bond systems for the Glu mutant. The high affinity of Asp375Gly-OAA for CMCoA suggests that the unfavorable proton uptake required to stabilize the CMCoA-OAA ternary complex of the wild-type enzyme [Kurz, L.C., Shah, S., Crane, B.R., Donald, L.J., Duckworth, H.W., & Drysdale, G.R. (1992) Biochemistry (preceding paper in this issue)] is not required by this mutant; the needed proton is most likely provided by His274. This supports the proposed role of His274 as a general acid.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
S W Weidman  G R Drysdale 《Biochemistry》1979,18(17):3822-3827
Electron paramagnetic resonance studies have indicated that nitrosodisulfonate binds to pig heart citrate synthase. Titration of the enzyme with nitrosodisulfonate revealed several binding sites for the probe per subunit with one site (KD approximately 0.1 mM) having a greater affinity than the others. The substrate, oxaloacetate, competed very effectively for one of the nitrosodisulfonate binding sites (KD less than 10(-2) mM) at the same time eliminating the weaker probe binding sites. Citrate and (R)- and (S)-malates also displaced the probe. Failure to resolve low- and high-field shoulder in the high gain--high modulation electron paramagnetic resonance spectra of the enzyme--nitrosodisulfonate system indicated that the bound probe was "weakly immobilized". However, the electron paramagnetic resonance spectrum of the bound probe changed to one typical of a "strongly immobilized" nitroxide upon the addition of a saturating concentration of the substrate acetyl coenzyme A (acetyl-CoA) to the enzyme--nitrosodisulfonate system, indicating the formation of a ternary acetyl-CoA-enzyme-probe complex. Titration of the acetyl-CoA saturated enzyme with the probe indicated one binding site per subunit (KD = 0.37 mM). Thus, nitrosodisulfonate may be considered as a paramagnetic analogue of oxaloacetate in its interaction with citrate synthase. These results are compared with our previous studies with this enzyme, employing a spin-labeled acyl coenzyme A (acyl-CoA) derivative [Weidman, S. W., Drysdale, G. R., & Mildvan, A. S. (1973) Biochemistry 12, 1874--1883].  相似文献   

3.
L C Kurz  G R Drysdale 《Biochemistry》1987,26(9):2623-2627
The infrared spectrum of oxaloacetate bound in the active site of citrate synthase has been measured in the binary complex and in the ternary complex with the acetyl coenzyme A (CoA) enolate analogue carboxymethyl-CoA. The carbonyl stretching frequency of oxaloacetate in binary and ternary complexes is found at 1697 cm-1, a shift of 21 cm-1 to lower frequency relative to that of the free ligand. The line widths of the carbonyl absorption in enzyme complexes differ from that of the free ligand, decreasing from a value of 20 cm-1 for the free ligand to 10 cm-1 in the binary complex and 7 cm-1 in the ternary complex with carboxymethyl-CoA. The integrated absorbance of the carbonyl absorption in these enzyme complexes is significantly increased over that of the free ligand at the same concentration, increasing approximately 2-fold in the binary complex and approximately 3-fold in the ternary complex. These results indicate strong polarization of the carbonyl bond in the enzyme-substrate complexes and suggest that ground-state destabilization is a major catalytic strategy of citrate synthase.  相似文献   

4.
The structures of four isomorphous crystals of ternary complexes of chicken heart citrate synthase with D- or L-malate and acetyl coenzyme A or carboxymethyl coenzyme A have been determined by X-ray crystallography and fully refined at 1.9-A resolution. The structures show that both L-malate and D-malate bind in a very similar way in the presence of acetylCoA and that the enzyme conformation is "closed". Hydrogen bond geometry is suggested to account for the difference in binding constants of the two stereoisomers. The structures suggest that steric hindrance can account for the observation that proton exchange of acetyl coenzyme A with solvent is catalyzed by citrate synthase in the presence of L-malate but not D-malate. The ternary complexes with malate reveal the mode of binding of the substrate acetylCoA in the ground state. The carbonyl oxygen of the acetyl group is hydrogen bonded to a water molecule and to histidine 274, allowing unambiguous identification of the orientation of this group. The structures support the hypothesis that carboxymethyl coenzyme A is a transition-state analogue for the enolization step of the reaction (Bayer et al., 1981) and additionally support proposed mechanisms for the condensation reaction (Karpusas et al., 1990; Alter et al., 1990).  相似文献   

5.
The carbon-13 NMR spectrum of oxaloacetate bound in the active site of citrate synthase has been obtained at 90.56 MHz. In the binary complex with enzyme, the positions of the resonances of oxaloacetate are shifted relative to those of the free ligand as follows: C-1 (carboxylate), -2.5 ppm; C-2 (carbonyl), +4.3 ppm; C-3 (methylene), -0.6 ppm; C-4 (carboxylate), +1.3 ppm. The change observed in the carbonyl chemical shift is successively increased in ternary complexes with the product [coenzyme A (CoA)], a substrate analogue (S-acetonyl-CoA), and an acetyl-CoA enolate analogue (carboxymethyl-CoA), reaching a value of +6.8 ppm from the free carbonyl resonance. Binary complexes are in intermediate to fast exchange on the NMR time scale with free oxaloacetate; ternary complexes are in slow exchange. Line widths of the methylene resonance in the ternary complexes suggest complete immobilization of oxaloacetate in the active site. Analysis of line widths in the binary complex suggests the existence of a dynamic equilibrium between two or more forms of bound oxaloacetate, primarily involving C-4. The changes in chemical shifts of the carbonyl carbon indicate strong polarization of the carbonyl bond or protonation of the carbonyl oxygen. Some of this carbonyl polarization occurs even in the binary complex. Development of positive charge on the carbonyl carbon enhances reactivity toward condensation with the carbanion/enolate of acetyl-CoA in the mechanism which has been postulated for this enzyme. The very large change in the chemical shift of the reacting carbonyl in the presence of an analogue of the enolate of acetyl-CoA supports this interpretation.  相似文献   

6.
7.
The ionization state and hydrogen bonding environment of the transition state analogue (TSA) inhibitor, carboxymethyldethia coenzyme A (CMX), bound to citrate synthase have been investigated using solid state NMR. This enzyme-inhibitor complex has been studied in connection with the postulated contribution of short hydrogen bonds to binding energies and enzyme catalysis: the X-ray crystal structure of this complex revealed an unusually short hydrogen bond between the carboxylate group of the inhibitor and an aspartic acid side chain [Usher et al. (1994) Biochemistry 33, 7753-7759]. To further investigate the nature of this short hydrogen bond, low spinning speed 13C NMR spectra of the CMX-citrate synthase complex were obtained under a variety of sample conditions. Tensor values describing the chemical shift anisotropy of the carboxyl groups of the inhibitor were obtained by simulating MAS spectra (233 +/- 4, 206 +/- 5, and 105 +/- 2 ppm vs TMS). Comparison of these values with our previously reported database and ab initio calculations of carbon shift tensor values clearly indicates that the carboxyl is deprotonated. New data from model compounds suggest that hydrogen bonds in a syn arrangement with respect to the carboxylate group have a pronounced effect upon the shift tensors for the carboxylate, while anti hydrogen bonds, regardless of their length, apparently do not perturb the shift tensors of the carboxyl group. Thus the tensor values for the enzyme-inhibitor complex could be consistent with either a very long syn hydrogen bond or an anti hydrogen bond; the latter would agree very well with previous crystallographic results. Two-dimensional 1H-13C heteronuclear correlation spectra of the enzyme-inhibitor complex were obtained. Strong cross-peaks were observed from the carboxyl carbon to proton(s) with chemical shift(s) of 22 +/- 5 ppm. Both the proton chemical shift and the intensity of the cross-peak indicate a very short hydrogen bond to the carboxyl group of the inhibitor, the C.H distance based upon the cross-peak intensity being 2.0 +/- 0.4 A. This proton resonance is assigned to Hdelta2 of Asp 375, on the basis of comparison with crystal structures and the fact that this cross-peak was absent in the heteronuclear correlation spectrum of the inhibitor-D375G mutant enzyme complex. In summary, our NMR studies support the suggestion that a very short hydrogen bond is formed between the TSA and the Asp carboxylate.  相似文献   

8.
The formation of the ternary complex of lactate dehydrogenase (L-lactate:NAD+ oxidoreductase, EC 1.1.1.27) from pig heart and skeletal muscle with the adduct of pyruvate to NAD", spin-labeled at N6 was studied by ultraviolet spectroscopy and ESR techniques. According to ultraviolet measurements we found identical binding characteristics for the natural coenzyme and its spin-labeled analog. The rate by which the ESR signal of free spin-labeled NAD+ decreased upon addition of pyruvate to the binary complexes was substantially different in the two isozymes. With the heart type an initial drop followed by a further linear decrease, zero order in the enzyme and coenzyme concentration was observed. In case of the skeletal muscle isozyme no immediate reaction and a first order process occurred. The initial reaction can be attributed to a non-covalent enzyme/spin-labeled NAD+/pyruvate complex with a dissociation constant for pyruvate of 11 +/- 1 mM, thus explaining the well-known substrate inhibition in the heart isozyme above 2 mM pyruvate. The further reaction is then determined by the buffer dependent enolization of pyruvate. In the muscle isozyme formation of the covalent adduct is not assisted by prior binding of pyruvate in a non-covalent ternary complex and therefore the rate depends on the binary complex concentration.  相似文献   

9.
Hydroxypyrenetrisulfonate binds to pig mitochondrial malate dehydrogenase (L-malate: NAD+ oxidoreductase, EC 1.1.1.37) in the presence and absence of coenzymes with a stoichiometry of one dye molecule/enzyme subunit. Binding is competitive with substrates and known substrate analogs as well as with squaric acid, a newly detected analog forming a ternary complex with enzyme/NAD+ similar to enzyme/NAD+/sulfite. Displacement of hydroxypyrenetrisulfonate by substrates and analogs was used to determine dissociation constants of binary and ternary complexes. Binary complexes form with dissociation constants of about 10 mM. They may be important for kinetic studies at high substrate concentrations where oxaloacetate inhibition and malate activation have been described.  相似文献   

10.
Dihydrofolate reductase from wild-type Escherichia coli (WT-ECDHFR) and from a mutant enzyme in which aspartate 27 is replaced by asparagine have been compared with respect to the binding of the inhibitor methotrexate (MTX). Although the Asp27----Asn substitution causes only small changes in the association rate constants (kon) for the formation of binary and ternary (with NADPH) complexes, the dissociation rate constants for these complexes (koff) are increased for the mutant enzyme by factors of about 5- and 100-fold, respectively, at pH 7.65. In binding experiments, the initial MTX binary and ternary complexes of the mutant enzyme were found to undergo relatively rapid isomerization (kobs approximately 17 and 145 s-1, respectively). Although such rapid isomerization of complexes of WT-ECDHFR could not be detected in binding experiments, evidence of a slow isomerization (k = 4 x 10(-3) s-1) of the ternary WT-ECDHFR.MTX.NADPH complex was obtained from progress of inhibition experiments. This slow isomerization increases binding of MTX to WT-ECDHFR only 2.4-fold (much less than previously estimated). From presently available data, we could not determine the contribution of the rapid isomerization of complexes to the binding of MTX to the mutant enzyme. The Asp27----Asn substitution increases the overall dissociation constant (KD) 9-fold for the binary complex and 85-fold for the ternary complex. When it is also taken into account that a proton ultimately derived from the solvent must be added to MTX bound to the WT enzyme, but not to MTX bound to the mutant enzyme, these increases in KD for the mutant enzyme correspond to decreases in binding energy for MTX of 3.9 and 5.2 kcal/mol at pH 7.65 for the binary and ternary complexes, respectively.  相似文献   

11.
Malaria is a leading cause of worldwide mortality from infectious disease. Plasmodium falciparum proliferation in human erythrocytes requires purine salvage by hypoxanthine-guanine-xanthine phosphoribosyltransferase (HGXPRTase). The enzyme is a target for the development of novel antimalarials. Design and synthesis of transition-state analogue inhibitors permitted cocrystallization with the malarial enzyme and refinement of the complex to 2.0 A resolution. Catalytic site contacts in the malarial enzyme are similar to those of human hypoxanthine-guanine phosphoribosyltransferase (HGPRTase) despite distinct substrate specificity. The crystal structure of malarial HGXPRTase with bound inhibitor, pyrophosphate, and two Mg(2+) ions reveals features unique to the transition-state analogue complex. Substrate-assisted catalysis occurs by ribooxocarbenium stabilization from the O5' lone pair and a pyrophosphate oxygen. A dissociative reaction coordinate path is implicated in which the primary reaction coordinate motion is the ribosyl C1' in motion between relatively immobile purine base and (Mg)(2)-pyrophosphate. Several short hydrogen bonds form in the complex of the enzyme and inhibitor. The proton NMR spectrum of the transition-state analogue complex of malarial HGXPRTase contains two downfield signals at 14.3 and 15.3 ppm. Despite the structural similarity to the human enzyme, the NMR spectra of the complexes reveal differences in hydrogen bonding between the transition-state analogue complexes of the human and malarial HG(X)PRTases. The X-ray crystal structures and NMR spectra reveal chemical and structural features that suggest a strategy for the design of malaria-specific transition-state inhibitors.  相似文献   

12.
J Ellis  C R Bagshaw  W V Shaw 《Biochemistry》1991,30(44):10806-10813
Chloramphenicol acetyltransferase (CAT) catalyzes the acetyl-CoA-dependent acetylation of chloramphenicol by a ternary complex mechanism with a rapid equilibrium and essentially random order of addition of substrates. Such a kinetic mechanism for a two-substrate reaction provides an opportunity to compare the affinity of enzyme for each substrate in the binary complexes (1/Kd) with corresponding values (1/Km) for affinities in the ternary complex where any effect of the other substrate should be manifest. The pursuit of such information for CAT involved the use of four independent methods to determine the dissociation constant (Kd) for chloramphenicol in the binary complex, techniques which included stopped-flow measurements of on and off rates, and a novel fluorometric titration method. The binary complex dissociation constant (Kd) for acetyl-CoA was measured by fluorescence enhancement and steady-state kinetic analysis. The ternary complex dissociation constant (Km) for each substrate (in the presence of the other) was determined by kinetic and fluorometric methods, using CoA or ethyl-CoA to form nonproductive ternary complexes. The results demonstrate an unequivocal decrease in affinity of CAT for each of its substrates on progression from the binary to the ternary complex, a phenomenon most economically described as negative cooperativity. The binary complex dissociation constants (Kd) for chloramphenicol and acetyl-CoA are 4 microM and 30 microM whereas the corresponding dissociation constants in the ternary complex (Km) are 12 microM and 90 microM, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Hydroxymethylglutaryl-CoA synthase-catalyzed condensation of acetyl-CoA with acetoacetyl-CoA requires enolization/carbanion formation from the acetyl C-2 methyl group prior to formation of a new carbon-carbon bond. Acetyldithio-CoA, a readily enolizable analog of acetyl-CoA, was an effective competitive inhibitor of avian hydroxymethylglutaryl-CoA synthase (Ki = 28 microm). In the absence of cosubstrate, enzyme catalyzed the enolization/proton exchange from the C-2 methyl group of acetyldithio-CoA. Mutant enzymes that exhibited impaired formation of the covalent acetyl-S-enzyme reaction intermediate exhibited diminished (D159A and D203A) or undetectable (C129S) rates of enolization of acetyldithio-CoA. The results suggest that covalent thioacetylation of protein, which has not been detected previously for other enzymes that enolize this analog, occurs with hydroxymethylglutaryl-CoA synthase. Enzyme catalyzed the transfer of the thioacetyl group of this analog to 3'-dephospho-CoA suggesting the intermediacy of a covalent thioacetyl-S-enzyme species, which appears to be important for proton abstraction from C-2 of the thioacetyl group. Avian enzyme glutamate 95 is crucial to substrate condensation to form a new carboncarbon bond. Mutations of this invariant residue (avian enzyme E95A and E95Q; Staphylococcus aureus enzyme E79Q) correlated with diminished ability to catalyze enolization of acetyldithio-CoA. Enolization by E95Q was not stimulated in the presence of acetoacetyl-CoA. These observations suggest either a direct (proton abstraction) or indirect (solvent polarization) role for this active site glutamate.  相似文献   

14.
1. The binding of oxamate to pig heart and pig muscle isoenzymes of lactate dehydrogenase in the presence of NADH was studied by fluorescence titration. The dissociation constant of oxamate from the heart enzyme complex is 3mum and from the muscle isoenzyme 25mum at pH5. These values quantitatively increase with pH as predicted if oxamate can bind only to the enzyme-NADH complex if a group with pK6.9 is protonated. There are four non-interacting oxamate-binding sites per tetramer. 2. o-Nitrophenylpyruvate is a poor substrate for both isoenzymes but has a reasonable affinity to the heart isoenzyme. Initially, it forms an enzyme-NADH-substrate complex, which can be detected either by protein-fluorescence quenching or by NADH-fluorescence quenching. The pH-dependence of the dissociation constant of nitrophenylpyruvate also shows that this ternary complex can only form if a group with pK6.8 is protonated. Taken with the results of chemical-modification experiments, these results allow the pK of 6.8 to be assigned to a system probably involving the imidazole side chain of histidine-195. Formation of a ternary complex from a binary one at pH8 is predicted to result in a proton being taken up from solution. 3. Isotope-effect studies with NADH and its deuterium analogue show that the rapidly formed ternary complex with o-nitrophenylpyruvate slowly isomerizes to give an active ternary complex, which then rapidly decomposes to NAD(+). The isomerization is pH-independent, and it is suggested that histidine-195 is still protonated in the activated ternary complex, which is present before hydride transfer. 4. All four subunits of the enzyme are kinetically equivalent with respect to the oxidation of bound NADH by o-nitrophenylpyruvate. 5. A partial mechanism for the enzyme is described which emphasizes the isomerizations and ionizations involved in forming the reduced ternary complex at pH6 and 8.  相似文献   

15.
In vitro mutagenesis techniques have been used to investigate two structure-function questions relating to the allosteric citrate synthase of Escherichia coli. The first question concerns the binding site of alpha-keto-glutarate, which is a structural analogue of the substrate oxaloacetate and yet has been suggested to be an allosteric inhibitor of the enzyme. Using oligonucleotide-directed mutagenesis of the cloned E. coli citrate synthase gene, we prepared missense mutants, designated CS226H----Q and CS229H----Q, in which histidine residues at positions 226 and 229, respectively, were replaced by glutamine. In the homologous pig heart citrate synthase it is known (Wiegand, G., and Remington, S. J. (1986) Annu. Rev. Biophys. Biophys. Chem. 15, 97-117) that the equivalent of His-229 helps to bind oxaloacetate, while the equivalent of His-226 is nearby. Kinetic and ligand binding measurements showed that CS226H----Q had a reduced affinity for oxaloacetate and alpha-ketoglutarate, while CS229H----Q bound oxaloacetate even less effectively, and was not inhibited by alpha-ketoglutarate at all under our conditions. This parallel loss of binding affinities for oxaloacetate and alpha-ketoglutarate, in two mutants altered in residues at the active site of E. coli citrate synthase, strongly suggests that inhibition of this enzyme by alpha-ketoglutarate is not allosteric but occurs by competitive inhibition at the active site. The second question investigated was whether the known inhibition by acetyl-CoA of binding of NADH, an allosteric inhibitor of E. coli citrate synthase, occurs heterotropically, as an indirect result of acetyl-CoA binding at the active site, or directly, by competition at the allosteric NADH binding site. Using existing restriction sites in the cloned E. coli citrate synthase gene, we prepared a deletion mutant which lacked 24 amino acids near what is predicted to the acetyl-CoA-binding portion of the active site. The mutant protein was inactive, and acetyl-CoA did not bind to the active site but still inhibited NADH binding. Thus acetyl-CoA can interact with both the allosteric and the active sites of this enzyme.  相似文献   

16.
The fluorescence polarization of 8-hydroxypyrene (1,3,6)trisulfonate (HPT) increases upon interaction with pig heart citrate synthase. Titration of HPT with increasing concentrations of citrate synthase exhibits a hyperbolic saturation behavior, from which the dissociation constant of the enzyme-HPT complex (3.64 +/- 0.3 microM) was determined. The enzyme-HPT interaction is competitively inhibited by oxaloacetate (but not affected by acetyl CoA) with a Ki of 4.3 +/- 1.8 microM. This value is similar to the dissociation constant (Kd = 4.5 +/- 1.6 microM) for the enzyme-oxalocetate complex (determined in the absence of any effector ligand), as well as to the Km for oxaloacetate (3.9 +/- 0.7 microM) in a steady-state citrate synthase catalyzed reaction at a saturating concentration of acetyl CoA. However, the dissociation constant for the citrate synthase-oxaloacetate complex determined by the urea denaturation method is at least 25-fold lower than those determined by the other methods. This suggests an effector role of urea in strengthening the enzyme-oxaloacetate interaction. At low nondenaturing concentrations, urea inhibits the citrate synthase catalyzed reaction in an uncompetitive manner with respect to oxaloacetate, i.e., the Km for oxaloacetate decreases with an increase in urea concentration. This further suggests that urea stabilizes the interaction between citrate synthase and oxaloacetate. The effect of urea is specific for the substrate oxaloacetate, and not for the substrate analogue, HPT, although both these ligands bind citrate synthase with equal affinities, and protect the enzyme against thermal denaturation with equal magnitudes. The results presented herein are discussed in the light of known conformational states of the enzyme.  相似文献   

17.
Evidence is presented that a number of derivatives of adenylic acid may bind to the allosteric NADH binding site of Escherichia coli citrate synthase. This evidence includes the facts that all the adenylates inhibit NADH binding in a competitive manner and that those which have been tested protect an enzyme sulfhydryl group from reaction with 5,5'-dithiobis-(2-nitrobenzoic acid) in the same way that NADH does. However, whereas NADH is a potent inhibitor of citrate synthase, most of the adenylates are activators. The best activator, ADP-ribose, increases the affinity of the enzyme for the substrate, acetyl-CoA, and saturates the enzyme in a sigmoid manner. A fluorescence technique, involving the displacement of 8-anilino-1-naphthalenesulfonate from its complex with citrate synthase, is used to obtain saturation curves for several nucleotides under nonassay conditions. It is found that acetyl-coenzyme A, coenzyme A, and ADP-ribose all bind to the enzyme cooperatively, and that the binding of each becomes tighter in the presence of KCl, the activator, and oxaloacetic acid (OAA), the second substrate. Another inhibitor, alpha-ketoglutarate, can complete with OAA in the absence of KCl but not in its presence. The nature of the allosteric site of citrate synthase, and the modes of action of several activators and inhibitors, are discussed in the light of this evidence.  相似文献   

18.
The interactions of mandelate racemase with divalent metal ion, substrate, and competitive inhibitors were investigated. The enzyme was found by electron paramagnetic resonance (EPR) to bind 0.9 Mn2+ ion per subunit with a dissociation constant of 8 muM, in agreement with its kinetically determined activator constant. Also, six additional Mn2+ ions were found to bind to the enzyme, much more weakly, with a dissociation constant of 1.5 mM. Binding to the enzyme at the tight site enhances the effect of Mn2+ on the longitudinal relaxation rate (1/T1p) of water protons by a factor of 11.9 at 24.3 MHz. From the frequency dependence of 1/T1p, it was determined that there are similar to 3 water ligands on enzyme-bound Mn2+ which exchange at a rate larger than or equal to 10-7 sec-1. The correlation time for enzyme-bound Mn2+-water interaction is frequency-dependent, indicating it to be dominated by the electron spin relaxation time of Mn2+. Formation of the ternary enzyme-Mn2+-mandelate complex decreases the number of fast exchanging water ligands by similar to 1, but does not affect tau-c, suggesting the displacement or occlusion of a water ligand. The competitive inhibitors D,L-alpha-phenylglycerate and salicylate produce little or no change in the enzyme-Mn2+-H2O interaction, but ternary complexes are detected indirectly by changes in the dissociation constant of the enzyme-Mn2+ complex and by mutual competition experiments. In all cases the dissociation constants of substrates and competitive inhibitors from ternary complexes determined by magnetic resonance titrations agree with K-M and K-i values determined kinetically and therefore reflect kinetically active complexes. From the paramagnetic effects of Mn2+ on 1/T1 and 1/T2 of the 13C-enriched carbons of 1-[13C]-D,L-mandelate and 2-[13C]-D,L-mandelate, Mn2+ to carboxylate carbon and Mn2+ to carbinol carbon distances of 2.93 plus or minus 0.04 and 2.71 plus or minus 0.04 A, respectively, were calculated, indicating bidentate chelation in the binary Mn2+-mandelate complex. In the active ternary complex of enzyme, Mn2+, and D,L-mandelate, these distances increase to 5.5 plus or minus 0.2 and 7.2 plus or minus 0.2 A, respectively, indicating the presence of at least 98.9% of a second sphere complex in which Mn2+, and C1 and C2 carbon atoms are in a linear array. The water relaxation data suggest that a water ligand is immobilized between the enzyme-bound Mn2+ and the carboxylate of the bound substrate. This intervening water ligand may polarize or protonate the carboxyl group. From 1/T2p the rate of dissociation of the substrate from this ternary complex (larger than or equal to 5.6 times 10-4 sec-1) is at least 52 times greater than the maximal turnover number of the enzyme (1070 sec-1), indicating that the complex detected by nuclear magnetic resonance (NMR) is kinetically competent to participate in catalysis. Relationships among the microscopic rate constants are considered.  相似文献   

19.
Several binary and ternary inhibitor and 'dead end' complexes of pig heart lactate dehydrogenase (L-lactate:NAD+ oxidoreductase, EC 1.1.1.27) were studied by saturation transfer ESR spectroscopy by means of an active NAD analog, spin-labeled at N6. The mobility of the spin-label depends on the nature of small molecules bound at the remote catalytic end of the coenzyme. The spin-label was found to serve as a reporter group monitoring the conformation of the peptide loop that is folded down over the active cleft in crystals of ternary complexes. The data suggest a fluctuation of the loop between open and closed forms in solution. The structure of the inhibitor molecules has been correlated with their ability to stabilize a more closed conformation of the loop.  相似文献   

20.
Deviations from Michealis-Menten kinetics in the pig-heart citrate synthase (citrate-oxaloacetate-lyase(pro-3S-CH2-COO-leads to acetyl-CoA), EC 4.1.3.7) system have been characterized and analyzed in view of the kinetic theory described in the preceding paper. The enzymic condensation reaction between acetyl-CoA and oxaloacetate is subject to substrate-inhibition by acetyl-CoA. This can be attributed to the formation of a productive enzyme-acetyl-CoA complex with a dissociation constant of 110 uM. The binding of acetyl-CoA to the enzyme decreases the on-velocity constant for oxaloacetate-binding from 4000 min-1- micrometer-1 to 1700 min-1-micrometer-1. The affinity of citrate synthase for oxaloacetate increase at least 20-fold on the binding of acetyl-CoA. The latter cooperativity effect can be attributed to a more than 45-fold decrease of the off-velocity constant for oxaloacetate-binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号