首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Niemann-Pick type C (NPC) is a disease that affects intracellular cholesterol-trafficking pathways. By cloning the hamster ortholog of NPC1, we identified the molecular lesions in two independently isolated Chinese hamster ovary cell mutants, CT60 and CT43. Both mutants lead to premature translational terminations of the NPC1 protein. Transfecting hamster NPC1 cDNA complemented the defects of the mutants. Investigation of the CT mutants, their parental cells, and an NPC1-stable transfectant allow us to present evidence that NPC1 is involved in a post-plasma membrane cholesterol-trafficking pathway. We found that the initial movement of low density lipoprotein (LDL)-derived cholesterol to the plasma membrane (PM) did not require NPC1. After reaching the PM and subsequent internalization, however, cholesterol trafficking back to the PM did involve NPC1. Both LDL-derived cholesterol and cholesterol originating from the PM accumulated in a dense, intracellular compartment in the CT mutants. Cholesterol movement from this compartment to the PM or endoplasmic reticulum was defective in the CT mutants. Our results functionally distinguish the dense, intracellular compartment from the early endocytic hydrolytic organelle and imply that NPC1 is involved in sorting cholesterol from the intracellular compartment back to the PM or to the endoplasmic reticulum.  相似文献   

2.
Niemann-Pick disease type C (NPC) is characterized by lysosomal storage of cholesterol and gangliosides, which results from defects in intracellular lipid trafficking. Most studies of NPC1 have focused on its role in intracellular cholesterol movement. Our hypothesis is that NPC1 facilitates the egress of cholesterol from late endosomes, which are where active NPC1 is located. When NPC1 is defective, cholesterol does not exit late endosomes; instead, it is carried along to lysosomal storage bodies, where it accumulates. In this study, we addressed whether cholesterol is transported from endosomes to the plasma membrane before reaching NPC1-containing late endosomes. Our study was conducted in Chinese hamster ovary cell lines that display the classical NPC biochemical phenotype and belong to the NPC1 complementation group. We used three approaches to test whether low density lipoprotein (LDL)-derived cholesterol en route to NPC1-containing organelles passes through the plasma membrane. First, we used cyclodextrins to measure the arrival of LDL cholesterol at the plasma membrane and found that the arrival of LDL cholesterol in a cyclodextrin-accessible pool was significantly delayed in NPC1 cells. Second, the movement of LDL cholesterol to NPC1-containing late endosomes was assessed and found to be normal in Chinese hamster ovary mutant 3-6, which exhibits defective movement of plasma membrane cholesterol to intracellular membranes. Third, we examined the movement of plasma membrane cholesterol to the endoplasmic reticulum and found that this pathway is intact in NPC1 cells, i.e. it does not pass through NPC1-containing late endosomes. Our data suggest that in NPC1 cells LDL cholesterol traffics directly through endosomes to lysosomes, bypassing the plasma membrane, and is trapped there because of dysfunctional NPC1.  相似文献   

3.
The purpose of this study was to determine the capacity of Niemann-Pick type C (NPC) fibroblasts to transport cholesterol from the cell surface to intracellular membranes. This is relevant in light of the observations that NPC cells display a sluggish metabolism of LDL-derived cholesterol, a phenomenon which could be explained by a defective intracellular transport of cholesterol. Treatment of NPC cells for 4 h with 0.1 mg/ml of LDL failed to increase the incorporation of [14C]oleic acid into cholesterol [14C]oleate, an observation consistent with previous reports on this cell type (Pentchev et al. (1985) Proc. Natl. Acad. Sci. USA 82, 8247). Normal fibroblasts, however, displayed the classical upregulation (6-fold over control) of the endogenous esterification reaction in response to LDL exposure. Incubation of normal or NPC fibroblasts with sphingomyelinase (100 mU/ml; Staphylococcus aureus) led to a rapid and marked increase (9- and 10-fold for normal and NPC fibroblasts, respectively, after 4 h) in the esterification of plasma-membrane-derived [3H]cholesterol suggesting that sphingomyelin degradation forced a net transfer of cholesterol from the cell surface to the endoplasmic reticulum. The similar response in normal and mutant fibroblasts to the degradation of sphingomyelin suggests that plasma membrane cholesterol can be transported into the substrate pool of ACAT to about the same extent in these two cell types. Degradation of cell sphingomyelin in NPC fibroblasts also resulted in the movement of 20-25% of the cellular cholesterol from a cholesterol oxidase susceptible pool into oxidase-resistant pools, implying that a substantial amount of plasma membrane cholesterol was internalized after sphingomyelin degradation. This cholesterol internalization was not accompanied by an increased rate of membrane internalization, as measured by [3H]sucrose uptake. Although NPC cells showed a relative accumulation of unesterified cholesterol and a sluggish esterification of LDL-derived cholesterol when exposed to LDL, these cells responded like normal fibroblasts with regard to their capacity to transport cholesterol from the cell surface into intracellular sites in response to sphingomyelin degradation. It therefore appears that NPC cells, in contrast to the impaired intracellular movement of lipoprotein-derived cholesterol, do not display a general impairment of cholesterol transport between the cell surface and the intracellular regulatory pool of cholesterol.  相似文献   

4.
The intracellular accumulation of unesterified cholesterol was examined during 24 h of low density lipoprotein (LDL) uptake in normal and Niemann-Pick C fibroblasts by fluorescence microscopy with filipin staining and immunocytochemistry. Perinuclear fluorescence derived from filipin-sterol complexes was observed in both normal and mutant cells by 2 h. This perinuclear cholesterol staining reached its peak in normal cells at 6 h. Subsequent development of fluorescence during the remaining 18 h of LDL incubation was primarily limited to the plasma membrane region of normal cells. In contrast, mutant cells developed a much more intense perinuclear fluorescence throughout the entire 24 h of LDL uptake with little enhancement of cholesterol fluorescence staining in the plasma membranes. Direct mass measurements confirmed that internalized LDL cholesterol more readily replenishes the plasma membrane cholesterol of normal than of mutant fibroblasts. Perinuclear filipin-cholesterol fluorescence of both normal and mutant cells was colocalized with lysosomes by indirect immunocytochemical staining of lysosomal membrane protein. Abnormal sequestration of LDL cholesterol in mutant cells within a metabolically latent pool is supported by the finding that in vitro esterification of cellular cholesterol could be stimulated in mutant but not in normal cell homogenates by extensive disruption of the intracellular membranous structures of cells previously cultured with LDL. Deficient translocation of exogenously derived cholesterol from lysosomes to other intracellular membrane sites may be responsible for the delayed homeostatic responses associated with LDL uptake by mutant Niemann-Pick Type C fibroblasts.  相似文献   

5.
Regulation of intracellular cholesterol metabolism has been studied in Epstein-Barr virus-transformed lymphoblasts from patients with Niemann-Pick type C (NPC) and the Nova Scotia type D (NPD) disease. Addition of LDL to normal lymphoblasts cultured in lipoprotein-deficient medium increased cholesterol esterification 10-fold (to a maximum of 1.0 nmol/h/mg protein at 15 h), while little stimulation was seen in NPC cells. The response by NPD lymphoblasts was intermediate, reaching approximately half of normal values by 12–24 h. Lymphoblasts from both NPC and NPD obligate heterozygotes exhibited 50% of normal LDL-stimulated cholesterol esterification at 6 h, when activity was s1?0% of normal values in patient cells. Fluorescence staining with filipin indicated excessive intracellular accumulation of LDL-derived cholesterol in both NPC and NPD lymphoblasts. Downregulation of LDL receptor mRNA levels by LDL, measured by S1 nuclease protection assay, was also impaired in NP lymphoblasts and fibroblasts (NPC > NPD), although a similar rate of receptor protein down-regulation by LDL (t12 = 10–15 h) was observed in normal and NP lymphoblasts. In contrast, LDL down-regulation of 3-hydroxy-3-methylglutaryl-CoA reductase mRNA did not appear to be affected in NP cells: LDL produced a 3-fold (lymphoblasts) of > 10-fold (fibroblasts) decrease by 12 h in both normal and affected cells. Thus, NPC and NPD lymphoblasts exhibit distinct defects in cholesterol esterification and storage, similar to those observed in mutant fibroblasts. Other regulatory responses are also impaired in NPC lymphoblasts but appear to be less affected in NPD cells. Lymphoblasts should provide a valuable immortalized cell line model for study of defective regulation of cholesterol esterification and transfort in Niemann-Pick type II disease, and may also suitable for diagnosis and carrier detection.  相似文献   

6.
One characteristic of type C Niemann-Pick (NPC) disease is the substantial intracellular accumulation of unesterified cholesterol. The increased cholesterol content in NPC fibroblasts which are grown in the presence of low density lipoproteins (LDL) has been postulated to be due to a deficiency in cellular cholesterol esterification. We have examined several aspects of LDL metabolism in NPC fibroblasts. We observe that LDL binding, internalization, and lysosomal hydrolysis of LDL cholesteryl esters are normal in NPC cells. As reported by Pentchev et al. (Pentchev, P. G., Comly, M. E., Kruth, H. S., Vanier, M. T., Wenger, D. A., Patel, S., and Brady, R. O. (1985) Proc. Natl. Acad. Sci. U. S. A. 82, 8247-8251), we find that LDL does not stimulate cholesterol esterification. However, we also show that LDL does not down-regulate cholesterol synthesis or LDL receptor activity as normal. In NPC cells, these processes are regulated normally by nonlipoprotein effectors, such as 25-hydroxycholesterol or mevalonate. Since NPC cells are not defective in lysosomal hydrolysis of LDL-derived cholesteryl esters, they must exhibit a different defect than Wolman's or cholesteryl ester storage diseases. We conclude that NPC cells are defective specifically in LDL-mediated regulation of cellular cholesterol metabolism. We suggest that the intracellular processing of LDL-derived cholesterol may be defective in NPC fibroblasts.  相似文献   

7.
Low density lipoprotein (LDL) internalization by mutant type C Niemann-Pick (NPC) fibroblasts results in uptake of excess total cholesterol. Uptake of excess lipoprotein cholesterol appears to be mediated by the specific LDL receptor pathway. Associated with excessive LDL-cholesterol uptake is a lesion in early intracellular cholesteryl ester synthesis. In vitro acylCoA:cholesterol acyltransferase activity is normal in cell-free extracts of mutant cells. The ability of exogenous sterols to enhance intracellular esterification of [3H]mevalonate-derived [3H]cholesterol was severely limited in mutant cell cultures suggesting that in vivo activation and/or expression of activated acylCoA:cholesterol acyltransferase may be compromised by the primary mutation of type C Niemann-Pick disease. After 2 days of LDL uptake, rates of intracellular cholesteryl ester synthesis in mutant cells paralleled the rates of esterification in normal cells suggesting that specific early in vivo expression of the acyltransferase may be affected in this disorder.  相似文献   

8.
We have isolated clones of an established cell line which express defects in intracellular cholesterol metabolism. Chinese hamster ovary cells were mutagenized, and clones unable to mobilize low density lipoprotein (LDL)-derived cholesterol to the plasma membrane were selected. Biochemical analysis of two mutant clones revealed a phenotype characteristic of the lysosomal storage disease, Niemann-Pick type C. The mutant cell lines were found to be defective in the regulatory responses elicited by LDL-derived cholesterol. LDL-mediated stimulation of cholesterol esterification was grossly defective, and LDL suppression of 3-hydroxy-3-methylglutaryl-CoA reductase was impaired. However, the mutants modulated these activities normally in response to 25-hydroxycholesterol or mevalonate. The LDL-specific defects were predicated by the inability of these mutants to mobilize LDL-derived cholesterol from lysosomes. Cell fractionation studies showed that LDL-derived, unesterified cholesterol accumulated in the lysosomes of mutant cells to significantly higher levels than normal, commensurate with defective movement of cholesterol to other cellular membranes. Characterization of cell lines defective in intracellular cholesterol transport will facilitate identification of the gene(s) required for intracellular cholesterol movement and regulation.  相似文献   

9.
10.
The dynamics of endolysosomal cholesterol were investigated in Niemann-Pick type C (NPC) cells and in human fibroblasts treated with class 2 amphiphiles to mimic NPC cells. We showed through new approaches that the massive pools of endolysosomal cholesterol in these cells are not trapped but, rather, circulate to the cell surface at about the normal rate. This flux spared NPC and amphiphile-treated cells from disruption by the extraction of their plasma membrane cholesterol with cyclodextrin. Nocodazole, a microtubule-depolymerizing agent, reversed the resistance of NPC and U18666A-treated cells to cholesterol depletion, apparently by reducing the flux of endolysosomal cholesterol to the plasma membrane. Neither nocodazole nor bafilomycin A1 (an inhibitor of the vacuolar proton pump) acted in the same way as the NPC mutation or class 2 amphiphiles: both agents decreased plasma membrane cholesterol at the expense of the endolysosomal pool and both blocked the actions of the amphiphile, U18666A. Finally, the resistance of NPC cells to lysis by amphotericin B was shown not to reflect a reduction in plasma membrane cholesterol arising from a block in lysosomal cholesterol export but rather the diversion of the amphotericin B to cholesterol-rich endolysosomes. We conclude that the large pool of endolysosomal cholesterol in NPC and amphiphile-treated fibroblasts is dynamic and that its turnover, as in normal cells, is dependent on microtubules.  相似文献   

11.
We previously studied the early trafficking of low density lipoprotein (LDL)-derived cholesterol in mutant Chinese hamster ovary cells defective in Niemann-Pick type C1 (NPC1) using cyclodextrin (CD) to monitor the arrival of cholesterol from the cell interior to the plasma membrane (PM) (Cruz, J. C., Sugii, S., Yu, C., and Chang, T.-Y. (2000) J. Biol. Chem. 275, 4013-4021). We found that newly hydrolyzed cholesterol derived from LDL first appears in certain CD-accessible pool(s), which we assumed to be the PM, before accumulating in the late endosome/lysosome, where NPC1 resides. To determine the identity of the early CD-accessible pool(s), in this study, we performed additional experiments, including the use of revised CD incubation protocols. We found that prolonged incubation with CD (>30 min) caused cholesterol in internal membrane compartment(s) to redistribute to the PM, where it became accessible to CD. In contrast, a short incubation with CD (5-10 min) did not cause such an effect. We also show that one of the early compartments contains acid lipase (AL), the enzyme required for liberating cholesterol from cholesteryl ester in LDL. Biochemical and microscopic evidence indicates that most of the AL is present in endocytic compartment(s) distinct from the late endosome/lysosome. Our results suggest that cholesterol is liberated from LDL cholesteryl ester in the hydrolytic compartment containing AL and then moves to the NPC1-containing late endosome/lysosome before reaching the PM or the endoplasmic reticulum.  相似文献   

12.
13.
Mammalian cells, cultured in the presence of serum lipoproteins, acquire cholesterol necessary for growth from the uptake and lysosomal hydrolysis of low-density lipoproteins (LDL). The mechanism(s) of intracellular transport of LDL-derived cholesterol from lysosomes to other cellular sites is unknown. In this study, various pharmacological agents were assessed for their ability to inhibit the movement of LDL-cholesterol from lysosomes to the plasma membrane. The only pharmacological agent tested in these experiments that specifically inhibited LDL-cholesterol movement was U18666A. Ketoconazole impaired the intracellular transport of LDL-cholesterol; however, ketoconazole also had a general effect on cholesterol movement, since it impeded the desorption of endogenously synthesized cholesterol into the medium. Other drugs that affected cholesterol movement appeared to be nonspecific. Cholesterol transport from lysosomes to plasma membranes was not significantly altered by agents that affect lysosomal function or cytoskeletal organization, as well as energy poisons and cycloheximide.  相似文献   

14.
In mammalian cells, low density lipoprotein (LDL) is bound, internalized, and delivered to lysosomes where LDL-cholesteryl esters are hydrolyzed to unesterified cholesterol. The mechanisms of intracellular transport of LDL-cholesterol from lysosomes to other cellular sites and LDL-mediated regulation of cellular cholesterol metabolism are unknown. We have identified a pharmacological agent, U18666A (3-beta-[2-diethyl-amino)ethoxy]androst-5-en-17-one), which impairs the intracellular transport of LDL-derived cholesterol in cultured Chinese hamster ovary (CHO) cells. U18666A blocks the ability of LDL-derived cholesterol to stimulate cholesterol esterification, and to suppress 3-hydroxy-3-methylglutaryl-coenzyme A reductase and LDL receptor activities. However, U18666A does not impair 25-hydroxycholesterol-mediated regulation of these processes. In addition, U18666A impedes the ability of LDL-derived cholesterol to support the growth of CHO cells. However, U18666A has only moderate effects on growth supported by non-lipoprotein cholesterol. LDL binding, internalization, and lysosomal hydrolysis of LDL-cholesteryl esters are not affected by the presence of U18666A. Analysis of intracellular cholesterol transport reveals that LDL-derived cholesterol accumulates in the lysosomes of U18666A-treated CHO cells which results in impaired movement of LDL-derived cholesterol to other cell membranes.  相似文献   

15.
The esterification of cholesterol derived from human low density lipoprotein (LDL) or fetal bovine serum (FBS) was deficient in cultured fibroblasts from subjects with heterozygous and homozygous type C Niemann-Pick (NPC) disease. Failure to significantly esterify LDL-derived cholesterol resulted in abnormal accumulation of predominantly unesterified cholesterol in homozygous NPC fibroblasts. Compared with normal and homozygous fibroblasts, heterozygous NPC fibroblasts synthesized intermediate levels of cholesteryl ester during the initial 6 h of incubation with LDL. The rate of cholesterol esterification in heterozygous cells was normal when measured over a 24-h period of incubation with LDL. In addition to demonstrating a defect in cholesterol esterification, homozygous NPC fibroblasts accumulated more total cholesterol when incubated with LDL or FBS than normal fibroblasts accumulated. When heterozygous NPC fibroblasts were incubated with LDL or FBS, cellular accumulation of cholesterol reached levels that were high-normal or intermediary between levels observed in normal and homozygous NPC fibroblasts. The partial expression of these metabolic errors in the heterozygous genotype relevantly links these errors to the primary mutation of this disorder.  相似文献   

16.
The Niemann-Pick group of diseases can be broadly classified into two types based on clinical and biochemical characteristics. Type I is characterized by a primary deficiency of lysosomal sphingomyelinase while Type II may have a defect in the regulation of intracellular cholesterol metabolism. We have studied cholesterol esterification in cultured fibroblasts from patients with two phenotypes of Type II disease: an Acadian population of southwestern Nova Scotia (Canada) with a form of the disease known as Niemann-Pick type D (NPD) and a group of panethnic origin with Niemann-Pick type C (NPC). Addition of whole serum to normal fibroblasts grown initially in lipoprotein-deficient serum caused a rapid (within 6 h) increase in cholesterol esterification, reaching maximum values at around 24 h, while NPC fibroblasts showed little increase (less than 10% of normal). In contrast, cholesterol esterification in NPD fibroblasts increased slowly during the first 6-12 h and reached 50% of normal values by 24 h. 25-Hydroxycholesterol, a non-lipoprotein stimulator of cholesterol esterification, caused a similar stimulation of cholesterol esterification in NPC, NPD and normal cells. This was inhibited by addition of serum in mutant but not in normal cells. Within 24 h of serum addition, free cholesterol accumulated in all cell types with NPC greater than NPD greater than normal. These observations indicate that (a) regulation of cholesterol esterification in response to serum lipoproteins (but not 25-hydroxycholesterol) is abnormal in both NPC and NPD fibroblasts, and (b) the biochemical phenotypes of fibroblasts from NPC and NPD patients are distinct.  相似文献   

17.
Progesterone inhibits intracellular transport of lysosomal cholesterol in cultured cells, and thus at least in part mimics the biochemical phenotype of Niemann–Pick type C disease (NPC) in human fibroblasts. The goal of this study was to determine whether metabolism of progesterone to other steroids is affected by the NPC mutation or by P-glycoprotein (a known progesterone target). We found that human fibroblasts metabolize progesterone in three steps: rapid conversion to 5-pregnane-3,20-dione, which is then reduced to 5-pregnane-3β()-ol-20-one with subsequent 6-hydroxylation. The pattern and rates of progesterone metabolism were not significantly different in a variety of fibroblasts from normal individuals, NPC patients, and obligate heterozygotes. Inhibition of steroid 5-reductase with finasteride completely blocked metabolism of progesterone but had no effect on inhibition of LDL-stimulated cholesterol esterification (IC50=10 μM). Progesterone also partially inhibited 25-hydroxycholesterol-induced cholesterol esterification, with similar dose-dependence in normal and NPC fibroblasts. P-glycoprotein levels varied significantly among the various fibroblasts tested, but no correlation with NPC phenotype or rate of progesterone metabolism was noted, and P-glycoprotein inhibitors did not affect conversion of progesterone to products. These results indicate that metabolism of progesterone in human fibroblasts is largely independent of its ability to interfere with cholesterol traffic and P-glycoprotein function.  相似文献   

18.
Lysosome-like storage organelles (LSOs) play a crucial role in excessive accumulation of cholesterol in the Niemann-Pick type C (NPC) disease characterized by altered vesicular traffic of lipids. Annexin A6 (AnxA6) is mainly present in cytosol but upon elevation of [Ca2+]in binds to membranes. In addition, a pH or cholesterol-dependent mechanism of AnxA6 interaction with membranes was described. We found a several fold enrichment of AnxA6 in LSO compartment in fibroblasts isolated from NPC patients in comparison with fibroblasts from healthy individuals. We observed that AnxA6 relocates from cytosol to LSOs in a cholesterol-dependent manner. Cholesterol depletion caused reduction in the binding of AnxA6. Moreover, we found that in NPC cells AnxA6 translocates to the perinuclear region containing late endosomes (LE) loaded with cholesterol. We conclude that AnxA6 may participate in formation of cholesterol-rich platforms on LE and therefore may contribute to the pathology of the NPC disease.  相似文献   

19.
Mammalian cells obtain cholesterol via two pathways: endogenous synthesis in the endoplasmic reticulum and exogenous sources mainly through the low density lipoprotein (LDL) receptor pathway. We performed pulse-chase experiments to monitor the fate of endogenously synthesized cholesterol and showed that, after reaching the plasma membrane from the endoplasmic reticulum, the newly synthesized cholesterol eventually accumulates in an internal compartment in Niemann-Pick type C1 (NPC1) cells. Thus, the ultimate fate of endogenously synthesized cholesterol in NPC1 cells is the same as LDL-derived cholesterol. However, the time required for endogenous cholesterol to accumulate internally is much slower than LDL-derived cholesterol. Different pathways thus govern the post-plasma membrane trafficking of endogenous cholesterol and LDL-derived cholesterol to the internal compartment. Results using the inhibitor N-butyldeoxynojirimycin, which depletes cellular complex glycosphingolipids, demonstrates that the cholesterol trafficking defect in NPC1 cells is not caused by ganglioside accumulation. The ultimate cause of death in NPC disease is progressive neurological deterioration in the central nervous system, where the major source of cholesterol is derived from endogenous synthesis. Our current study provides a plausible link between defects in intracellular trafficking of endogenous cholesterol and the etiology of Niemann-Pick type C disease.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号