首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using the numerical model of Scheutjens and Fleer we investigated, on a self-consistent field level, the equilibrium structure of the neurofilament brush formed by the projection domains of NF-H, NF-M, and NF-L proteins. Although the actual amino-acid sequences in the projection domains are coarse-grained, the different (realistic) solubilities of amino-acid residues and the specific distribution of its intrinsic charges inside the arms of the NF proteins are taken explicitly into account. We collect strong evidence that the electrostatic interactions are a dominant force that controls the NF brush structure. There exists a remarkable spatial separation of the H, M, and L tails. In a dephosphorylated NF we found confined and flowerlike conformations for the H and M projection domains, respectively. We demonstrate that the ionization of KSP repeats in NF proteins triggers a conformational transition in the H tail that leads to the expulsion of its terminal (KEP) domain to the periphery of the NF brush. We argue that the phosphorylation of the NF proteins in axons can both increase the interfilament distance and stabilize cross bridges between neurofilaments.  相似文献   

2.
Applying self-consistent field theory, we consider a coarse-grained model for the polymerlike projections of neurofilament (NF) proteins that form a brush structure around neurofilaments. We focus on effects of molecular composition, which is the relative occurrence of NF-H, NF-M, and NF-L proteins, on the organization of NF projection domains. We consider NF brushes with selectively truncated projections, and with a varied ratio L:H:M of constituent tails. Our conclusion is that the NF brush structure is remarkably tolerant with respect to the variation in M and H chains. Results compare favorably with experimental data on model animals, provided that due attention is paid on the level of phosphorylation of the KSP repeats.  相似文献   

3.
Neurofilaments (NFs) are important cytoskeletal filaments that consist of long flexible C-terminal tails that are abundant with charges. The tails attain additional negative charges through serine phosphorylation of Lys-Ser-Pro (KSP) repeat motifs that are particularly found in neurofilament heavy (NF-H) and neurofilament medium (NF-M) proteins. These side-arm protrusions mediate the interaction between neighboring filaments and maintain axonal diameter. However, the precise role of NF proteins and their phosphorylation in regulating interfilament distances and axonal diameter still remains unclear. In this regard, a recent gene replacement study revealed that the phosphorylation of mouse NF-M KSP repeats does not affect axonal cytoarchitecture, challenging the conventional viewpoint on the role of NF phosphorylation. To better understand the effect of phosphorylation, particularly NF-M phosphorylation, we applied a computational method to reveal phosphorylation-mediated conformational changes in mouse NF architecture. We employed a three-dimensional sequence-based coarse-grained NF brush model to perform Monte Carlo simulations of mouse NF by using the sequence and stoichiometry of mouse NF proteins. Our result shows that the phosphorylation of mouse NF-M does not change the radial extension of NF-M side arms under a salt-free condition and in ionic solution, highlighting a structural factor that supports the notion that NF-M KSP phosphorylation has no effect on the axonal diameter of mouse. On the other hand, significant phosphorylation-mediated conformational changes were found in NF-H side arms under the salt-free condition, while the changes in ionic solution are not significant. However, NF-H side arms are found at the periphery of mouse NF architecture, implying a role in linking neighboring filaments.  相似文献   

4.
Making use of a numerical self-consistent field method and polymer brush concepts, we model the solvated corona of neurofilaments (NF) composed of projection domains (unstructured tails) of constituent proteins. Projections are modeled with amino acid resolution. We focus on the importance of the two shortest ones (α-internexin and NF-L) in regulating the conformations of the two longer ones (NF-M and NF-H) in an isolated NF. We take the wild-type NF with no α-internexin as the reference, for which the phosphorylation-induced translocation of M- and H-tails has been examined previously. We demonstrate that a subbrush of L-tails creates an electrostatic potential profile with an approximately parabolic shape. An experimentally relevant (2:1) ratio of L- to α-projections reduces the charge density of the L subbrush and shifts the translocation transition of the H-tails to slightly higher degrees of phosphorylation. Replacing all L-tails by α-projections destroys the substructure of the NF corona and this alters the NF response to the phosphorylation of long tails.  相似文献   

5.
Making use of a numerical self-consistent field method and polymer brush concepts, we model the solvated corona of neurofilaments (NF) composed of projection domains (unstructured tails) of constituent proteins. Projections are modeled with amino acid resolution. We focus on the importance of the two shortest ones (α-internexin and NF-L) in regulating the conformations of the two longer ones (NF-M and NF-H) in an isolated NF. We take the wild-type NF with no α-internexin as the reference, for which the phosphorylation-induced translocation of M- and H-tails has been examined previously. We demonstrate that a subbrush of L-tails creates an electrostatic potential profile with an approximately parabolic shape. An experimentally relevant (2:1) ratio of L- to α-projections reduces the charge density of the L subbrush and shifts the translocation transition of the H-tails to slightly higher degrees of phosphorylation. Replacing all L-tails by α-projections destroys the substructure of the NF corona and this alters the NF response to the phosphorylation of long tails.  相似文献   

6.
Neurofilaments (NFs) are essential cytoskeletal filaments that impart mechanical integrity to nerve cells. They are assembled from three distinct molecular mass proteins that bind to each other to form a 10-nm-diameter filamentous rod with sidearm extensions. The sidearms are considered to play a critical role in modulating interfilament spacing and axonal caliber. However, the precise mechanism by which NF protrusions regulate axonal diameter remains to be well understood. In particular, the role played by individual NF protrusions in specifying interfilament distances is yet to be established. To gain insight into the role of individual proteins, we investigated the structural organization of NF architecture under different phosphorylation conditions. To this end, a physically motivated sequence-based coarse-grain model of NF brush has been developed based on the three-dimensional architecture of NFs. The model incorporates the charge distribution of sidearms, including charges from the phosphorylation sites corresponding to Lys-Ser-Pro repeat motifs. The model also incorporates the proper grafting of the real NF sidearms based on the stoichiometry of the three subunits. The equilibrium structure of the NF brush is then investigated under different phosphorylation conditions. The phosphorylation of NF modifies the structural organization of sidearms. Upon phosphorylation, a dramatic change involving a transformation from a compact conformation to an extended conformation is found in the heavy NF (NF-H) protein. However, in spite of extensive phosphorylation sites present in the NF-H subunit, the tails of the medium NF subunit are found to be more extended than the NF-H sidearms. This supports the notion that medium NF protrusions are critical in regulating NF spacings and, hence, axonal caliber.  相似文献   

7.
Changes in the conformational state of chromatin core particles from chicken erythrocytes were studied by both immunochemical and biophysical methods as a function of pH and ionic strength. When the pH of core particles in a solution of ionic strength 3, 60 or 220 mM was lowered from pH 7.5, a sharp transition in the circular dichroism spectrum of DNA monitored between 320 and 260 nm was observed at pH 6.65. This change in DNA ellipticity was totally reversible. Binding to core particles of antibodies specific for histones H2B, H2A, H3 and for the IRGERA (synthetic C-terminal) peptide of H3 was used to follow changes in histone antigenicity. Binding was studied in the pH range 7.5-5.35, and at ionic strength of 60 and 220 mM. A change in reactivity of some histone epitopes was observed around pH 6.2–6.5. However, the changes observed by circular dichroism and antibody binding pertain to different components of chromatin subunits and they probably reflect independent phenomena. The alteration in accessibility of these determinants at the surface of core particles was completely reversible and was dependent on ionic strength. The conformation changes in core particles occurring near physiological ionic strength and pH may reflect dynamic changes in chromatin structure that possess functional significance.  相似文献   

8.
Neurofilaments (NFs) have been proposed to interact with one another through mutual steric exclusion of their unstructured C-terminal "sidearm" domains, producing order in axonal NF distributions and conferring mechanical strength to the axon. Here we apply theory developed for polymer brushes to examine the relationship between the brush properties of the sidearms and NF organization in axons. We first measure NF-NF radial distribution functions and occupancy probability distributions for adult mice. Interpreting the probability distributions using information theory, we show that the NF distributions may be represented by a single pair potential of mean force. Then, to explore the relationship between model parameters and NF architecture, we conduct two-dimensional Monte Carlo simulations of NF cross-sectional distributions. We impose purely repulsive interaction potentials in which the sidearms are represented as neutral and polyelectrolyte chains. By treating the NFs as telechelic polymer brushes, we also incorporate cross-bridging interactions. Both repulsive potentials are capable of reproducing NF cross-sectional densities and their pair correlations. We find that NF structure is sensitive to changes in brush thickness mediated by chain charge, consistent with the experimental observation that sidearm phosphorylation regulates interfilament spacing. The presence of attractive cross-bridging interactions contributes only modestly to structure for moderate degrees of cross-bridging and leads to NF aggregation for extensive cross-bridging.  相似文献   

9.
S K Gibson  J H Parkes  P A Liebman 《Biochemistry》1999,38(34):11103-11114
Phosphorylation reduces the lifetime and activity of activated G protein-coupled receptors, yet paradoxically shifts the metarhodopsin I-II (MI-MII) equilibrium (K(eq)) of light-activated rhodopsin toward MII, the conformation that activates G protein. In this report, we show that phosphorylation increases the apparent pK for MII formation in proportion to phosphorylation stoichiometry. Decreasing ionic strength enhances this effect. Gouy-Chapman theory shows that the change in pK is quantitatively explained by the membrane surface potential, which becomes more negative with increasing phosphorylation stoichiometry and decreasing ionic strength. This lowers the membrane surface pH compared to the bulk pH, increasing K(eq) and the rate of MII formation (k(1)) while decreasing the back rate constant (k(-)(1)) of the MI-MII relaxation. MII formation has been observed to depend on bulk pH with a fractional stoichiometry of 0.6-0.7 H(+)/MII. We find that the apparent fractional H(+) dependence is an artifact of altering the membrane surface charge during a titration, resulting in a fractional change in membrane surface pH compared to bulk pH. Gouy-Chapman calculations of membrane pH at various phosphorylation levels and ionic strengths suggest MII formation behavior consistent with titration of a single H(+) binding site with 1:1 stoichiometry and an intrinsic pK of 6.3 at 0.5 degrees C. We show evidence that suggests this same site has an intrinsic pK of 5.0 prior to light activation and its protonation before activation greatly enhances the rate of MII formation.  相似文献   

10.
11.
We have attacked H1-containing soluble chromatin by α-chymotrypsin under conditions where chromatin adopts different structures.Soluble rat liver chromatin fragments depleted of non-histone components were digested with α-chymotrypsin in NaCl concentrations between 0 mm and 500 mm. at pH 7, or at pH 10, or at pH 7 in the presence of 4 m-urea. α-Chymotrypsin cleaves purified rat liver histone H1 at a specific initial site (CT) located in the globular domain and produces an N-terminal half (CT-N) which contains most of the globular domain and the N-terminal tail, and a C-terminal half (CT-C) which contains the C-terminal tail and a small part of the globular domain. Since in sodium dodecyl sulfate/polyacrylamide-gel electrophoresis CT-C migrates between the core histones and H1, cleavage of chromatin-bound H1 by α-chymotrypsin can be easily monitored.The CT-C fragment was detected under conditions where chromatin fibers were unfolded or distorted: (1) under conditions of H1 dissociation at 400 mm and 500 mm-NaCl (pH 7 and 10); (2) at very low ionic strength where chromatin is unfolded into a filament with well-separated nucleosomes; (3) at pH 10 independent of the ionic strength where chromatin never assumes higher order structures; (4) in the presence of 4 m-urea (pH 7), again independent of the ionic strength. However, hardly any CT-C fragment was detected under conditions where fibers are observed in the electron microscope at pH 7 between 20 mm and 300 mm-NaCl. Under these conditions H1 is degraded by α-chymotrypsin into unstable fragments with a molecular weight higher than that of CT-C. Thus, the data show that there are at least two different modes of interaction of H1 in chromatin which correlate with the physical state of the chromatin.Since the condensation of chromatin into structurally organized fibers upon raising the ionic strength starts by internucleosomal contacts in the fiber axis (zig-zag-shaped fiber), where H1 appears to be localized, it is likely that in chromatin fibers the preferential cleavage site for α-chymotrypsin is protected because of H1-H1 contacts. The data suggest that the globular part of H1 is involved in these contacts close to the fiber axis. They appear to be hydrophobic and to be essential for the structural organization of the chromatin fibers. Based on the present and earlier observations we propose a model for H1 in which the globular domains eventually together with the N-terminal tails form a backbone in the fiber axis, and the nucleosomes are mainly attached to this polymer by the C-terminal tails.  相似文献   

12.
Environmental factors of physiological relevance such as pH, calcium, ionic strength, and temperature can affect the state of self-aggregation of surfactant protein A (SP-A). We have studied the secondary structure of different SP-A aggregates and analyzed their fluorescence characteristics. (a) We found that self-aggregation of SP-A can be Ca(2+)-dependent. The concentration of Ca(2+) needed for half-maximal self-association (K(a)(Ca)()2+) depended on the presence of salts. Thus, at low ionic strength, K(a)(Ca)()2+ was 2.3 mM, whereas at physiological ionic strength, K(a)(Ca)()2+ was 2.35 microM. Circular dichroism and fluorescence measurements of Ca(2+)-dependent SP-A aggregates indicated that those protein aggregates formed in the absence of NaCl are structurally different from those formed in its presence. (b) We found that self-aggregation of SP-A can be pH-dependent. Self-aggregation of SP-A induced by H(+) was highly influenced by the presence of salts, which reduced the extent of self-association of the protein. The presence of both salts and Ca(2+) attenuated even more the effects of acidic media on SP-A self-aggregation. (c) We found that self-aggregation of SP-A can be temperature-dependent. At 20 degrees C, SP-A underwent self-aggregation at physiological but not at low ionic strength, in the presence of EDTA. All of these aggregates were dissociated by either adding EDTA (a), increasing the pH to neutral pH (b), or increasing the temperature to 37 degrees C (c). Dissociation of Ca(2+)-induced protein aggregates at low ionic strength was accompanied by an irreversible loss of both SP-A secondary structure and SP-A-dependent lipid aggregation properties. On the other hand, temperature-dependent experiments indicated that a structurally intact collagen-like domain was required for either Ca(2+)- or Ca(2+)/Na(+)-induced SP-A self-aggregation but not for H(+)-induced protein aggregation.  相似文献   

13.
The theoretical analysis of nucleosome stability at low ionic strength has been performed on the basis of consideration of different contributions to the free energy of compact state of the nucleosome DNA terminal regions. The proposed model explains: the fact of low-salt structural change; the transition point (approximately 1.7 mM NaCl) and width (approximately 1 mM); the shift of the transition to the higher salt concentrations in the case of histones tails removal by trypsin. According to the model the increase of electrostatic repulsion between neighbouring turns of DNA superhelix is the main cause of the unwinding of nucleosomal DNA terminal regions in the course of low-salt structural change. The interactions between histone (H2A-H2B) dimer and (H3-H4)2 tetramer provide the compact state of the nucleosomal DNA terminal regions. The existence of electrostatic interactions of nucleosomal DNA terminal regions with tetramer was suggested. These interactions can provide the compact state of nucleosomal DNA at physiological ionic strength even in the absence of (H2A-H2B) dimer.  相似文献   

14.
15.
Effects of pH on the stability of chromatin core particles.   总被引:2,自引:1,他引:1       下载免费PDF全文
Chromatin core particles near physiological ionic strength undergo a reversible transition induced by changes in pH near neutrality. While sedimentation studies indicate no significant effect on size or shape, changes in tyrosine fluorescence anisotropy and in circular dichroism suggest a somewhat looser structure at high pH. Further support of this suggestion is given by high salt dissociation experiments; at pH 8 core particles begin to show changes at lower salt concentration than at pH 6. The pH transition appears unaffected by the presence of Mg2+ but can be blocked by crosslinking of the histones. A possible relationship is suggested between this transition and increases in intracellular pH which correlate with enhancement in several aspects of cellular activity including DNA replication.  相似文献   

16.
Neurofilaments are essential cytoskeletal filaments that impart mechanical stability to axons. They are mostly assembled from three neurofilament proteins that form the core of the filament and its sidearms. Adjacent neurofilaments interact with each other through their apposing sidearms and attain unique conformations depending on the ionic condition, phosphorylation state, and interfilament separations. To understand the conformational properties of apposing sidearms under various conditions and gain insight into interfilament interactions, we performed Monte Carlo simulations of neurofilament pairs. We employed a sequence-based coarse-grained model of apposing NF sidearms that are end-tethered to cylindrical geometries according to the stoichiometry of the three neurofilament subunits. Monte Carlo simulations were conducted under different conditions such as phosphorylation state, ionic condition, and interfilament separations. Under salt-free conditions, apposing sidearms are found to adopt mutually excluding stretched but bent away conformations that are reminiscent of a repulsive type of interaction. Under physiological conditions, apposing sidearms are found to be in a coiled conformation, suggesting a short-range steric repulsive type of interaction. Increased sidearm mutual interpenetration and a simultaneous decrease in the individual brush heights were observed as the interfilament separation was reduced from 60 to 40 nm. The observed conformations suggest entropic interaction as a likely mechanism for sidearm-mediated interfilament interactions under physiological conditions.  相似文献   

17.
Y Goto  A L Fink 《Biochemistry》1989,28(3):945-952
We present evidence that beta-lactamase is close to fully unfolded (i.e., random coil conformation) at low ionic strength at the extremes of pH and that the presence of salt causes a cooperative transition to a conformation with the properties of a molten globule, namely, a compact state with native-like secondary structure but disordered side chains (tertiary structure). The conformation of beta-lactamase I from Bacillus cereus was examined over the pH 1.5-12.5 region by circular dichroism (CD), tryptophan fluorescence, dynamic light scattering, and 1-anilino-8-naphthalenesulfonate (ANS) binding. Under conditions of low ionic strength (I = 0.05) beta-lactamase was unfolded below pH 2.5 and above pH 11.5, on the basis of the far-UV and near-UV CD and tryptophan fluorescence. However, at high ionic strength and low pH an intermediate conformation (state A) was observed, with a secondary structure content similar to that of the native protein but a largely disordered tertiary structure. The transition from the unfolded state (U) to state A induced by KCl was cooperative and had a midpoint at 0.12 M KCl (I = 0.17 M) at pH 1.6. A similar conformation (state B) was observed at high pH and high ionic strength. The transition from the alkaline U state to state B induced by KCl at pH 12.2 was cooperative and had a midpoint at 0.6 M KCl (I = 0.65 M). Light scattering measurements showed that state B was compact although somewhat expanded compared to the N state. The compactness of state A could not be determined due to its strong propensity to aggregate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
After dialysis against 10 mM-Tris-acetate (pH 8.5), vimentin that has been purified in the presence of urea is present in the form of tetrameric 2 to 3 nm X 48 nm rods known as protofilaments. These building blocks in turn polymerize into intermediate filaments (10 to 12 nm diameter) when they are dialyzed against a solution of physiological ionic strength and pH. By varying the ionic conditions under which polymerization takes place, we have identified two classes of assembly intermediates whose structures provide clues as to how an intermediate filament may be constructed. The structure of the first class, seen when assembly takes place at 10 to 20 mM-salt at pH 8.5, strongly suggests that one of the initial steps of filament assembly is the association of protofilaments into pairs with a half-unit axial stagger. Increasing the ionic strength of the assembly buffer leads to the emergence of short, full-width intermediate filaments at approximately 50 mM-salt at pH 8.5. In the presence of additional protofilaments, these short filaments elongate to many micrometers when the ionic strength and pH are further adjusted to physiological levels. The electron microscope images of the assembly intermediates suggest that vimentin-containing intermediate filaments are made up of eight protofilaments, assembled such that there is an approximately 22 nm axial stagger between neighboring protofilaments. We propose that this half-unit staggering of protofilaments is a fundamental feature of intermediate filament structure and assembly, and that it could account for the 20 to 22 nm axial repeat seen in all intermediate filaments examined so far.  相似文献   

19.
The binding of polymyxin-B to charged dipalmitoyl phosphatidic acid membranes has been studied as function of the external pH and of the ionic strength of the buffer solution. The phase transition curves were obtained by measuring the fluorescence depolarization of diphenyl hexatriene incorporated into the membrane with temperature. The molecular process of polymyxin binding was elucidated: 1. At an ionic strength of I greater than or equal to 0.1 mol/l a three step phase transition curve is found. A high-temperature step corresponds to the non-bound lipid. A lowered phase transition concerns to protein-bound lipid domains. This again is splitted into two steps. An inner core of the domain is characterized by a lipid-protein complex which is stabilized through hydrophobic and electrostatic interactions between polymyxin and the charged lipid. This core is surrounded by an outer belt of only hydrophobically bound molecules. This part shows a lower phase transition temperature than the inner core. 2. The binding curves of polymyxin to phosphatidic acid membranes depend strongly on the ionic strength of the water phase. The cooperativity of the binding process increases with increasing ionic strength and reaches a constant value at I greater than 0.2 mol/l. The maximum fraction of bound lipid decreases with increasing ionic strength. 3. The pH of the water phase strongly influences the cooperative binding process. At pH 6 a loss of cooperativity is observed at low ionic strength. Increasing the ion concentration to I = 0.3 mol/l recuperates the cooperativity of the binding process. At pH 3.0 no cooperative binding is obtained even at high ionic strength.  相似文献   

20.
Effects of ionic strength and proteolytic digestion on the conformation of chromatin fibers were studied by electric birefringence and relaxation measurements. The results confirm that at low ionic strength chromatin presents structural features reflecting those observed in the presence of cations. Soluble chromatin prepared from rat liver nuclei by brief nuclease digestion exhibits a positive birefringence. As the salt concentration is increased, the transition to a compact solenoidal structure is deduced from changes in electro-optical properties: the positive birefringence gradually decreases and the observed reduction in 40 mM NaCl is nearly 95%; the relaxation time decreases dramatically and the character of the kinetic changes since the decay of birefringence described initially by a spectrum of relaxation times becomes monoexponential. On digestion with proteases at low ionic strength we observe at first a rapid increase of the positive birefringence concomitant with an increase of the relaxation time. Then the birefringence decreases and becomes negative. Chromatin undergoes two successive transitions: the first transition is explained by a lengthening of nucleosomal chains without modification of the orientation of nucleosomes within the superstructure and the second one by the unwinding of the DNA tails and internucleosomal segments. When chromatin is digested at 30 mM NaCl we find a single unfolding transition characterized by the decrease of birefringence and a slight increase in the relaxation time. The results imply that the positive birefringence of chromatin does not depend on the presence of whole histone H1 and that a salt concentration of 30 mM NaCl is sufficient to modify the initial site or/and the effects of proteolytic attack.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号