首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rat proximal tubule epithelium is represented as well-stirred, compliant cellular and paracellular compartments bounded by mucosal and serosal bathing solutions. With a uniform pCO2 throughout the epithelium, the model variables include the concentrations of Na, K, Cl, HCO3, H2PO4, HPO4, and H, as well as hydrostatic pressure and electrical potential. Except for a metabolically driven Na-K exchanger at the basolateral cell membrane, all membrane transport within the epithelium is passive and is represented by the linear equations of nonequilibrium thermodynamics. In particular, this includes the cotransport of Na-Cl and Na-H2PO4 and countertransport of Na-H at the apical cell membrane. Experimental constraints on the choice of ionic conductivities are satisfied by allowing K-Cl cotransport at the basolateral membrane. The model equations include those for mass balance of the nonreacting species, as well as chemical equilibrium for the acidification reactions. Time-dependent terms are retained to permit the study of transient phenomena. In the steady state the energy dissipation is computed and verified equal to the sum of input from the Na-K exchanger plus the Gibbs free energy of mass addition to the system. The parameter dependence of coupled water transport is studied and shown to be consistent with the predictions of previous analytical models of the lateral intercellular space. Water transport in the presence of an end-proximal (HCO3-depleted) luminal solution is investigated. Here the lower permeability and higher reflection coefficient of HCO3 enhance net sodium and water transport. Due to enhanced flux across the tight junction, this process may permit proximal tubule Na transport to proceed with diminished energy dissipation.  相似文献   

2.
Channels in epithelial cell membranes and junctions.   总被引:3,自引:0,他引:3  
Epithelia may be classified as "tight" or "leaky," depending on whether there is a significant pathway for transepithelial ion permeation via the junctions and bypassing the cells. The resistance of this paracellular channel may depend partly on structures visible in the electron microscope, partly on wall charge. Permeability determinations in the leaky junctions of gallbladder epithelium, using many different organic cations, suggest that the critical barriers barriers to ion permeation are 5--8 A in radius and bind cations by up to four strongly proton-accepting oxygens. The apical cell membrane of tight epithelia contains a Na+-selective channel that is blocked by amiloride and Ca2+, subject to negative feedback control by the Na+ pump in the basolateral membrane, and somehow promoted by aldosterone. To determine the permeabilities of these two channels (the junctional channel of leaky epithelia, and the Na+ channel of tight epithelia) to water and nonelectrolytes remains a major unsolved problem.  相似文献   

3.
1. Frog skin epithelium has basolateral K+ channels that normally define the basolateral membrane potential between 80 and 100 mV. 2. The membrane mentioned also has almost silent chloride channels and a [Na+, K+, 2Cl-] cotransport, the latter probably maintains the high Cl- in the capital (also called syncytium) cells. 3. If the K+ channels are blocked by Ba2+ (or Li+) it is possible to demonstrate potential gating of the chloride channels of the basolateral membrane. 4. When the normal K+ channels are blocked, a potential-dependent K+ conductance slowly emerges. 5. If Li+ is substituted for outside Na+ the skin shows potential oscillations of about 40 mV at a frequency of about six per hour. 6. The anion channel inhibitor Indacrinone stops these oscillations. 7. The role of Cl- and K+ channels in these oscillations is discussed. 8. The transepithelial inward transport of Li+ requires the presence of Na+ and seems to be due to exchange of cellular Li+ against inside Na+ via the basolateral Na+/H+ exchanger.  相似文献   

4.
Summary Canine tracheal epithelium secretes Cl from the submucosal to the mucosal surface via an electrogenic transport process that appears to apply to a wide variety of secretory epithelia. Cl exit across the apical membrane is thought to be a passive, electrically conductive process. To examine the cellular mechanism of Cl secretion we studied the effect of anthracene-9-carboxylic acid (9-AC), an agent known to inhibit the Cl conductance of muscle membrane. When added to the mucosal solution, 9-AC rapidly and reversibly decreases short-circuit current and transepithelial conductance, reflecting a reduction in electrogenic Cl secretion. The inhibition is concentration-dependent and 9-AC does not appear to compete with Cl for the transport process. The decrease in current and conductance results from a decrease in the net and both unidirectional transepithelial Cl fluxes without substantial alterations of Na fluxes. Furthermore, 9-AC specifically inhibits a Cl conductance: tissues bathed in Cl-free solutions showed no response to 9-AC. Likewise, when the rate of secretion and Cl conductance were minimized with indomethacin, addition of 9-AC did not alter transepithelial conductance. In contrast, neither removal of Na from the media nor blockade of the apical Na conductance with amiloride prevented a 9-AC-induced decrease in transepithelial conductance. We also found that the effect of 9-AC is independent of transepithelial transport: 9-AC decreases transepithelial conductance despite inhibition of Cl secretion with ouabain or furosemide. Intracellular electrophysiologic techniques were used to localize the effect of 9-AC to a reduction of the electrical conductance of the apical cell membrane: 9-AC hyperpolarizes the electrical potential difference across the apical membrane and decreases its relative conductance. 9-AC also prevents the characteristic changes in the cellular electrical potential profile, transepithelial conductance, and the ratio of membrane conductances produced by a reduction in mucosal bathing solution Cl concentration. These results indicate that 9-AC inhibits Cl secretion in tracheal epithelium by blocking an electrically conductive Cl exit step in the apical cell membrane. Thus, they support a cellular model of Cl secretion in which Cl leaves the cell across a Cl permeable apical membrane driven by its electrochemical gradient.  相似文献   

5.
Lithium absorption in tight and leaky segments of intestine   总被引:1,自引:0,他引:1  
There is significant absorption of Li+ by human jejunum and ileum, but negligible absorption by human colon. Thus, a proximal-to-distal gradient of decreasing Li+ absorption and increasing junctional tightness exists in intestine as well as in renal tubule. For six leaky epithelia the relative permeabilities of K+, Na+, and Li+ by the junctional route are in the sequence PK greater than PNa greater than PLi and all fall within a factor of 2.5. In contrast, for tight epithelia PLi approximately PNa much greater than PK in the amiloride-sensitive channel of the apical membrane, but PK much greater than PLi approximately PNa in the basolateral membrane. The ability of several tight epithelia to sustain nonzero transepithelial Li+ absorption despite this basolateral barrier may be due to Na+/Li+ countertransport at the basolateral membrane, resulting in secondary active transport of Li+ across the epithelium.  相似文献   

6.
The steroid hormone aldosterone regulates reabsorptive Na+ transport across specific high resistance epithelia. The increase in Na+ transport induced by aldosterone is dependent on protein synthesis and is due, in part, to an increase in Na+ conductance of the apical membrane mediated by amiloride-sensitive Na+ channels. To examine whether an increment in the biochemical pool of Na+ channels expressed at the apical cell surface is a mechanism by which aldosterone increases apical membrane Na+ conductance, apical cell-surface proteins from the epithelial cell line A6 were specifically labeled by an enzyme-catalyzed radioiodination procedure following exposure of cells to aldosterone. Labeled Na+ channels were immunoprecipitated to quantify the biochemical pool of Na+ channels at the apical cell surface. The activation of Na+ transport across A6 cells by aldosterone was not accompanied by alterations in the biochemical pool of Na+ channels at the apical plasma membrane, despite a 3.7-4.2-fold increase in transepithelial Na+ transport. Similarly, no change in the distribution of immunoreactive protein was resolved by immunofluorescence microscopy. The oligomeric subunit composition of the channel remained unaltered, with one exception. A 75,000-Da polypeptide and a broad 70,000-Da polypeptide were observed in controls. Following addition of aldosterone, the 75,000-Da polypeptide was not resolved, and the 70,000-Da polypeptide was the major polypeptide found in this molecular mass region. Aldosterone did not alter rates of Na+ channel biosynthesis. These data suggest that neither changes in rates of Na+ channel biosynthesis nor changes in its apical cell-surface expression are required for activation of transepithelial Na+ transport by aldosterone. Post-translational modification of the Na+ channel, possibly the 75,000 or 70,000-Da polypeptide, may be one of the cellular events required for Na+ channel activation by aldosterone.  相似文献   

7.
Experimental modulation of the apical membrane Na+ conductance or basolateral membrane Na+-K+ pump activity has been shown to result in parallel changes in the basolateral K+ conductance in a number of epithelia. To determine whether modulation of the basolateral K+ conductance would result in parallel changes in apical Na+ conductance and basolateral pump activity, Necturus urinary bladders stripped of serosal muscle and connective tissue were impaled through their basolateral membranes with microelectrodes in experiments that allowed rapid serosal solution changes. Exposure of the basolateral membrane to the K+ channel blockers Ba2+ (0.5 mM/liter), Cs+ (10 mM/liter), or Rb+ (10 mM/liter) increased the basolateral resistance (Rb) by greater than 75% in each case. The increases in Rb were accompanied simultaneously by significant increases in apical resistance (Ra) of greater than 20% and decreases in transepithelial Na+ transport. The increases in Ra, measured as slope resistances, cannot be attributed to nonlinearity of the I-V relationship of the apical membrane, since the measured cell membrane potentials with the K+ channel blockers present were not significantly different from those resulting from increasing serosal K+, a maneuver that did not affect Ra. Thus, blocking the K+ conductance causes a reduction in net Na+ transport by reducing K+ exit from the cell and simultaneously reducing Na+ entry into the cell. Close correlations between the calculated short-circuit current and the apical and basolateral conductances were preserved after the basolateral K+ conductance pathways had been blocked. Thus, the interaction between the basolateral and apical conductances revealed by blocking the basolateral K+ channels is part of a network of feedback relationships that normally serves to maintain cellular homeostasis during changes in the rate of transepithelial Na+ transport.  相似文献   

8.
The role of a leaky tight junction in epithelia is examined by considering the flow of water and solute through a channel consisting of two sections representing the intercellular space and tight junction. Two cases are considered, flow through a channel with a circular cross-section and flow between parallel planes. Analytical solutions are obtained using the isotonic convection approximation. The flow is driven by active transport of solute and imposed concentration and pressure differences. Particular attention is paid to the flux of solute through the tight junction. It is shown that the shape of the channel cross-section is important.The theory is applied to the rat proximal tube epithelium. It is deduced that the emergent osmolarity is close to that predicted for a closed tight junction, but that transepithelial hydrostatic pressure differences are potentially important. The influence of transepithelial concentration differences appears to be unimportant in this model.  相似文献   

9.
The action of epinephrine on Madin-Darby canine kidney cells   总被引:1,自引:0,他引:1  
We have used cultured monolayers of Madin-Darby canine kidney (MDCK) cells, which form epithelial layers of high transepithelial resistance, grown on Millipore filters, for transport studies. In the absence of hormones net ion transport is of small magnitude and is consistent with a net absorptive flow (apical to basal) of Na+. Epinephrine, effective only from the basolateral cell surface, stimulates a net secretion (basal to apical) of Cl-. A substantial portion of net Cl- secretion is inhibited by loop diuretics such as furosemide applied to the basolateral cell aspects. The participation of a diuretic-sensitive cotransport system for Na+, K+, and Cl-, similar to that found in other cells, in transepithelial Cl- flux is postulated. The action of catecholamines on MDCK cell adenylate cyclase and on a Ca2+-activated K+ conductance is described.  相似文献   

10.
Frog urinary bladder epithelium has been examined by freeze-fracture electron microscopy of preparations previously fixed by glutaraldehyde either at rest or during antidiuretic challenge. All the agonists tested were observed to induce membrane particle clustering in the A face of the apical plasma membrane of granular cells. This was the case for the natural hormone (hypophysical extracts) and its presumed cellular mediator, adenosine 3',5'-monophosphate. Particle clustering was observed both in the presence and in the absence of water net flow and is thus independent of these movements. Clusters were also observed during hydrosmotic challenge by hypertonic serosal media, a condition which depresses transepithelial sodium transport. No complementary patterns of these A face clusters could be found on the B face. The significance of these membrane-associated particle clusters is discussed in terms of membrane structure and function.  相似文献   

11.
A network thermodynamic model was developed to provide insights into the nature of isotonic solute-coupled volume flow in "leaky" epithelia, where the transepithelial volume flow is assumed to be primarily through the cellular pathway. The coupled flows of solute and volume at each membrane in this four membrane model are described by the practical phenomenological equations as developed by Kedem & Katchalsky (1958). The model contains one permeable non-electrolyte solute (s) and a fixed amount of an impermeable non-electrolyte (i) inside the cell. The cell is assumed to be capable of volume regulation under the steady-state experimental conditions simulated. A solute-pump, located in the basolateral membrane, uses feedback regulation to adjust Cs in the cell in order to maintain cell volume at or near control levels in all simulations. Model behavior is, in general, very consistent with experimental observations with respect to tonicity and magnitude of volume flow over a wide range of experimental conditions. Examination of the parameter space suggests the following important features when isotonic solute-coupled volume flow moves primarily through the cellular pathway: (1) the apical membrane reflection coefficient must be less than that of the basolateral membrane; (2) the basement membrane reflection coefficient must be small; (3) the apical membrane solute permeability and reflection coefficient are the two most "sensitive" parameters and need to vary in an inverse manner in order to maintain isotonicity when both solute and volume flows increase; and (4) relationships (1) and (3) above imply the need for at least two separate solute pathways in the apical membrane, one that is shared with volume flow and one that is not.  相似文献   

12.
Microelectrode techniques were employed to study the ionic permeability of the apical cell membrane of Necturus gallbladder epithelium. Results obtained from continuous records in single cells, and from several cellular impalements shortly after a change in solution, were similar and indicate that both the apical membrane equivalent electromotive force (Va) and electrical resistance (Ra) strongly depend on external [K]. Cl substitutions produced smaller effects, while the effects of Na substitutions with N-methyl-D-glucamine on both Va and Ra were minimal. These results indicate that the permeability sequence of the apical membrane is PKgreater thanPClgreater than PNa. From the calculated absolute value of PNa it is possible to estimate the diffusional Na flux from the mucosal solution into the cells (from the cell potential and an assumed intracellular Na concentration). The calculated flux is roughly three orders of magnitude smaller than the measured net transepithelial flux in this tissue and in gallbladders of other species. Thus, only a minimal portion of Na entry can be attributed to independent diffusion. From estimations of the electrochemical potential gradient across the apical membrane, Cl transport at that site must be active. At the serosal cell membrane, Na transport takes place against both chemical and electrical potentials, while a significant portion of the Cl flux can be passive, if this membrane has a significant Cl conductance. The changes in shunt electromotive force and in transepithelial potential after mucosal substitutions were very similar, indicating that transepithelial bi-ionic potentials yield appropriate results on the properties of shunt pathway.  相似文献   

13.
Summary Canine tracheal epithelial cells were isolated by enzymatic and mechanical dispersion and cultured on permeable supports. The cells formed confluent monolayers and retained most of the morphologic characteristics of the intact epithelium, including apical microvilli, apical tight junctions, and a moderately interdigitated lateral intercellular space. The cells also retained the functional properties of the epithelium. The monolayer responded to addition of isoproterenol with the characteristic changes in cellular electrical properties expected for stimulation of Cl secretion: isoproterenol increased transepithelial voltage, depolarized apical membrane voltage, and decreased both transepithelial resistance and the ratio of apical-to-basolateral membrane resistance. Examination of the cellular response to ion substitutions and inhibitors of Cl secretion indicate that the cultured monolayers retain the same cellular mechanisms of ion transport as the intact epithelium. Thus, primary cultures of tracheal epithelium may provide a useful preparation for future studies of the mechanism and regulation of Cl secretion by airway epithelia.  相似文献   

14.
An amiloride-sensitive Na+ channel is found in the apical plasma membrane of high resistance, Na+ transporting epithelia. We have developed a method for the identification of this channel based on the use of a new high affinity photoreactive amiloride analog, 2'-methoxy-5'-nitrobenzamil (NMBA), and anti-amiloride antibodies to identify photolabeled polypeptides. NMBA specifically labels the putative Na+ channel in bovine kidney microsomes. A 130-kDa polypeptide is detected on immunoblots with anti-amiloride antibodies. NMBA is a potent inhibitor of Na+ transport in the established amphibian kidney epithelial cell line A6, and specifically labels a 130-kDa polypeptide. We utilized both NMBA photolabeling and [3H]benzamil binding in order to examine the cellular pool of putative channels following hormonal regulation of Na+ transport. This pool is not significantly altered by the mineralocorticoid agonist aldosterone or antagonist spironolactone, despite a 3.8-fold difference in transepithelial Na+ transport.  相似文献   

15.
Summary A parallel path model based on the principles of nonequilibrium thermodynamics was developed for theNecturus proximal tubule. The cellular path was represented as a luminal membrane followed by an irreversible active NaCl transport system in the peritubular barrier. The shunt pathway was described as three coarse barriers in series: tight junction, lateral intercellular spaces, and basement membrane with connective tissue. Volume and solute flows were predicted by the model equations as a function of applied electric current. Variations of the model parameters revealed the quantitative importance of the shunt path properties and the relative insensitivity of epithelial transport to changes in most cell parameters. Circulation of electric current and solute within the epithelium were shown to significantly influence the bahavior of the tubule in the presence of an electric field. Values for all transport parameters of the shunt path and epithelium were calculated and compared with available experimental evidence. Volume flow and electric currents predicted by the model compared favorably with experimental observations.  相似文献   

16.
Birds are uricotelic and, like humans, maintain high plasma urate concentrations (approximately 300 microM). The majority of their urate waste, as in humans, is eliminated by renal proximal tubular secretion; however, the mechanism of urate transport across the brush-border membrane of the intact proximal tubule epithelium during secretion is uncertain. The dominance of secretory urate transport in the bird provides a convenient model for examining this process. The present study shows that short hairpin RNA interference (shRNAi) effectively knocked down gene expression of multidrug resistance protein 4 (Mrp4; 25% of control) in primary monolayer cultures of isolated chicken proximal tubule epithelial cells (cPTCs). Control and Mrp4-shRNAi-treated cPTCs were mounted in Ussing chambers and unidirectional transepithelial fluxes of urate were measured. To detect nonspecific effects, transepithelial electrical resistance (TER) and sodium-dependent glucose transport (Iglu) were monitored throughout experiments. Knocking down Mrp4 expression resulted in a reduction of transepithelial urate secretion to 35% of control with no effects on TER or Iglu. Although electrical gradient-driven urate transport in isolated brush-border membrane vesicles was confirmed, potassium-induced depolarization of the plasma membrane in intact cPTCs failed to inhibit active transepithelial urate secretion. However, electrical gradient-dependent vesicular urate transport was inhibited by the MRP4 inhibitor MK-571 also known to inhibit active transepithelial urate transport by cPTCs. Based on these data, direct measure of active transepithelial urate secretion in functional avian proximal tubule epithelium indicates that Mrp4 is the dominant apical membrane exit pathway from cell to lumen.  相似文献   

17.
Ion channels in Madin-Darby canine kidney cells serve transepithelial chloride transport and probably cell volume regulation. Three distinct potassium channels and one anion channel have been revealed by patch clamp studies in Madin-Darby canine kidney cells. The potassium channels are activated by an increase in intracellular calcium activity. A number of hormones activate the potassium channels by an increase in intracellular calcium activity. However, under certain conditions the hormones hyperpolarize the cell membrane without increasing intracellular calcium activity sufficiently to activate the calcium-sensitive potassium channels. Thus, the hormones may activate potassium channels via another, as yet undefined, intracellular mechanism. The anion channel is stimulated by cAMP. Another factor modifying channel activity is cell volume: cell swelling leads probably to subsequent activation of potassium and anion channels. The net result is a variable transient hyperpolarization followed by a sustained depolarization of the cell membrane.  相似文献   

18.
We present a new transport model that may be useful for many kinds of transepithelial transport experiments. The model permits estimation of a pump Km and pump activity solely on the basis of transepithelial tracer fluxes. We apply the model to studies of a multidrug efflux pump, P-glycoprotein, which is normally located in the apical plasma membrane of certain transporting epithelia such as kidney proximal tubule cells. To determine the functional properties of this multidrug transporter in an epithelium, we studied the transepithelial transport of the chemotherapeutic drug, vinblastine, in epithelia formed by the kidney cell lines MDCK, LLC-PK1, and OK. We have previously shown that basal to apical flux of 100 nM vinblastine was about five times higher than apical to basal flux in MDCK epithelia, indicating that there is a net transepithelial transport of vinblastine across MDCK epithelia. Addition of unlabeled vinblastine reduced basal to apical flux of tracer and increased apical to basal flux of tracer in a concentration-dependent manner, a pattern expected if there is a saturable pump that extrudes vinblastine at the apical plasma membrane. The model permits estimation of a pump Km and pump activity solely on the basis of transepithelial tracer fluxes. According to the transport model the apical membrane pump has Michaelis-Menten kinetics with an apparent Km = 1.1 microM. Net basal to apical transport of vinblastine was also observed in LLC-PK1 cells and OK cells which are other kidney-derived cell lines. The order of potency of the transport is LLC-PK1 greater than MDCK greater than OK cells. The organic cation transporter is not involved in this vinblastine transport because vinblastine transport in MDCK cells was not affected by 3 mM tetramethyl- or tetraethylammonium. Inhibitors of vinblastine transport in MDCK cells was not affected by potency, were verapamil greater than vincristine greater than actinomycin D greater than daunomycin. The transport pattern we observed is that predicted to result from the function of the multidrug transporter in the apical plasma membrane.  相似文献   

19.
Isolated cortical collecting tubules from rabbit kidney were studied during perfusion with solutions made either isotonic or hypotonic to the external bathing medium. Examination of living tubules revealed a reversible increase in thickness of the cellular layer, prominence of lateral cell membranes, and formation of intracellular vacuoles during periods of vasopressin-induced osmotic water transport. Examination in the electron microscope revealed that vasopressin induced no changes in cell structure in collecting tubules in the absence of an osmotic difference and significant bulk water flow across the tubule wall. In contrast, tubules fixed during vasopressin-induced periods of high osmotic water transport showed prominent dilatation of lateral intercellular spaces, bulging of apical cell membranes into the tubular lumen, and formation of intracellular vacuoles. It is concluded that the ultrastructural changes are secondary to transepithelial bulk water flow and not to a direct effect of vasopressin on the cells, and that vasopressin induces osmotic flow by increasing water permeability of the luminal cell membrane. The lateral intercellular spaces may be part of the pathway for osmotically induced transepithelial bulk water flow.  相似文献   

20.
The kidney is responsible for the maintenance of an organism's body solute and water balance (i.e., Na+ homeostasis). The distal nephron and the cortical collecting duct (CCD) (an example of a tight epithelium) are important sites of regulatory control over the rate of Na+ reabsorption. The Na+ channel, a specialized protein located in the apical membrane of CCD cells, is the specific site of transepithelial Na+ movement. Na+ entry into the cell across the apical membrane occurs by passive diffusion of Na+ down an electrochemical gradient. We have used the patch-voltage clamp method to examine single-channel conductance events of the amiloride-sensitive apical Na+ channel in A6 cells, a model of CCD. Two types of Na+ channel were identified. One type was characterized by low selectivity (Na+ to K+) and high conductance, the other by high selectivity and low conductance. The type and frequency of channel observed depended on the transporting state of the epithelium. In a tissue with poor transport rates, the low-selectivity type of channel was prevalent (the other type of channel was present, but in a very low density). Therefore, the poorly transporting tissue had an overall low apical Na+ conductance. In a tissue with high transport rates, the highly selective channel appeared to be predominant. In this case the net result was a highly Na+ conductive apical membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号