首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3'----5' Exonuclease specific for single-stranded DNA copurified with DNA polymerase of nuclear polyhedrosis virus of silkworm Bombyx mori (BmNPV Pol). BmNPV Pol has no detectable 5'----3' exonuclease activity on single-stranded or duplex DNA. Analysis of the products of 3'----5' exonucleolytic reaction showed that deoxynucleoside monophosphates were released during the hydrolysis of single-stranded DNA. The exonuclease activity cosedimented with the polymerase activity during ultracentrifugation of BmNPV Pol in glycerol gradient. The polymerase and the exonuclease activities of BmNPV Pol were inactivated by heat with nearly identical kinetics. The mode of the hydrolysis of single-stranded DNA by BmNPV Pol-associated exonuclease was strictly distributive. The enzyme dissociated from single-stranded DNA after the release of a single dNMP and then reassociated with a next polynucleotide being degradated.  相似文献   

3.
Analysis of metal activation on the synthetic and degradative activities of phi 29 DNA polymerase was carried out in comparison with T4 DNA polymerase and Escherichia coli DNA polymerase I (Klenow fragment). In the three DNA polymerases studied, both the polymerization and the 3'----5' exonuclease activity had clear differences in their metal ion requirements. The results obtained support the existence of independent metal binding sites for the synthetic and degradative activities of phi 29 DNA polymerase, according with the distant location of catalytic domains (N-terminal for the 3'----5' exonuclease and C-terminal for DNA polymerization) proposed for both Klenow fragment and phi 29 DNA polymerase. Furthermore, DNA competition experiments using phi 29 DNA polymerase suggested that the main differences observed in the metal usage to activate polymerization may be the consequence of metal-induced changes in the enzyme-DNA interactions, whose strength distinguishes processive and nonprocessive DNA polymerases. Interestingly, the initiation of DNA polymerization using a protein as a primer, a special synthetic activity carried out by phi 29 DNA polymerase, exhibited a strong preference for Mn2+ as metal activator. The molecular basis for this preference is mainly the result of a large increase in the affinity for dATP.  相似文献   

4.
The interaction of a fluorescent duplex DNA oligomer with the Klenow fragment of DNA polymerase I from Escherichia coli has been studied in solution by using time-resolved fluorescence spectroscopy. An aminonaphthalenesulfonate (dansyl) fluorescent probe was linked by a propyl chain to a C5-modified uridine base located at a specific site in the primer strand of the DNA oligomer. The fluorescent oligomer bound tightly to the Klenow fragment (KD = 7.9 nM), and the probe's position within the DNA-protein complex was varied by stepwise elongation of the primer strand upon addition of the appropriate deoxynucleoside triphosphates. The decay of the total fluorescence intensity and the polarization anisotropy were measured with a picosecond laser and a time-correlated single photon counting system. The fluorescence lifetimes, the correlation time for internal rotation, and the angular range of internal rotation varied according to the probe's position within the DNA-protein complex. These results showed that five or six bases of the primer strand upstream of the 3' terminus were in contact with the protein and that within this contact region there were differences in the degree of solvent accessibility and the closeness of contact. Further, a minor binding mode of the DNA-protein complex was identified, on the basis of heterogeneity of the probe environment observed when the probe was positioned seven bases upstream from the primer 3' terminus, which resulted in a distinctive "dip and rise" in the anisotropy decay. Experiments with an epoxy-terminated DNA oligomer and a site-directed mutant protein established that the labeled DNA was binding at the polymerase active site (major form) and at the spatially distinct 3'----5' exonuclease active site (minor form). The abundance of each of these distinct binding modes of the DNA-protein complex was estimated under solution conditions by analyzing the anisotropy decay of the dansyl probe. About 12% of the labeled DNA was bound at the 3'----5' exonuclease site. This method should be useful for investigating the editing mechanism of this important enzyme.  相似文献   

5.
6.
During in vitro replication of UV-irradiated single-stranded DNA with Escherichia coli DNA polymerase III holoenzyme termination frequently occurs at pyrimidine photodimers. The termination stage is dynamic and characterized by at least three different events: repeated dissociation-reinitiation cycles of the polymerase at the blocked termini; extensive hydrolysis of ATP to ADP and inorganic phosphate; turnover of dNTPs into dNMP. The reinitiation events are nonproductive and are not followed by further elongation. The turnover of dNTPs into dNMPs is likely to result from repeated cycles of insertion of dNMP residues opposite the blocking lesions followed by their excision by the 3'----5' exonucleolytic activity of the polymerase. Although all dNTPs are turned over, there is a preference for dATP, indicating that DNA polymerase III holoenzyme has a preference for inserting a dAMP residue opposite blocking pyrimidine photodimers. We suggest that the inability of the polymerase to bypass photodimers during termination is due to the formation of defective initiation-like complexes with reduced stability at the blocked termini.  相似文献   

7.
The role of exonuclease activity in trans-lesion DNA replication with Escherichia coli DNA polymerase III holoenzyme was investigated. RecA protein inhibited the 3'----5' exonuclease activity of the polymerase 2-fold when assayed in the absence of replication and had no effect on turnover of dNTPs into dNMPs. In contrast, single-stranded DNA-binding protein, which had no effect on the exonuclease activity in the absence of replication, showed a pronounced 7-fold suppression of the 3'----5' exonuclease activity during replication. The excision of incorporated dNMP alpha S residues from DNA by the 3'----5' exonuclease activity of DNA polymerase III holoenzyme was inhibited 10-20-fold; still no increase in bypass of pyrimidine photodimers was observed. Thus, in agreement with our previous results in which the exonuclease activity was inhibited at the protein level (Livneh, Z. (1986) J. Biol. Chem. 261, 9526-9533), inhibition at the DNA level also did not increase bypass of photodimers. Fractionation of the replication mixture after termination of DNA synthesis on a Bio-Gel A-5m column under conditions which favor polymerase-DNA binding yielded a termination complex which could perform turnover of dNTPs into dNMPs. Adding challenge-primed single-stranded DNA to the complex yielded a burst of DNA synthesis which was promoted most likely by DNA polymerase III holoenzyme molecules transferred from the termination complex to the challenge DNA thus demonstrating the instability of the polymerase-DNA association. Addition of a fresh sample of DNA polymerase III holoenzyme to purified termination products, which consist primarily of partially replicated molecules with nascent chains terminated at UV lesions, did not result in any net DNA synthesis as expected. However, reactivation of lesion-terminated primers was achieved by pretreatment with a 3'----5' exonuclease which excised 200 nucleotides or more, generating new 3'-OH termini located away from the UV lesions. When these exonuclease-treated products were subjected to a second round of replication, an increased level of DNA synthesis was observed including additional bypass of photodimers. These results suggest the possibility that 3'----5' exonuclease processing might be required at least transiently during one of the stages of trans-lesion DNA replication, which is believed to be the mechanism of SOS-targeted mutagenesis.  相似文献   

8.
The effect of NaF on the enzymatic activities of the large fragment of E. coli DNA polymerase I (Klenow enzyme-KE) with different DNA-substrates was studied. It was shown that fluoride ion at concentrations of 5-10 mM efficiently inhibits the 3'----5' exonuclease activity of KE but does not affect the polymerase activity of the enzyme. Selective inhibition of the 3'----5' exonuclease activity of KE is Mg-dependent and is observed with double- or single-stranded DNAs. In reaction with the 14-mer oligonucleotide annealed with single-stranded phage M13 DNA the enzyme was found not only to perform the exonucleolytic hydrolysis of the primers but to catalyse also a limited elongation of some primers, adding a few nucleotide residues in the absence of exogenous dNTP. The primer elongation is inhibited by inorganic pyrophosphatase and is stimulated by micromolar concentrations of exogenous pyrophosphate thus suggesting a possible role of PPi contamination in dNTP generation via pyrophosphorolysis. Traces of precursors in DNA preparations obtained by generally employed methods may serve as another source of nucleotides for the primer elongation.  相似文献   

9.
The fidelity of DNA synthesis by an exonuclease-proficient DNA polymerase results from the selectivity of the polymerization reaction and from exonucleolytic proofreading. We have examined the contribution of these two steps to the fidelity of DNA synthesis catalyzed by the large Klenow fragment of Escherichia coli DNA polymerase I, using enzymes engineered by site-directed mutagenesis to inactivate the proofreading exonuclease. Measurements with two mutant Klenow polymerases lacking exonuclease activity but retaining normal polymerase activity and protein structure demonstrate that the base substitution fidelity of polymerization averages one error for each 10,000 to 40,000 bases polymerized, and can vary more than 30-fold depending on the mispair and its position. Steady-state enzyme kinetic measurements of selectivity at the initial insertion step by the exonuclease-deficient polymerase demonstrate differences in both the Km and the Vmax for incorrect versus correct nucleotides. Exonucleolytic proofreading by the wild-type enzyme improves the average base substitution fidelity by 4- to 7-fold, reflecting efficient proofreading of some mispairs and less efficient proofreading of others. The wild-type polymerase is highly accurate for -1 base frameshift errors, with an error rate of less than or equal to 10(-6). The exonuclease-deficient polymerase is less accurate, suggesting that proofreading also enhances frameshift fidelity. Even without a proofreading exonuclease, Klenow polymerase has high frameshift fidelity relative to several other DNA polymerases, including eucaryotic DNA polymerase-alpha, an exonuclease-deficient, 4-subunit complex whose catalytic subunit is almost three times larger. The Klenow polymerase has a large (46 kDa) domain containing the polymerase active site and a smaller (22 kDa) domain containing the active site for the 3'----5' exonuclease. Upon removal of the small domain, the large polymerase domain has altered base substitution error specificity when compared to the two-domain but exonuclease-deficient enzyme. It is also less accurate for -1 base errors at reiterated template nucleotides and for a 276-nucleotide deletion error. Thus, removal of a protein domain of a DNA polymerase can affect its fidelity.  相似文献   

10.
The Klenow fragment of DNA polymerase I from Escherichia coli has two enzymatic activities: DNA polymerase and 3'-5' exonuclease. The crystal structure showed that the fragment is folded into two distinct domains. The smaller domain has a binding site for deoxynucleoside monophosphate and a divalent metal ion that is thought to identify the 3'-5' exonuclease active site. The larger C-terminal domain contains a deep cleft that is believed to bind duplex DNA. Several lines of evidence suggested that the large domain also contains the polymerase active site. To test this hypothesis, we have cloned the DNA coding for the large domain into an expression system and purified the protein product. We find that the C-terminal domain has polymerase activity (albeit at a lower specific activity than the native Klenow fragment) but no measurable 3'-5' exonuclease activity. These data are consistent with the hypothesis that each of the three enzymatic activities of DNA polymerase I from E. coli resides on a separate protein structural domain.  相似文献   

11.
The 3'----5' exonuclease activities of T4 DNA polymerase and the Klenow fragment of Polymerase I towards the phosphoryl and thiophosphoryl 3',5' linkage were examined under comparable conditions of idling-turnover, duplex hydrolysis and turnover during polymerization. With the T4 enzyme there is a negligible effect of thiosubstitution on these activities; with the Klenow fragment there is a greater than one hundred-fold reduction in rate with the thiolinkage for the exonuclease but not polymerization activities. This inability to hydrolyze rapidly the thiophosphoryl linkage extends to the hydrolytic activity of Exonuclease III. The quantitation of the exonuclease activities of these three proteins under various conditions should aid in the successful employment of thiophosphoryl nucleoside triphosphates for their incorporation into DNA.  相似文献   

12.
The refined crystal structures of the large proteolytic fragment (Klenow fragment) of Escherichia coli DNA polymerase I and its complexes with a deoxynucleoside monophosphate product and a single-stranded DNA substrate offer a detailed picture of an editing 3'-5' exonuclease active site. The structures of these complexes have been refined to R-factors of 0.18 and 0.19 at 2.6 and 3.1 A resolution respectively. The complex with a thymidine tetranucleotide complex shows numerous hydrophobic and hydrogen-bonding interactions between the protein and an extended tetranucleotide that account for the ability of this enzyme to denature four nucleotides at the 3' end of duplex DNA. The structures of these complexes provide details that support and extend a proposed two metal ion mechanism for the 3'-5' editing exonuclease reaction that may be general for a large family of phosphoryltransfer enzymes. A nucleophilic attack on the phosphorous atom of the terminal nucleotide is postulated to be carried out by a hydroxide ion that is activated by one divalent metal, while the expected pentacoordinate transition state and the leaving oxyanion are stabilized by a second divalent metal ion that is 3.9 A from the first. Virtually all aspects of the pretransition state substrate complex are directly seen in the structures, and only very small changes in the positions of phosphate atoms are required to form the transition state.  相似文献   

13.
DNA polymerase I is a multifaceted enzyme with one polymerizing and two exonuclease activities. Captan was previously shown to be an inhibitor of this enzyme's polymerizing activity and this report measures the effects of captan on the two exonuclease activities. When the holoenzyme was tested, captan enhanced the degradation of poly(dA-dT), T7 DNA and, to a significantly lesser extent, heat-denatured DNA. However, when the effects of captan were tested as a function of substrate concentration, the stimulatory influence was measured only at high substrate concentrations. At low concentrations of DNA, captan was inhibitory. Inhibition and enhancement each showed an ED50 of the same value (approx. 100 microM). By assaying the two exonuclease activities separately it was shown that the differential effect on the holoenzyme by captan was the result of a combined inhibition of the 3'----5' exonuclease and enhancement of the 5'----3' exonuclease. Klenow fragment with poly(dA-dT) as substrate was used to assay for 3'----5' exonuclease activity. Captan inhibited this exonuclease and the inhibition could be prevented by the addition of greater concentrations of substrate. Holoenzyme and poly(rA)-poly(dT) were used to assay for 5'----3' exonucleolysis, which was enhanced at higher concentrations of substrate in the presence of captan.  相似文献   

14.
C E Catalano  S J Benkovic 《Biochemistry》1989,28(10):4374-4382
The suicidal inactivation of Escherichia coli DNA polymerase I by epoxy-ATP has been previously reported (Abboud et al., 1978). We have examined in detail the mechanism of this inactivation utilizing a synthetic DNA template-primer of defined sequence. Epoxy-ATP inactivates the large fragment of DNA polymerase I (the Klenow fragment) in a time- and concentration-dependent manner (KI = 21 microM; kinact = 0.021 s-1). Concomitant with inactivation is the incorporation of epoxy-AMP into the primer strand. The elongated DNA duplex directly inhibits the polymerase activity of the enzyme (no time dependence) and is resistant to degradation by the 3'----5' exonuclease and pyrophosphorylase activities of the enzyme. Inactivation of the enzyme results from slow (4 X 10(-4) s-1) dissociation of the intact epoxy-terminated template-primer from the enzyme and is thus characterized as a tight-binding inhibition. Surprisingly, while the polymerase activity of the enzyme is completely suppressed by epoxy-ATP, the 3'----5' exonuclease activity remains intact. The data presented demonstrate that even though the polymerase site is occupied with duplex DNA, the enzyme can bind a second DNA duplex and carry out exonucleolytic cleavage.  相似文献   

15.
It is shown, that DNA hydrolysis catalyzed by E. coli DNA polymerase I is inhibited, when a reaction mixture contains one type of deoxynucleoside 5'-triphosphate (dNTP). When the reaction mixture contains [32P]dNTP, then [32P] is incorporated into DNA and v. v. (32P) from DNA is transferred into dNTP. The nucleotide exchange between DNA and dNTP in the assay mixture is observed only in the case, when the chemical nature of nucleotide residue of dNTP and that of the 3'-terminus of DNA is the same. Analysis of products of DNA hydrolysis in the presence of one type of dNTP using electrophoresis in polyacrylamide gel shows that most of the DNA molecules are terminated at the 3'-termini by the dNMP residue of the same chemical nature as the dNTP in the assay mixture. However, in some cases DNA molecules contain one additional nucleotide residue. This phenomenon can be explained by incorporation of one additional dNMP residue originating from dNTP only in those cases, when a non-typical base pairing of this nucleotide residue with a template residue readily takes place. The above-mentioned facts can be interpreted within the model for DNA hydrolysis with involvement of two intermediate covalent forms of dNMP residues with DNA polymerase I; one dNMP-intermediate should be placed at the elongation center and the other--at the hydrolysis center. The DNA hydrolysis by 3'----5' exonuclease activity of DNA polymerase I proceeds through these two covalent forms. DNA polymerases alpha from calf thymus and T4 phage do not catalyze the nucleotide exchange between DNA and dNTP from the reaction media.  相似文献   

16.
AMP and NaF each taken separately were shown to activate DNA polymerization catalyzed by Klenow fragment of DNA polymerase I by means of interaction of AMP or NaF with 3'----5'-exonuclease center of the enzyme. In the presence of NaF which is a selective inhibitor of 3'----5'-exonuclease center, AMP is an inhibitor of polymerization competitive with respect to dATP. Ki values and the pattern of inhibition with respect to dATP were determined for AMP, ADP, ATP, carboxymethylphosphonyl-5'-AMP, Pi, PPi, PPPi, methylenediphosphonic acid and its ethylated esters, phosphonoformic acid, phosphonoacetic acid and its ethylated esters as well as for some bicarbonic acids in the reactions of DNA polymerization catalyzed by Klenow fragment of DNA polymerase I (in the presence of NaF) and DNA polymerase alpha from human placenta in the presence of poly(dT) template and r(pA)10 primer. All nucleotides and their analogs were found to be capable of competing with dATP for the active center of the enzyme. Most of the analogs of PPi and phosphonoacetic acid are inhibitors of Klenow fragment competitive with respect to dATP. Nowever these analogs display a mixed-type inhibition in the case of human DNA polymerase alpha. We postulated a similar mechanism of interaction for dNTP with both DNA-polymerases. It is suggested that each phosphate group of PPi makes equal contribution to the interaction with DNA polymerases and that the distance between the phosphate groups is important for this interaction. beta-phosphate of NTP or dNTP is suggested to make negligible contribution to the efficiency of the formation of enzyme complexes with dNTP. beta-phosphate is likely to be an essential point of PPi interaction with the active center of proteins during the cleavage of the alpha-beta-phosphodiester bond of dNTP in the reaction of DNA polymerization.  相似文献   

17.
The Klenow fragment of Escherichia coli DNA polymerase I catalyzes template-directed synthesis of DNA and uses a separate 3'-5' exonuclease activity to edit misincorporated bases. The polymerase and exonuclease activities are contained in separate structural domains. In this study, nine Klenow fragment derivatives containing mutations within the polymerase domain were examined for their interaction with model primer-template duplexes. The partitioning of the DNA primer terminus between the polymerase and 3'-5' exonuclease active sites of the mutant proteins was assessed by time-resolved fluorescence anisotropy, utilizing a dansyl fluorophore attached to the DNA. Mutation of N845 or R668 disrupted favorable interactions between the Klenow fragment and a duplex containing a matched terminal base pair but had little effect when the terminus was mismatched. Thus, N845 and R668 are required for recognition of correct terminal base pairs in the DNA substrate. Mutation of N675, R835, R836, or R841 resulted in tighter polymerase site binding of DNA, suggesting that the side chains of these residues induce strain in the DNA and/or protein backbone. A double mutant (N675A/R841A) showed an even greater polymerase site partitioning than was displayed by either single mutation, indicating that such strain is additive. In both groups of mutant proteins, the ability to discriminate between duplexes containing matched or mismatched base pairs was impaired. In contrast, mutation of K758 or Q849 had no effect on partitioning relative to wild type, regardless of DNA mismatch character. These results demonstrate that DNA mismatch recognition is dependent on specific amino acid residues within the polymerase domain and is not governed solely by thermodynamic differences between correct and mismatched base pairs. Moreover, this study suggests a mechanism whereby the Klenow fragment is able to recognize polymerase errors following a misincorporation event, leading to their eventual removal by the 3'-5' exonuclease activity.  相似文献   

18.
W Zhu  J Ito 《Nucleic acids research》1994,22(24):5177-5183
In order to establish the evolutionary relationship between the family A and B DNA polymerases, we have closely compared the 3'-->5' exonuclease domains between the Klenow fragment of E.coli DNA polymerase I (a family A DNA polymerase) and the bacteriophage PRD1 DNA polymerase, the smallest member of the DNA polymerase family B. Although the PRD1 DNA polymerase has a smaller 3'-->5' exonuclease domain, its active sites appear to be very similar to those of the Klenow fragment. Site-directed mutagenesis studies revealed that the residues important for the 3'-->5' exonuclease activity, particularly metal binding ligands for the Klenow fragment, are all conserved in the PRD1 DNA polymerase as well. The metal binding ligands are also essential for the strand-displacement activity of the PRD1 DNA polymerase. Based on these results and the studies by others in various systems, we conclude that family A and B DNA polymerases, at least in the 3'-->5' exonuclease domain, are structurally as well as evolutionarily related.  相似文献   

19.
1. The enzymatic mechanism of mutagenic DNA repair is unknown. None of the characterized DNA polymerases is capable of polymerization past non-coding template structures. 2. A hypothesis is proposed according to which polymerization opposite non-coding template structures is catalyzed by the DNA-polymerase-associated 3'-5' exonuclease under conditions which shift the equilibrium of the 3'-5' exonuclease reaction DNAn + H2O in equilibrium DNAn-1 + dNMP to the left, i.e. to the incorporation of deoxynucleoside monophosphates. 3. Conditions which favor the incorporation of dNMP by the reversed 3'-5' exonuclease reaction include a high dNMP concentration, a coupled H2O-consuming reaction and a hydrophobic enzyme environment. 4. The statements of the hypothesis are supported by published work on the biochemistry of DNA polymerases and their associated 3'-5' exonucleases, the genetics of mutagenic DNA repair and the involvement of Escherichia coli DNA polymerase III in this process. 5. The hypothesis offers an explanation of the mutator and antimutator properties of certain genes, in particular of DNA polymerase genes, and also explains how some drugs act mutagenically during DNA replication and antimutagenically against mutagenic DNA repair.  相似文献   

20.
The DNA polymerase encoded by herpes simplex virus 1 consists of a single polypeptide of Mr 136,000 that has both DNA polymerase and 3'----5' exonuclease activities; it lacks a 5'----3' exonuclease. The herpes polymerase is exceptionally slow in extending a synthetic DNA primer annealed to circular single-stranded DNA (turnover number approximately 0.25 nucleotide). Nevertheless, it is highly processive because of its extremely tight binding to a primer terminus (Kd less than 1 nM). The single-stranded DNA-binding protein from Escherichia coli greatly stimulates the rate (turnover number approximately 4.5 nucleotides) by facilitating the efficient binding to and extension of the DNA primers. Synchronous replication by the polymerase of primed single-stranded DNA circles coated with the single-stranded DNA-binding protein proceeds to the last nucleotide of available 5.4-kilobase template without dissociation, despite the 20-30 min required to replicate the circle. Upon completion of synthesis, the polymerase is slow in cycling to other primed single-stranded DNA circles. ATP (or dATP) is not required to initiate or sustain highly processive synthesis. The 3'----5' exonuclease associated with the herpes DNA polymerase binds a 3' terminus tightly (Km less than 50 nM) and is as sensitive as the polymerase activity to inhibition by phosphonoacetic acid (Ki approximately 4 microM), suggesting close communication between the polymerase and exonuclease sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号