首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Iba1 is a 17-kDa EF-hand protein highly expressed in the cytoplasm of elongating spermatids in testis. Using Iba1 as a bait, we performed yeast Two-hybrid screening and isolated a heat-shock protein Hsp40, DjB1, from cDNA library of mouse testis. To characterize DjB1 that is encoded by Dnajb1 gene, we carried out immunoblot analyses, in situ hybridization, and immunohistochemistry. Immunoblot analyses showed that DjB1was constitutively expressed in mouse testis and that its expression level was not changed by heat shock. Dnajb1 mRNA was exclusively expressed in spermatocytes and round spermatids in mouse testis, and Dnajb1 protein DjB1 was predominantly expressed in the cytoplasm of spermatocytes, round spermatids, and elongating spermatids. In mature mouse spermatozoa, DjB1 was localized in the middle and the end pieces of flagella as well as in association with the head (acrosomal region). Association of DjB1 with the acrosomal region in sperm head was also observed in rat spermatozoa. These data suggested that DjB1, which was constitutively expressed in postmeiotic spermatogenic cells in testis, was integrated into spermatozoa as at least two components, that is, sperm head and tail of rodent spermatozoa.  相似文献   

3.
The MSJ-1 gene encodes a murine DnaJ homologue that is expressed specifically in adult testis. DnaJ proteins act as cochaperones of Hsp70 proteins in promoting diverse cellular functions. In this study we used recombinant MSJ-1 proteins to produce MSJ-1 antiserum and to carry out in vitro binding assays. In a wide immunoscreening of mouse tissues, affinity-purified MSJ-1 antibodies recognize a unique protein of 30 kDa in male germ cells only. MSJ-1 is able to interact with the testis-specific Hsp70-2 protein and can be coimmunoprecipitated with Hsp70-2 from spermatogenic cells; binding of these two chaperones is consistent with the presence of a third component, which is so far unknown. MSJ-1 is weakly detected in early round spermatids, and its protein content increases in cytodifferentiating spermatids where it colocalizes with the developing acrosome and their postnuclear region. Hsp70-2, which is known to be highly expressed in meiotic cells, shows a subcellular localization in late differentiating spermatids that overlaps that of MSJ-1. MSJ-1 is also maintained in testicular and epididymal spermatozoa, where it sharply demarcates into two distinct cell areas; the outer surface of the acrosomal vesicle, and the centrosomal area. On the whole, our findings are consistent with a role for MSJ-1 in acrosome formation and centrosome adjustment during spermatid development, whereas its presence in mature spermatozoa suggests a special function during fertilization, shortly afterward, or both.  相似文献   

4.
5.
During spermiogenesis, significant morphological changes occur as round spermatids are remodeled into the fusiform shape of mature spermatozoa. These changes are correlated with a reorganization of microfilaments and microtubules in the head and tail regions of elongating spermatids. There is also altered expression of specialized actin- and tubulin-associated proteins. We report the characterization of a novel, spermatid-specific murine paralog of the actin-bundling protein fascin (FSCN1); this paralog is designated testis fascin or FSCN3. Testis fascin is distantly related to fascins but retains its primary sequence organization. cDNA clones of mouse testis fascin predict a 498 amino acid protein of molecular mass 56 kD that shares 29% identity with mouse fascin. Mapping of murine and human FSCN3 genes shows localization to the 7q31.3 chromosome. Northern analysis indicates that FSCN3 expression is highly specific to testis and that in situ hybridization further restricts expression to elongating spermatids. Antibodies raised against recombinant FSCN3 protein identify a band at 56 kD in testis, epididymis, and epididymal spermatozoa, suggesting that testis fascin persists in mature spermatozoa. In accord with the in situ hybridization results, immunofluorescent microscopy localizes testis fascin protein to areas of the anterior spermatid head that match known distributions of F-actin in the dorsal and ventral subacrosomal spaces. It is possible that testis fascin may function in the terminal elongation of the spermatid head and in microfilament rearrangements that accompany fertilization.  相似文献   

6.
Immunohistochemical localization of a calmodulin-dependent protein phosphatase, calcineurin, was studied in the mouse testis in relation to previous observations showing that calmodulin is unusually rich in spermatogenic stages from mid-pachytene spermatocytes to elongating spermatids. The antibodies raised against calcineurin from scallop testis reacted with subunit B, but not subunit A, of calcineurin isoforms from mouse brain and testis. Indirect immunofluorescence using these antibodies on the mouse testis revealed positive reactions only in the nuclei of round or elongating spermatids: calcineurin started to accumulate in nuclei from the acrosomal cap phase, peaked at the initial stage of nuclear elongation, and decreased thereafter. There was almost no signal in the cytoplasm; spermatogenic cells at other stages, including spermatogonia, spermatocytes, mature sperm, and other somatic cells in the seminiferous tubules were totally negative. Immuno-electron microscopy gave the same result, on the basis of measuring the density of immunogold particles. These results suggest a role for calcineurin in remodeling of the nuclear chromatin in metamorphosing spermatids.  相似文献   

7.
8.
9.
In this study, we demonstrate that specialized junction plaques that occur between Sertoli cells and spermatids in the rat testis support microtubule translocation in vitro. During spermatogenesis, Sertoli cells are attached to spermatids by specialized adhesion junctions termed ectoplasmic specializations (ESs). These structures consist of regions of the plasma membrane adherent to the spermatid head, a submembrane layer of tightly packed actin filaments, and an attached cistern of endoplasmic reticulum. It has been proposed that motor proteins on the endoplasmic reticulum interact with adjacent microtubules to translocate the junction plaques, and hence the attached spermatids, within the epithelium. If this hypothesis is true, then isolated junctions should support microtubule transport. To verify this prediction, we have mechanically isolated rat spermatids, together with their attached ESs, and tested them for their ability to transport microtubules in vitro. Most assays were done in the presence of 2 mg/ml testicular cytosol and at room temperature. ESs attached to spermatids supported microtubule translocation. In some cases in which motility events were detected, microtubules moved smoothly over the junction site. In others, the movement was slow but progressive, saltatory and "inch-worm-like." No motility was detected in the absence of exogenous ATP or in the presence of apyrase (an enzyme that catalyses the breakdown of ATP). Our results are consistent with the microtubule-based motility hypothesis of spermatid translocation.  相似文献   

10.
Ubiquitin was purified from chicken testis and its content, biosynthesis and formation of conjugates was determined in germinal cells at successive stages of spermatogenesis. Free ubiquitin increased markedly during spermatogenesis, reaching its maximum level in early spermatids. High levels of ubiquitin were still present in late spermatids but were not detectable in mature spermatozoa. Biosynthesis of ubiquitin occurred in vitro in a fraction containing meiotic and pre-meiotic cells, and during spermiogenesis, in early and late spermatids. The cellular content of free ubiquitin increased after ATP depletion, especially in early spermatids. Lysates of chicken testis cells, particularly those obtained from spermatids, were able to form nuclear (24 and 27 kDa) and extranuclear (55-90 kDa) ubiquitin conjugates in vitro. The presence of increasing levels of ubiquitin and ubiquitin conjugates in chicken spermatids may suggest a possible involvement of this protein in the marked changes of protein turnover, chromatin structure and cell-cell interactions that spermatids undergo during spermiogenesis.  相似文献   

11.
Enkephalin precursor gene expression in postmeiotic germ cells   总被引:3,自引:0,他引:3  
Preproenkephalin mRNA was detected in rat testis after postnatal day 30. A high abundance of preproenkephalin mRNA was present in the spermatids (i.e., spermatogenic cells at postmeiotic stage) purified from mature rat testis. The mRNA size of the spermatids was about 1900 bases, which was larger than that of other tissues expressing the preproenkephalin gene. The spermatids contained small amounts of enkephalin-containing proteins, but little or no Met-enkephalin. Preproenkephalin gene expression in the germ cells suggests the connection between gametogenesis and nervous system.  相似文献   

12.
An antiserum prepared against the purified protein carboxyl methltransferase (PCMT) from bovine brain has been used to compare testicular and ovarian levels of the enzyme and to study the regulation of PCMT concentrations during spermatogenesis. The PCMT, which specifically modifies age-damaged aspartyl residues, is present at a significantly higher concentration in mature mouse testis than in ovary. However, the PCMT is present at nearly equal concentrations in extracts of germ cell-deficient ovaries and testes obtained from mutant atrichosislatrichosis mice. In normal testis, the concentration of the PCMT increases severalfold during the first 4–5 weeks after birth, paralleling the appearance and maturation of testicular germ cells. Both immunochemical and enzymatic measurements of PCMT specific activities in purified spermatogenic cell preparations indicate that PCMT levels are twofold and 3.5-fold higher in round spermatids and residual bodies, respectively, than in pachytene spermatocytes. The results are consistent with the enhanced synthesis and/or stability of the PCMT in spermatogenic cells and with the continued translation of the PCMT during the haploid portion of spermatogenesis. The relatively high levels of PCMT in spermatogenic cells may be important for the extensive metabolism of proteins accompanying spermatid condensation or for the repair of damaged proteins in translationally inactive spermatozoa.  相似文献   

13.
Tektins comprise a family of filament-forming proteins that are known to be coassembled with tubulins to form ciliary and flagellar microtubules. Recently we described the sequence of the first mammalian tektin protein, Tekt1 (from mouse testis), which is most homologous with sea urchin tektin C. We have now investigated the temporal and spatial expression of Tekt1 during mouse male germ cell development. By in situ hybridization analysis TEKT1 RNA expression is detected in spermatocytes and in round spermatids in the mouse testis. Immunofluorescence microscopy analysis with anti-Tekt1 antibodies showed no distinct labeling of any subcellular structure in spermatocytes, whereas in round spermatids anti-Tekt1 antibodies co-localize with anti-ANA antibodies to the centrosome. At a later stage, elongating spermatids display a larger area of anti-Tektl staining at their caudal ends; as spermiogenesis proceeds, the anti-Tekt1 staining disappears. Together with other evidence, these results provide the first intraspecies evidence that Tekt1 is transiently associated with the centrosome, and indicates that Tekt1 is one of several tektins to participate in the nucleation of the flagellar axoneme of mature spermatozoa, perhaps being required to assemble the basal body.  相似文献   

14.
15.
Fifteen male mosquito fish ( Gambusia affinis holbrooki ) were collected in 1989 on the 15th of each month to perform a quantitative histologic study of the annual testicular cycle including a calculation of the gonadosomatic index, testicular volume, and the total volume per testis occupied by each germ cell type. The cycle comprises two periods: spermatogenesis and quiescence. The spermatogenic period begins in April with the development of primary spermatogonia into secondary spermatogonia, spermatocytes and round spermatids. In May, the first spermatogenic wave is completed and the testicular volume begins to increase up to June when the maximum testicular volume and gonadosomatic index are reached. Germ cell proliferation with successive spermatogenetic waves continues until August. In September germ cell proliferation ceases and neither secondary spermatogonia nor spermatocytes are observed. However, spermiogenesis continues until October. In November, spermiogenesis has stopped and the testis enters the quiescent period up to April. During this period only primary spermatogonia and spermatozoa are present in the testis. In addition, a few spermatids whose spermiogenesis was arrested in November are observed. Testicular release of spermatozoa is continuous during the entire spermatogenesis period. The spermatozoa formed at the end of this period (September-October) remain in the testis during the quiescent period and are released at the beginning of the next spermatogenesis period in April. Developed Leydig cells appear all year long in the testicular interstitium, mainly around both efferent ducts and the testicular tubule sections showing S4 spermatids.  相似文献   

16.
Mammalian glucosamine 6-phosphate deaminase (GNPDA) was first detected in hamster spermatozoa. To further elucidate its role, we have cloned mouse GNPDA and produced a polyclonal rabbit anti-GNPDA antibody. This antibody recognized a 33 kDa protein in soluble extracts from mouse brain, liver, kidney, muscle, ovary, testis and sperm. Immunofluorescent analysis of the localization of GNPDA in male reproductive tissue revealed its presence in spermatids and in spermatozoa. In spermatids, GNPDA localized close to the developing acrosome vesicle and in spermatozoa close to the acrosomal region. Following the induction of the acrosome reaction, GNPDA fluorescence in spermatozoa was either reduced or GNPDA was absent. These data suggest that GNPDA might play a role in the acrosome reaction.  相似文献   

17.
Thymosin beta 10 is one of a small family of proteins closely related in sequence to thymosin beta 4, recently identified as an actin-sequestering protein. A single molecular weight species of thymosin beta 10 mRNA is present in a number of rat tissues. In adult rat testis, an additional thymosin beta 10 mRNA of higher molecular weight was identified. Nucleotide sequencing of cDNA clones complementary to the testis-specific thymosin mRNA indicated that this mRNA differed from the ubiquitous thymosin beta 10 mRNA only in its 5'-untranslated region, beginning 14 nucleotides upstream of the translation initiation codon. These results, together with primer extension experiments, suggest that the two thymosin beta 10 mRNAs are transcribed from the same gene through a combination of differential promoter utilization and alternative splicing. The novel thymosin beta 10 mRNA could be detected only in RNA isolated from sexually mature rat testis. Both mRNAs were present in pachytene spermatocytes; only the testis-specific mRNA was detected in postmeiotic haploid spermatids. Immunoblot analysis using specific antibodies showed that the thymosin beta 10 protein synthesized in adult testis was identical in size to that synthesized in brain. Immunohistochemical analysis showed that the protein was present in differentiating spermatids, suggesting that the testis-specific thymosin beta 10 mRNA is translated in haploid male germ cells.  相似文献   

18.
The lactate dehydrogenase (LDH) has been studied widely because it exists in various isozymic forms. The association of A and B subunits of LDH can generate five tetrameric isozymes, but the finding of the sixth isozyme in mature human testis and sperm indicated the presence of an additional subunit of LDH, designated as LDH-X (also termed LDH-C4 due to tetrameric nature of C-subunit). LDH-C4 isozyme is an iso-, allo-, and auto-antigen present in mammalian sperm cells. The synthesis of LDH-C4 in the testis takes place during sexual maturation, and it is the predominant fraction in mature spermatozoa. Though, originally considered to be testis specific, LDH-C or Ldh3 in mice was later detected in the murine oocyte and early embryo. Ldh3 in mouse supports its role in energy production in spermatids that favor lactate as substrate and in spermatozoa with a characteristic aerobic glycolytic path to yield ATP. During last two decades, cancer/testis-associated genes (CTAs) which are expressed only in the germinal epithelium of the testis are also expressed in some cancer cells, but not in non-cancerous somatic tissues. The CTAs are considered promising candidates for diagnosis and immunotherapy of cancer. The sperm-specific Ldh-c gene has been shown to express in a broad spectrum of human tumors, with high frequency in lung cancer, melanoma, and breast cancer; the protein being expressed virtually in all tumor types tested. Accordingly, LDH-C4 is the unique target for contraception in both males and females and offers potential future for immunotherapy of different types of cancers. As LDH-C has a preference for lactate as a substrate, LDH-C activation in cancer may depend on lactate for ATP production. The major aim of this article is to review the salient features of LDH-C subunit and the immune responses of LDH-C4 in homologous and heterologous species in relation to its role in acceptance or rejection of the allograft and its application in contraception and immunotherapy of cancer, directly or indirectly through the regulation of its substrate, the lactate.  相似文献   

19.
The gene encoding glutamic acid decarboxylase (GAD), the key enzyme in the synthesis of the inhibitory neurotransmitter gamma-aminobutyric acid, is shown to be expressed in the testis of several different species. Nucleotide sequence analysis of a cDNA clone isolated from the human testis confirmed the presence of GAD mRNA in the testis. The major GAD mRNA in the testis was 2.5 kilobases. Smaller amounts of a 3.7-kilobase mRNA with the same size as GAD mRNA in the brain was also detected in the testis. In situ hybridization using a GAD-specific probe revealed GAD mRNA expressing spermatocytes and spermatids located in the middle part of rat seminiferous tubules. Studies on the ontogeny of GAD mRNA expression showed low levels of GAD mRNA in testes of prepubertal rats, with increasing levels as sexual maturation is reached, compatible with GAD mRNA expression in germ cells. In agreement with this, fractionation of cells from the rat seminiferous epithelium followed by Northern (RNA) blot analysis showed the highest levels of GAD mRNA associated with spermatocytes and spermatids. Evidence for the presence of GAD protein in the rat testis was obtained from the demonstration of GAD-like immunoreactivity in seminiferous tubules, predominantly at a position where spermatids and spermatozoa are found. Furthermore, GAD-like immunoreactivity was seen in the midpiece of ejaculated human spermatozoa, the part that is responsible for generating energy for spermatozoan motility.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号