首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Extracellular ATPelevates cytosolic Ca2+ by activating P2X and P2Ypurinoceptors and voltage-sensitive Ca2+ channels (VCCCs)in PC-12 cells, thereby facilitating catecholamine secretion. Weinvestigated the mechanism by which ATP activates VSCCs.2-Methylthioadenosine 5'-triphosphate (2-MeS-ATP) and UTP were used aspreferential activators of P2X and P2Y, respectively. Nifedipineinhibited the ATP- and 2-MeS-ATP-evoked cytosolic Ca2+concentration increase and [3H]norepinephrine secretion,but not the UTP-evoked responses. Studies with Ca2+ channelblockers indicated that L-type VSCCs were activated after the P2Xactivation. Mn2+ entry profiles and studies withthapsigargin revealed that Ca2+ entry, rather thanCa2+ release, was sensitive to nifedipine. AlthoughP2X2 and P2X4 receptor mRNAs were detected,studies with pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acidrevealed that P2X2 was mainly coupled to the L-type VSCCs. The inhibitory effect of nifedipine did not occur in the absence ofextracellular Na+, suggesting that Na+ influx,which induces depolarization, was essential for theP2X2-mediated activation of VSCCs. We report thatdepolarization induced by Na+ entry through theP2X2 purinoceptors effectively activates L-type VSCCs inPC-12 cells.

  相似文献   

2.
Abstract: We have previously demonstrated that neuropeptide Y (NPY) inhibits depolarization-stimulated catecholamine synthesis in rat pheochromocytoma (PC12) cells differentiated to a sympathetic neuronal phenotype with nerve growth factor (NGF). The present study uses multiple selective Ca2+ channel and protein kinase agonists and antagonists to elucidate the mechanisms by which NPY modulates catecholamine synthesis as determined by in situ measurement of DOPA production in the presence of the decarboxylase inhibitor m-hydroxybenzylhydrazine (NSD-1015). The L-type Ca2+ channel blocker nifedipine inhibited the depolarization-induced stimulation of DOPA production by ~90% and attenuated the inhibitory effect of NPY. In contrast, the N-type Ca2+ channel blocker ω-conotoxin GVIA inhibited neither the stimulation of DOPA production nor the effect of NPY. Antagonism of Ca2+/calmodulin-dependent protein kinase (CaM kinase) greatly inhibited the stimulation of DOPA production by depolarization and prevented the inhibitory effect of NPY, whereas alterations in the cyclic AMP-dependent protein kinase pathway modulated DOPA production but did not prevent the effect of NPY. Stimulation of Ca2+/phospholipid-dependent protein kinase (PKC) with phorbol 12-myristate 13-acetate (PMA) did not affect the basal rate of DOPA production in NGF-differentiated PC12 cells but did produce a concentration-dependent inhibition of depolarization-stimulated DOPA production. In addition, NPY did not produce further inhibition of DOPA production in the presence of PMA, and the inhibition by both PMA and NPY was attenuated by the specific PKC inhibitor chelerythrine. These results indicate that NPY inhibits Ca2+ influx through L-type voltage-gated Ca2+ channels, possibly through a PKC-mediated pathway, resulting in attenuation of the activation of CaM kinase and inhibition of depolarization-stimulated catecholamine synthesis.  相似文献   

3.
Published data suggest that the neuropeptide calcitonin gene-related peptide (CGRP) can stimulate osteoblastic bone formation; however, interest has focused on activation of cAMP-dependent signaling pathways in osteogenic cells without full consideration of the importance of cAMP-independent signaling. We have now examined the effects of CGRP on intracellular Ca2+ concentration ([Ca2+]int) and membrane potential (Em) in preosteoblastic human MG-63 cells by single-cell fluorescent confocal analysis using fluo 4-AM-fura red-AM and bis(1,3-dibarbituric acid)-trimethine oxanol [DiBAC4(3)] bis-oxonol assays. CGRP produced a two-stage change in [Ca2+]int: a rapid transient peak and a secondary sustained increase. Both responses were dose dependent with an EC50 of 0.30 nM, and the maximal effect (initially 3-fold over basal levels) was observed at 20 nM. The initial phase was sensitive to inhibition of Ca2+ mobilization with thapsigargin, whereas the secondary phase was eliminated only by blocking transmembrane Ca2+ influx with verapamil or inhibiting cAMP-dependent signaling with the Rp isomer of adenosine 3',5'-cyclic monophosphorothioate (Rp-cAMPS). These data suggest that CGRP initially stimulates Ca2+ discharge from intracellular stores by a cAMP-independent mechanism and subsequently stimulates Ca2+ influx through L-type voltage-dependent Ca2+ channels by a cAMP-dependent mechanism. In addition, CGRP dose-dependently polarized cellular Em, with maximal effect at 20 nM and an EC50 of 0.30 nM. This effect was attenuated with charybdotoxin (–20%) or glyburide (glibenclamide; –80%), suggesting that Em hyperpolarization is induced by both Ca2+-activated and ATP-sensitive K+ channels. Thus CGRP signals strongly by both cAMP-dependent and cAMP-independent signaling pathways in preosteoblastic human MG-63 cells. osteoblastic cells; calcium; membrane potential; potassium channels; adenosine 3',5'-cyclic monophosphate  相似文献   

4.
We previously demonstrated the expression of bitter taste receptors of the type 2 family (T2R) and the -subunits of the G protein gustducin (Ggust) in the rodent gastrointestinal (GI) tract and in GI endocrine cells. In this study, we characterized mechanisms of Ca2+ fluxes induced by two distinct T2R ligands: denatonium benzoate (DB) and phenylthiocarbamide (PTC), in mouse enteroendocrine cell line STC-1. Both DB and PTC induced a marked increase in intracellular [Ca2+] ([Ca2+]i) in a dose- and time-dependent manner. Chelating extracellular Ca2+ with EGTA blocked the increase in [Ca2+]i induced by either DB or PTC but, in contrast, did not prevent the effect induced by bombesin. Thapsigargin blocked the transient increase in [Ca2+]i induced by bombesin, but did not attenuate the [Ca2+]i increase elicited by DB or PTC. These results indicate that Ca2+ influx mediates the increase in [Ca2+]i induced by DB and PTC in STC-1 cells. Preincubation with the L-type voltage-sensitive Ca2+ channel (L-type VSCC) blockers nitrendipine or diltiazem for 30 min inhibited the increase in [Ca2+]i elicited by DB or PTC. Furthermore, exposure to the L-type VSCCs opener BAY K 8644 potentiated the increase in [Ca2+]i induced by DB and PTC. Stimulation with DB also induced a marked increase in the release of cholecystokinin from STC-1 cells, an effect also abrogated by prior exposure to EGTA or L-type VSCC blockers. Collectively, our results demonstrate that bitter tastants increase [Ca2+]i and cholecystokinin release through Ca2+ influx mediated by the opening of L-type VSCCs in enteroendocrine STC-1 cells. type 2 family taste receptors; gastrointestinal peptides; phospholipase C 2; Ca2+ fluxes; enteroendocrine cells; cholecystokinin secretion  相似文献   

5.
Spontaneous transient outward currents(STOCs) were recorded from smooth muscle cells of theguinea pig taenia coli using the whole cell patch-clamp technique.STOCs were resolved at potentials positive to 50 mV. Treatingcells with caffeine (1 mM) caused a burst of outward currentsfollowed by inhibition of STOCs. Replacing extracellularCa2+ with equimolarMn2+ caused STOCs to "rundown." Iberiotoxin (200 nM) or charybdotoxin (ChTX; 200 nM)inhibited large-amplitude STOCs, but small-amplitude "mini-STOCs"remained in the presence of these drugs. Mini-STOCs were reduced byapamin (500 nM), an inhibitor of small-conductance Ca2+-activatedK+ channels (SK channels).Application of ATP or 2-methylthioadenosine 5'-triphosphate(2-MeS-ATP) increased the frequency of STOCs. The effects of 2-MeS-ATPpersisted in the presence of charybdotoxin but were blocked bycombination of ChTX (200 nM) and apamin (500 nM). 2-MeS-ATP did notincrease STOCs in the presence of pyridoxal phosphate6-azophenyl-2',4'-disulfonic acid, aP2 receptor blocker. Similarly,pretreatment of cells with U-73122 (1 µM), an inhibitor ofphospholipase C (PLC), abolished the effects of 2-MeS-ATP. XestosponginC, an inositol 1,4,5-trisphosphate(IP3) receptor blocker,attenuated STOCs, but these events were not affected by ryanodine. Thedata suggest that purinergic activation through P2Y receptors results in localizedCa2+ release via PLC- andIP3-dependent mechanisms. Releaseof Ca2+ is coupled to STOCs, whichare composed of currents mediated by large-conductanceCa2+-activatedK+ channels and SK channels. Thelatter are thought to mediate hyperpolarization and relaxationresponses of gastrointestinal muscles to inhibitory purinergic stimulation.

  相似文献   

6.
Increased extracellular osmolarity ([Os]e) suppresses stimulated hormone secretion from anterior pituitary cells. Ca2+ influx may mediate this effect. We show that increase in [Os]e (by 18–125%) differentially suppresses L-type and T-type Ca2+ channel currents (IL and IT, respectively); IL was more sensitive than IT. Hyperosmotic suppression of IL depended on the magnitude of increase in [Os]e and was correlated with the percent decrease in pituitary cell volume, suggesting that pituitary cell shrinkage can modulate L-type currents. The hyperosmotic suppression of IL and IT persisted after incubation of pituitary cells either with the actin-disrupter cytochalasin D or with the actin stabilizer phalloidin, suggesting that the actin cytoskeleton is not involved in this modulation. The hyperosmotic suppression of Ca2+ influx was not correlated with changes in reversal potential, membrane capacitance, and access resistance. Together, these results suggest that the hyperosmotic suppression of Ca2+ influx involves Ca2+ channel proteins. We therefore recorded the activity of L-type Ca2+ channels from cell-attached patches while exposing the cell outside the patch pipette to hyperosmotic media. Increased [Os]e reduced the activity of Ca2+ channels but did not change single-channel conductance. This hyperosmotic suppression of Ca2+ currents may therefore contribute to the previously reported hyperosmotic suppression of hormone secretion. L-type Ca2+ channels; osmosensitivity; mechanosensitivity; osmolarity; hyperosmolarity  相似文献   

7.
The involvement of cAMP- andCa2+-mediated pathways in theactivation of tyrosine hydroxylase (TH) gene expression by nicotine wasexamined in PC-12 cells. ExtracellularCa2+ and elevations inintracellular Ca2+ concentration([Ca2+]i)were required for nicotine to increase TH mRNA. The nicotine-elicited rapid rise in[Ca2+]iwas inhibited by blockers of either L-type or N-type, and to a lesserextent P/Q-, but not T-type, voltage-gatedCa2+ channels. With continualnicotine treatment,[Ca2+]ireturned to basal levels within 3-4 min. After a lag of~5-10 min, there was a smaller elevation in[Ca2+]ithat persisted for 6 h and displayed different responsiveness toCa2+ channel blockers. This secondphase of elevated[Ca2+]iwas blocked by an inhibitor of store-operatedCa2+ channels, consistent with theobserved generation of inositol trisphosphate.1,2-Bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-AM (BAPTA-AM), when added before or 2 h after nicotine,prevented elevation of TH mRNA. Nicotine treatment significantly raised cAMP levels. Addition of the adenylyl cyclase inhibitor2',5'-dideoxyadenosine (DDA) prevented thenicotine-elicited phosphorylation of cAMP response element bindingprotein. DDA also blocked the elevation of TH mRNA only when addedafter the initial transient rise in [Ca2+]iand not after 1 h. This study reveals that several temporal phases areinvolved in the induction of TH gene expression by nicotine, each ofthem with differing requirements forCa2+ and cAMP.

  相似文献   

8.
We have previously shown that a pretreatment with phorbol12-myristate 13-acetate (PMA), an activator of protein kinase C (PKC),reduced deoxygenation-induced K+loss and Ca2+ uptake and preventedcell dehydration in sickle anemia red blood cells (SS cells) (H. Fathallah, E. Coezy, R.-S. De Neef, M.-D. Hardy-Dessources, and F. Giraud. Blood 86: 1999-2007,1995). The present study explores the detailed mechanism of thisPMA-induced inhibition. The main findings are, first, the detection ofPKC and PKC in normal red blood cells and the demonstration that both isoforms are expressed at higher levels in SS cells. The -isoform only is translocated to the membrane and activated by PMAand by elevation of cytosolicCa2+. Second, PMA is demonstratedto activate Ca2+ efflux indeoxygenated SS cells by a direct stimulation of the Ca2+ pump. PMA, moreover, inhibitsdeoxygenation-induced, charybdotoxin-sensitive K+ efflux in SS cells. Thisinhibition is partly indirect and explained by the reduceddeoxygenation-induced rise in cytosolicCa2+ resulting fromCa2+ pump stimulation. However, asignificant inhibition of theCa2+-activatedK+ channels(KCa channels) by PMA can also bedemonstrated when the channels are activated byCa2+ plus ionophore, underconditions in which the Ca2+ pumpis operating near its maximal extrusion rate, but swamped byCa2+ plus ionophore. The data thussuggest a PKC-mediated phosphorylation both of theCa2+ pump and of theKCa channel or an auxiliaryprotein.

  相似文献   

9.
It has been suggested that L-type Ca2+ channels play an important role in cell swelling-induced vasoconstriction. However, there is no direct evidence that Ca2+ channels in vascular smooth muscle are modulated by cell swelling. We tested the hypothesis that L-type Ca2+ channels in rabbit portal vein myocytes are modulated by hypotonic cell swelling via protein kinase activation. Ba2+ currents (IBa) through L-type Ca2+ channels were recorded in smooth muscle cells freshly isolated from rabbit portal vein with the conventional whole cell patch-clamp technique. Superfusion of cells with hypotonic solution reversibly enhanced Ca2+ channel activity but did not alter the voltage-dependent characteristics of Ca2+ channels. Bath application of selective inhibitors of protein kinase C (PKC), Ro-31–8425 or Go-6983, prevented IBa enhancement by hypotonic swelling, whereas the specific protein kinase A (PKA) inhibitor KT-5720 had no effect. Bath application of phorbol 12,13-dibutyrate (PDBu) significantly increased IBa under isotonic conditions and prevented current stimulation by hypotonic swelling. However, PDBu did not have any effect on IBa when cells were first exposed to hypotonic solution. Furthermore, downregulation of endogenous PKC by overnight treatment of cells with PDBu prevented current enhancement by hypotonic swelling. These data suggest that hypotonic cell swelling can enhance Ca2+ channel activity in rabbit portal vein smooth muscle cells through activation of PKC. cell swelling; protein kinases; calcium current  相似文献   

10.
The goal of the present study was to testthe hypothesis that local Ca2+ release events(Ca2+ sparks) deliver high local Ca2+concentration to activate nearby Ca2+-sensitiveK+ (BK) channels in the cell membrane of arterial smoothmuscle cells. Ca2+ sparks and BK channels were examined inisolated myocytes from rat cerebral arteries with laser scanningconfocal microscopy and patch-clamp techniques. BK channels had anapparent dissociation constant for Ca2+ of 19 µM and aHill coefficient of 2.9 at 40 mV. At near-physiological intracellularCa2+ concentration ([Ca2+]i; 100 nM) and membrane potential (40 mV), the open probability of a singleBK channel was low (1.2 × 106). A Ca2+spark increased BK channel activity to 18. Assuming that 1-100% of the BK channels are activated by a single Ca2+ spark, BKchannel activity increases 6 × 105-fold to 6 × 103-fold, which corresponds to ~30 µM to 4 µM sparkCa2+ concentration.1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acidacetoxymethyl ester caused the disappearance of all Ca2+sparks while leaving the transient BK currents unchanged. Our resultssupport the idea that Ca2+ spark sites are in closeproximity to the BK channels and that local[Ca2+]i reaches micromolar levels to activateBK channels.

  相似文献   

11.
Activation of Gqprotein-coupled receptors usually causes a biphasic increase inintracellular calcium concentration ([Ca2+]i)that is crucial for secretion in nonexcitable cells. In gastric enterochromaffin-like (ECL) cells, stimulation with gastrin leads to aprompt biphasic calcium response followed by histamine secretion. Thisstudy investigates the underlying signaling events in this neuroendocrine cell type. In ECL cells, RT-PCR suggested the presence of inositol 1,4,5-trisphosphate receptor (IP3R) subtypes1-3. The IP3R antagonist 2-aminoethoxydiphenyl borateabolished both gastrin-induced elevation of[Ca2+]i and histamine release. Thapsigarginincreased [Ca2+]i, however, without inducinghistamine secretion. In thapsigargin-pretreated cells, gastrinincreased [Ca2+]i through calcium influxacross the plasma membrane. Both nimodipine and SKF-96365 inhibitedgastrin-induced histamine release. The protein kinase C (PKC) activatorphorbol 12-myristate 13-acetate induced histamine secretion, an effectthat was prevented by nimodipine. In summary, gastrin-stimulatedhistamine release depends on IP3R activation andplasmalemmal calcium entry. Gastrin-induced calcium influx wasmediated by dihydropyridine-sensitive calcium channels that appear tobe L-type channels activated through a pathway involving activation of PKC.

  相似文献   

12.
Prakash, Y. S., H. F. M. van der Heijden, M. S. Kannan, andG. C. Sieck. Effects of salbutamol on intracellular calcium oscillations in porcine airway smooth muscle. J. Appl.Physiol. 82(6): 1836-1843, 1997.Relaxation ofairway smooth muscle (ASM) by -adrenoceptor agonists involvesreduction of intracellular Ca2+concentration([Ca2+]i).In porcine ASM cells, acetylcholine induces[Ca2+]ioscillations that display frequency modulation by agonist concentration and basal[Ca2+]i.We used real-time confocal microscopy to examine the effect ofsalbutamol (1 nM to 1 µM), a2-adrenoceptor agonist, on[Ca2+]ioscillations in freshly dissociated porcine ASM cells. Salbutamol decreased the frequency of[Ca2+]ioscillations in a concentration-dependent fashion, completely inhibiting the oscillations at 1 µM. These effects were mimicked by acell-permeant analog of adenosine 3,5-cyclicmonophosphate. The inhibitory effect of salbutamol was partiallyreversed by BAY K 8644. Salbutamol reduced[Ca2+]ieven when sarcoplasmic reticulum (SR)Ca2+ reuptake andCa2+ influx were blocked.Lanthanum blockade of Ca2+ effluxattenuated the inhibitory effect of salbutamol on[Ca2+]i.The[Ca2+]iresponse to caffeine was unaffected by salbutamol. On the basis ofthese results, we conclude that2-adrenoceptor agonists have little effect on SR Ca2+ releasein ASM cells but reduce[Ca2+]iby inhibiting Ca2+ influx throughvoltage-gated channels and by enhancingCa2+ efflux.

  相似文献   

13.
We investigatedthe role of intracellular calcium concentration([Ca2+]i) in endothelin-1 (ET-1) production,the effects of potential vasospastic agents on[Ca2+]i, and the presence of L-typevoltage-dependent Ca2+ channels in cerebral microvascularendothelial cells. Primary cultures of endothelial cells isolated frompiglet cerebral microvessels were used. Confluent cells were exposed toeither the thromboxane receptor agonist U-46619 (1 µM),5-hydroxytryptamine (5-HT; 0.1 mM), or lysophosphatidic acid (LPA; 1 µM) alone or after pretreatment with the Ca2+-chelatingagent EDTA (100 mM), the L-type Ca2+ channel blockerverapamil (10 µM), or the antagonist of receptor-operated Ca2+ channel SKF-96365 HCl (10 µM) for 15 min. ET-1production increased from 1.2 (control) to 8.2 (U-46619), 4.9 (5-HT),or 3.9 (LPA) fmol/µg protein, respectively. Such elevated ET-1biosynthesis was attenuated by verapamil, EDTA, or SKF-96365 HCl. Toinvestigate the presence of L-type voltage-dependent Ca2+channels in endothelial cells, the [Ca2+]isignal was determined fluorometrically by using fura 2-AM. Superfusionof confluent endothelial cells with U-46619, 5-HT, or LPA significantlyincreased [Ca2+]i. Pretreatment ofendothelial cells with high K+ (60 mM) or nifedipine (4 µM) diminished increases in [Ca2+]i inducedby the vasoactive agents. These results indicate that 1)elevated [Ca2+]i signals are involved in ET-1biosynthesis induced by specific spasmogenic agents, 2) theincreases in [Ca2+]i induced by thevasoactive agents tested involve receptor as well as L-typevoltage-dependent Ca2+ channels, and 3) primarycultures of cerebral microvascular endothelial cells express L-typevoltage-dependent Ca2+ channels.

  相似文献   

14.
The hypothesisthat vascular protection in females and its absence in males reflectsgender differences in [Ca2+]i andCa2+ mobilization mechanisms of vascular smooth musclecontraction was tested in fura 2-loaded aortic smooth muscle cellsisolated from intact and gonadectomized male and female Wistar-Kyoto(WKY) and spontaneously hypertensive (SHR) rats. In WKY cells incubated in Hanks' solution (1 mM Ca2+), the resting length and[Ca2+]i were significantlydifferent in intact males (64.5 ± 1.2 µm and 83 ± 3 nM) than inintact females (76.5 ± 1.5 µm and 64 ± 7 nM). In intact male WKY,phenylephrine (Phe, 105 M) caused transient increasein [Ca2+]i to 428 ± 13 nMfollowed by maintained increase to 201 ± 8 nM and 32% cellcontraction. In intact female WKY, the Phe-induced [Ca2+]i transient was notsignificantly different, but the maintained [Ca2+]i (159 ± 7 nM) and cellcontraction (26%) were significantly less than in intact male WKY. InCa2+-free (2 mM EGTA) Hanks', Phe and caffeine (10 mM)caused transient increases in[Ca2+]i and contraction that werenot significantly different between males and females. Membranedepolarization by 51 mM KCl caused 31% cell contraction and increased[Ca2+]i to 259 ± 9 nM in intactmale WKY, which were significantly greater than a 24% contraction and214 ± 8 nM [Ca2+]i in intactfemale WKY. Maintained Phe- and KCl-stimulated cell contraction and[Ca2+]i were significantly greaterin SHR than WKY in all groups of rats. Reduction in cell contractionand [Ca2+]i in intact femalescompared with intact males was significantly greater in SHR (~30%)than WKY (~20%). No significant differences in cell contraction or[Ca2+]i were observed betweencastrated males, ovariectomized (OVX) females, and intact males, orbetween OVX females with 17-estradiol implants and intact females.Exogenous application of 17-estradiol (108 M) tocells from OVX females caused greater reduction in Phe- and KCl-inducedcontraction and [Ca2+]i in SHR thanWKY. Thus the basal, maintained Phe- and depolarization-induced [Ca2+]i and contraction of vascularsmooth muscle triggered by Ca2+ entry from theextracellular space exhibit differences depending on gender and thepresence or absence of female gonads. Cell contraction and[Ca2+]i due to Ca2+release from the intracellular stores are not affected by gender or gonadectomy. Gender-specific reduction in contractility and [Ca2+]i in vascular smoothmuscle of female rats is greater in SHR than WKY rats.

  相似文献   

15.
Chronic exposure of pancreatic -cells to high concentrations of glucose impairs the insulin secretory response to further glucose stimulation. This phenomenon is referred to as glucose desensitization. It has been shown that glucose desensitization is associated with abnormal elevation of -cell basal intracellular free Ca2+ concentration ([Ca2+]i). We have investigated the relationship between the basal intracellular free Ca2+ and the L-type (Cav1.3) Ca2+ channel translocation in insulin-secreting cells. Glucose stimulation or membrane depolarization induced a nifedipine-sensitive Ca2+ influx, which was attenuated when the basal [Ca2+]i was elevated. Using voltage-clamp techniques, we found that changing [Ca2+]i could regulate the amplitude of the Ca2+ current. This effect was attenuated by drugs that interfere with the cytoskeleton. Immunofluorescent labeling of Cav1.3 showed an increase in the cytoplasmic distribution of the channels under high [Ca2+]i conditions by deconvolution microscopy. The [Ca2+]i-dependent translocation of Cav1.3 channel was also demonstrated by Western blot analysis of biotinylation/NeutrAvidin-bead-eluted surface proteins in cells preincubated at various [Ca2+]i. These results suggest that Cav1.3 channel trafficking is involved in glucose desensitization of pancreatic -cells. internalization; intracellular free calcium; glucose desensitization  相似文献   

16.
The role of nitric oxide (NO) in the occurrence of intracellular Ca2+ concentration ([Ca2+]i) oscillations in pituitary GH3 cells was evaluated by studying the effect of increasing or decreasing endogenous NO synthesis with L-arginine and nitro-L-arginine methyl ester (L-NAME), respectively. When NO synthesis was blocked with L-NAME (1 mM) [Ca2+]i, oscillations disappeared in 68% of spontaneously active cells, whereas 41% of the quiescent cells showed [Ca2+]i oscillations in response to the NO synthase (NOS) substrate L-arginine (10 mM). This effect was reproduced by the NO donors NOC-18 and S-nitroso-N-acetylpenicillamine (SNAP). NOC-18 was ineffective in the presence of the L-type voltage-dependent Ca2+ channels (VDCC) blocker nimodipine (1 µM) or in Ca2+-free medium. Conversely, its effect was preserved when Ca2+ release from intracellular Ca2+ stores was inhibited either with the ryanodine-receptor blocker ryanodine (500 µM) or with the inositol 1,4,5-trisphosphate receptor blocker xestospongin C (3 µM). These results suggest that NO induces the appearance of [Ca2+]i oscillations by determining Ca2+ influx. Patch-clamp experiments excluded that NO acted directly on VDCC but suggested that NO determined membrane depolarization because of the inhibition of voltage-gated K+ channels. NOC-18 and SNAP caused a decrease in the amplitude of slow-inactivating (IDR) and ether-à-go-go-related gene (ERG) hyperpolarization-evoked, deactivating K+ currents. Similar results were obtained when GH3 cells were treated with L-arginine. The present study suggests that in GH3 cells, endogenous NO plays a permissive role for the occurrence of spontaneous [Ca2+]i oscillations through an inhibitory effect on IDR and on IERG. voltage-gated potassium channels; ether-à-go-go-related gene potassium channels; slow-inactivating outward currents; fast-inactivating outward currents  相似文献   

17.
Previous studies have shown that inhibition of L-type Ca2+ current (ICa) by cytosolic free Mg2+ concentration ([Mg2+]i) is profoundly affected by activation of cAMP-dependent protein kinase pathways. To investigate the mechanism underlying this counterregulation of ICa, rat cardiac myocytes and tsA201 cells expressing L-type Ca2+ channels were whole cell voltage-clamped with patch pipettes in which [Mg2+] ([Mg2+]p) was buffered by citrate and ATP. In tsA201 cells expressing wild-type Ca2+ channels (1C/2A/2), increasing [Mg2+]p from 0.2 mM to 1.8 mM decreased peak ICa by 76 ± 4.5% (n = 7). Mg2+-dependent modulation of ICa was also observed in cells loaded with ATP--S. With 0.2 mM [Mg2+]p, manipulating phosphorylation conditions by pipette application of protein kinase A (PKA) or phosphatase 2A (PP2A) produced large changes in ICa amplitude; however, with 1.8 mM [Mg2+]p, these same manipulations had no significant effect on ICa. With mutant channels lacking principal PKA phosphorylation sites (1C/S1928A/2A/S478A/S479A/2), increasing [Mg2+]p had only small effects on ICa. However, when channel open probability was increased by 1C-subunit truncation (1C1905/2A/S478A/S479A/2), increasing [Mg2+]p greatly reduced peak ICa. Correspondingly, in myocytes voltage-clamped with pipette PP2A to minimize channel phosphorylation, increasing [Mg2+]p produced a much larger reduction in ICa when channel opening was promoted with BAY K8644. These data suggest that, around its physiological concentration range, cytosolic Mg2+ modulates the extent to which channel phosphorylation regulates ICa. This modulation does not necessarily involve changes in channel phosphorylation per se, but more generally appears to depend on the kinetics of gating induced by channel phosphorylation. voltage-gated Ca2+ channel; cardiac myocytes; human embryonic kidney cells; protein kinase A; protein phosphatase 2A  相似文献   

18.
This study investigated the acute effects of a peroxisome proliferator-activated receptor (PPAR)- ligand, ciglitizone, on cell proliferation and intracellular Ca2+ signaling in human normal myometrium and uterine leiomyoma. Changes in intracellular Ca2+ concentration ([Ca2+]i) were measured with fura-2 AM, and cellular viabilities were determined by viable cell count and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide reduction assay. Ciglitizone (100 µM) induced greater inhibition of cell proliferation in uterine leiomyoma than in myometrium. Ciglitizone also dose-dependently increased [Ca2+]i in both myometrium and uterine leiomyoma; these [Ca2+]i increases were inhibited by PPAR- antagonists and raloxifene. Ciglitizone-induced [Ca2+]i increase showed only an initial peak in normal myometrial cells, whereas in uterine leiomyoma there was a second sustained [Ca2+]i increase as well. The initial [Ca2+]i increase in both myometrium and uterine leiomyoma resulted from the release of Ca2+ by the sarcoplasmic reticulum via activation of ryanodine receptors. The second [Ca2+]i increase was observed only in uterine leiomyoma because of a Ca2+ influx via an activation of store-operated Ca2+ channels (SOCCs). Cell proliferation was inhibited and secondary [Ca2+]i increase in uterine leiomyoma was attenuated by cotreatment of ciglitizone with a SOCC blocker, lanthanum. The results suggest that ciglitizone inhibits cell proliferation and increases [Ca2+]i through the activation of SOCCs, especially in human uterine leiomyoma. peroxisome proliferator-activated receptor-; intracellular calcium; uterine cells  相似文献   

19.
The L-type Ca2+ channel is the primary voltage-dependent Ca2+-influx pathway in many excitable and secretory cells, and direct phosphorylation by different kinases is one of the mechanisms involved in the regulation of its activity. The aim of this study was to evaluate the participation of Ser/Thr kinases and tyrosine kinases (TKs) in depolarization-induced Ca2+ influx in the endocrine somatomammotrope cell line GH3. Intracellular Ca2+ concentration ([Ca2+]i) was measured using a spectrofluorometric method with fura 2-AM, and 12.5 mM KCl (K+) was used as a depolarization stimulus. K+ induced an abrupt spike (peak) in [Ca2+]i that was abolished in the presence of nifedipine, showing that K+ enhances [Ca2+]i, preferably activating L-type Ca2+ channels. H89, a selective PKA inhibitor, significantly reduced depolarization-induced Ca2+ mobilization in a concentration-related manner when it was applied before or after K+, and okadaic acid, an inhibitor of Ser/Thr phosphatases, which has been shown to regulate PKA-stimulated L-type Ca2+ channels, increased K+-induced Ca2+ entry. When PKC was activated by PMA, the K+-evoked peak in [Ca2+]i, as well as the plateau phase, was significantly reduced, and chelerythrine (a PKC inhibitor) potentiated the K+-induced increase in [Ca2+]i, indicating an inhibitory role of PKC in voltage-dependent Ca2+ channel (VDCC) activity. Genistein, a TK inhibitor, reduced the K+-evoked increase in [Ca2+]i, but, unexpectedly, the tyrosine phosphatase inhibitor orthovanadate reduced not only basal Ca2+ levels but, also, Ca2+ influx during the plateau phase. Both results suggest that different TKs may act differentially on VDCC activation. Activation of receptor TKs with epidermal growth factor (EGF) or vascular endothelial growth factor potentiated K+-induced Ca2+ influx, and AG-1478 (an EGF receptor inhibitor) decreased it. However, inhibition of the non-receptor TK pp60 c-Src enhanced K+-induced Ca2+ influx. The present study strongly demonstrates that a complex equilibrium among different kinases and phosphatases regulates VDCC activity in the pituitary cell line GH3: PKA and receptor TKs, such as vascular endothelial growth factor receptor and EGF receptor, enhance depolarization-induced Ca2+ influx, whereas PKC and c-Src have an inhibitory effect. These kinases modulate membrane depolarization and may therefore participate in the regulation of a plethora of intracellular processes, such as hormone secretion, gene expression, protein synthesis, and cell proliferation, in pituitary cells. phosphatases; protein kinase A; protein kinase C; epidermal growth factor  相似文献   

20.
To clarifyinteractions between the cytoskeleton and activity of L-typeCa2+ (CaL) channels in vascular smooth muscle(VSM) cells, we investigated the effect of disruption of actinfilaments and microtubules on the L-type Ca2+ current[IBa(L)] of cultured VSM cells (A7r5 cellline) using whole cell voltage clamp. The cells were exposed to eachdisrupter for 1 h and then examined electrophysiologically andmorphologically. Results of immunostaining using anti--actin andanti--tubulin antibodies showed that colchicine disrupted both actinfilaments and microtubules, cytochalasin D disrupted only actinfilaments, and nocodazole disrupted only microtubules.IBa(L) was greatly reduced in cells that wereexposed to colchicine or cytochalasin D but not to nocodazole.Colchicine even inhibited IBa(L) by about 40%when the actin filaments were stabilized by phalloidin or when thecells were treated with phalloidin plus taxol to stabilize bothcytoskeletal components. These results suggest that colchicine mustalso cause some inhibition of IBa(L) due toanother unknown mechanism, e.g., a direct block of CaLchannels. In summary, actin filament disruption of VSM cells inhibitsCaL channel activity, whereas disrupting the microtubulesdoes not.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号