共查询到20条相似文献,搜索用时 15 毫秒
1.
Longitudinal relaxation rates of the protons of the 3,8-dimethyl-N-methyl-phenanthrolinium (DMP) cation in solutions containing DNA are strongly affected by the addition of the paramagnetic manganese (II) ions due to the electron-nuclear dipolar interaction in the ternary Mn-DNA-DMP complex. Two possible models for the DMP-DNA intercalation complex are examined and one of them is unequivocally discriminated on the basis of the proton relaxation data. It is concluded that in the intercalation complex the long axis of the DMP molecule is almost perpendicular to the hydrogen bonds of the DNA base-pairs. 相似文献
2.
It is shown that ruthenium red acts as a paramagnetic probe in NMR spectroscopy. Unlike lanthanide and calcium ions it acts as a substitution probe for polyamine binding sites in biological systems, although it also binds at sites where calcium binds. 相似文献
3.
Rui M. Almeida Sofia R. Pauleta Isabel Moura Jos J.G. Moura 《Journal of inorganic biochemistry》2009,103(9):1245-1253
The paramagnetic effect due to the presence of a metal center with unpaired electrons is no longer considered a hindrance in protein NMR spectroscopy. In the present work, the paramagnetic effect due to the presence of a metal center with unpaired electrons was used to map the interface of an electron transfer complex. Desulfovibrio gigas cytochrome c3 was chosen as target to study the effect of the paramagnetic probe, Fe-rubredoxin, which produced specific line broadening in the heme IV methyl resonances M21 and M181. The rubredoxin binding surface in the complex with cytochrome c3 was identified in a heteronuclear 2D NMR titration. The identified heme methyls on cytochrome c3 are involved in the binding interface of the complex, a result that is in agreement with the predicted complexes obtained by restrained molecular docking, which shows a cluster of possible solutions near heme IV. The use of a paramagnetic probe in 1HNMR titration and the mapping of the complex interface, in combination with a molecular simulation algorithm proved to be a valuable strategy to study electron transfer complexes involving non-heme iron proteins and cytochromes. 相似文献
4.
The structure of human telomeric DNA is controversial; it depends upon the sequence contexts and the methodologies used to determine it. The solution structure in the presence of K(+) is particularly interesting, but the structure is yet to be elucidated, due to possible conformational heterogeneity. Here, a unique strategy is applied to stabilize one such structure in a K(+) solution by substituting guanosines with 8-bromoguanosines at proper positions. The resulting spectra are cleaner and led to determination of the structure at a high atomic resolution. This demonstrates that the application of 8-bromoguanosine is a powerful tool to overcome the difficulty of nucleic acid structure determination arising from conformational heterogeneity. The obtained structure is a mixed-parallel/antiparallel quadruplex. The structure of telomeric DNA was recently reported in another study, in which stabilization was brought about by mutation and resultant additional interactions [Luu KN, Phan AT, Kuryavyi V, Lacroix L & Patel DJ (2006) Structure of the human telomere in K(+) solution: an intramolecular (3+1) G-quadruplex scaffold. J Am Chem Soc 128, 9963-9970]. The structure of the guanine tracts was similar between the two. However, a difference was seen for loops connecting guanine tracts, which may play a role in the higher order arrangement of telomeres. Our structure can be utilized to design a small molecule which stabilizes the quadruplex. This type of molecule is supposed to inhibit a telomerase and thus is expected to be a candidate anticancer drug. 相似文献
5.
Vlasie MD Fernández-Busnadiego R Prudêncio M Ubbink M 《Journal of molecular biology》2008,375(5):1405-1415
Copper-containing nitrite reductase is able to catalyze the reduction of nitrite with a turnover rate of several hundreds per second. Electrons for the reaction are donated by the electron transfer protein pseudoazurin. The process of protein complex formation, electron transfer and dissociation must occur on the millisecond timescale to enable the fast turnover of the enzyme. The structure of this transient protein complex has been studied using paramagnetic NMR spectroscopy. Gadolinium complexes were attached specifically through two engineered Cys residues on three sites on the surface of nitrite reductase, causing strong distance-dependent relaxation effects on the residues of pseudoazurin. Docking of the two proteins based on these NMR-derived distance restraints and the chemical shift perturbation data shows convergence to a cluster of structures with an average root-mean-square deviation of 1.5 Å. The binding interface consists of polar and non-polar residues surrounded by charges. The interprotein distance between the two type-1 copper sites is 15.5(± 0.5) Å, enabling fast interprotein electron transfer. The NMR-based lower limit estimate of 600 s−1 for the dissociation rate constant and the fast electron transfer are consistent with the transient nature of the complex. 相似文献
6.
Structure and dynamics of hydrated statherin on hydroxyapatite as determined by solid-state NMR. 总被引:1,自引:0,他引:1
Proteins directly control the nucleation and growth of biominerals, but the details of molecular recognition at the protein-biomineral interface remain poorly understood. The elucidation of recognition mechanisms at this interface may provide design principles for advanced materials development in medical and ceramic composite technologies. Here, we have used solid-state NMR techniques to provide the first high-resolution structural and dynamic characterization of a hydrated biomineralization protein, salivary statherin, adsorbed to its biologically relevant hydroxyapatite (HAP) surface. Backbone secondary structure for the N-terminal dodecyl region was determined using a combination of homonuclear and heteronuclear dipolar recoupling techniques. Both sets of experiments indicate the N-terminus is alpha-helical in character with the residues directly binding to the HAP being stabilized in the alpha-helical conformation by the presence of water. Dynamic NMR studies demonstrate that the highly anionic N-terminus is strongly adsorbed and immobilized on the HAP surface, while the middle and C-terminal regions of this domain are mobile and thus weakly interacting with the mineral surface. The direct binding footprint of statherin is thus localized to the negatively charged N-terminal pentapeptide sequence. Study of a site-directed mutant demonstrated that alteration of the only anionic side chain outside of this domain did not affect the dynamics of statherin on the HAP surface, suggesting that it does not play an important role in HAP binding. 相似文献
7.
Rotational-echo double resonance solid-state (31)P[(19)F] and (13)C[(19)F] NMR spectra have been used to locate the binding of a fluoroquinobenzoxazine to a DNA G-quadruplex labeled by phosphorothioation and [methyl-(13)C]thymidine. 相似文献
8.
Summary Opioid peptides are thought to interact with the cell membrane in their biological journey to the membrane-bound receptor. Both organic solvents and model membranes have been used previously to determine the stable solution conformations of peptide hormones. Leucine enkephalin has been studied in a number of different environments, but with limited resolution. Here it is shown that leucine enkephalin forms a stable type IV -turn structure in dodecylphosphocholine micelles. We have observed a highly solvent-shielded amide proton with no evidence for a complementary hydrogen bond acceptor. The structural details of the peptide as determined by NMR spectroscopy in solution are described. 相似文献
9.
Ruch C Skiniotis G Steinmetz MO Walz T Ballmer-Hofer K 《Nature structural & molecular biology》2007,14(3):249-250
Receptor tyrosine kinases are activated upon ligand-induced dimerization. Here we show that the monomeric extracellular domain of vascular endothelial growth factor (VEGF) receptor-2 (VEGFR-2) has a flexible structure. Binding of VEGF to membrane-distal immunoglobulin-like domains causes receptor dimerization and promotes further interaction between receptor monomers through the membrane-proximal immunoglobulin-like domain 7. By this mechanism, ligand-induced dimerization of VEGFR-2 can be communicated across the membrane, activating the intracellular tyrosine kinase domains. 相似文献
10.
Saio T Ogura K Shimizu K Yokochi M Burke TR Inagaki F 《Journal of biomolecular NMR》2011,51(3):395-408
A nuclear magnetic resonance-based ligand screening strategy utilizing a paramagnetic lanthanide probe is presented. By fixing a paramagnetic lanthanide ion to a target protein, a pseudo-contact shift (PCS) and a paramagnetic relaxation enhancement (PRE) can be observed for both the target protein and its bound ligand. Based on PRE and PCS information, the bound ligand is then screened from the compound library and the structure of the ligand–protein complex is determined. PRE is an isotropic paramagnetic effect observed within 30 Å from the lanthanide ion, and is utilized for the ligand screening in the present study. PCS is an anisotropic paramagnetic effect providing long-range (~40 Å) distance and angular information on the observed nuclei relative to the paramagnetic lanthanide ion, and utilized for the structure determination of the ligand–protein complex. Since a two-point anchored lanthanide-binding peptide tag is utilized for fixing the lanthanide ion to the target protein, this screening method can be generally applied to non-metal-binding proteins. The usefulness of this strategy was demonstrated in the case of the growth factor receptor-bound protein 2 (Grb2) Src homology 2 (SH2) domain and its low- and high-affinity ligands. 相似文献
11.
Complex RNA structures regulate many biological processes, but are often too large for structure determination by NMR methods. The 5' untranslated region (5' UTR) of the hepatitis C viral (HCV) RNA genome contains an internal ribosome entry site (IRES) that binds to 40S ribosomal subunits with high affinity and specificity to control translation. Domain II of the HCV IRES forms a 25-kDa folded subdomain that may alter ribosome conformation. We report here the structure of domain II as determined using an NMR approach that combines short- and long-range structural data. Domain II adopts a distorted L-shape structure, and its overall shape in the free form is markedly similar to its 40S subunit-bound form; this suggests how domain II may modulate 40S subunit conformation. The results show how NMR can be used for structural analysis of large biological RNAs. 相似文献
12.
13.
14.
Bernini A Spiga O Ciutti A Venditti V Prischi F Governatori M Bracci L Lelli B Pileri S Botta M Barge A Laschi F Niccolai N 《Biochimica et biophysica acta》2006,1764(5):856-862
Paramagnetic probes, whose approach to proteins can be monitored by nuclear magnetic resonance (NMR) studies, have been found of primary relevance for investigating protein surfaces accessibility. Here, paramagnetic probes are also suggested for a systematic investigation on protein aggregation. Bovine pancreatic trypsin inhibitor (BPTI) was used as a model system for aggregation by analyzing its interaction with TEMPOL and Gd(III)DTPA-BMA. Some of the measured paramagnetic relaxation rates of BPTI protons exhibited a reverse dependence on protein concentration, which can be attributed to the formation of transient BPTI aggregates. 相似文献
15.
Many biological processes involve enzymes moving along DNA. Such motion might be impeded by DNA-bound proteins or DNA supercoils. Current techniques are incapable of directly measuring forces that such 'roadblocks' might impose. We constructed a setup with four independently moveable optical traps, allowing us to manipulate two DNA molecules held between beads. By tightly wrapping one DNA around the other, we created a probe that can be scanned along the contour of the second DNA. We found that friction between the two polymers remains below 1 pN. Upon encountering DNA-bound proteins substantial friction forces are measured, allowing accurate localization of protein positions. Furthermore, these proteins remained associated at low probe tensions but could be driven off using forces greater than 20 pN. Finally, the full control of the orientation of two DNA molecules opens a wide range of experiments on proteins interacting with multiple DNA regions. 相似文献
16.
Two major rhombic high-spin ferric heme signals are observed during the pH titration of bovine liver catalase. The less rhombic signal if dominant above pH 6.0 and the more rhombic signal below pH 6.0. Ethanol in high concentration enhances the relative intensity of the less rhombic signal. These data demonstrate the sensitivitiy of the ligand field to changes in catalase solvent and, furthermore, suggest that both rhombic configuration posses identical spectral and catalytic properties. 相似文献
17.
Díaz-Moreno I Díaz-Quintana A De la Rosa MA Ubbink M 《The Journal of biological chemistry》2005,280(19):18908-18915
The complex between cytochrome f and plastocyanin from the cyanobacterium Nostoc has been characterized by NMR spectroscopy. The binding constant is 16 mM(-1), and the lifetime of the complex is much less than 10 ms. Intermolecular pseudo-contact shifts observed for the plastocyanin amide nuclei, caused by the heme iron, as well as the chemical-shift perturbation data were used as the sole experimental restraints to determine the orientation of plastocyanin relative to cytochrome f with a precision of 1.3 angstroms. The data show that the hydrophobic patch surrounding tyrosine 1 in cytochrome f docks the hydrophobic patch of plastocyanin. Charge complementarities are found between the rims of the respective recognition sites of cytochrome f and plastocyanin. Significant differences in the relative orientation of both proteins are found between this complex and those previously reported for plants and Phormidium, indicating that electrostatic and hydrophobic interactions are balanced differently in these complexes. 相似文献
18.
Tycko R 《Protein and peptide letters》2006,13(3):229-234
Solid state nuclear magnetic resonance (NMR) has developed into one of the most informative and direct experimental approaches to the characterization of the molecular structures of amyloid fibrils, including those associated with Alzheimer's disease. In this article, essential aspects of solid state NMR methods are described briefly and results obtained to date regarding the supramolecular organization of amyloid fibrils and the conformations of peptides within amyloid fibrils are reviewed. 相似文献
19.
Solution structure of a cathelicidin-derived antimicrobial peptide, CRAMP as determined by NMR spectroscopy. 总被引:1,自引:0,他引:1
CRAMP was identified from a cDNA clone derived from mouse femoral marrow cells as a member of cathelicidin-derived antimicrobial peptides. This peptide shows potent antimicrobial activity against gram-positive and gram-negative bacteria but no hemolytic activity against human erythrocytes. CRAMP was known to cause rapid permeabilization of the inner membrane of Escherichia coli. In this study, the structure of CRAMP in TFE/H2O (1 : 1, v/v) solution was determined by CD and NMR spectroscopy. CD spectra showed that CRAMP adopts a mainly alpha-helical conformation in TFE/H2O solution, DPC micelles, SDS micelles and liposomes, whereas it has a random structure in aqueous solution. The tertiary structure of CRAMP in TFE/H2O (1 : 1, v/v), as determined by NMR spectroscopy, consists of two amphipathic alpha-helices from Leu4 to Lys10 and from Gly16 to Leu33. These two helices are connected by a flexible region from Gly11 to Gly16. Previous analysis of series of fragments composed of various portion of CRAMP revealed that an 18-residue fragment with the sequence from Gly16 to Leu33 was found to retain antibacterial activity. Therefore, the amphipathic alpha-helical region from Gly16 to Leu33 of CRAMP plays important roles in spanning the lipid bilayers as well as its antibiotic activity. Based on this structure, novel antibiotic peptides having strong antibiotic activity, with no hemolytic effect will be developed. 相似文献
20.
I T Knight S Shults C W Kaspar R R Colwell 《Applied and environmental microbiology》1990,56(4):1059-1066
A method for direct detection of Salmonella spp. in water was developed by using a commercially available DNA probe. Particulate DNA was extracted from 500- to 1,500-ml water samples collected from New York Harbor and Chesapeake Bay and used as a substrate for a salmonella-specific DNA probe in dot blot assays. The method detected salmonellae in water samples from 12 of 16 sites, including 6 sites where salmonellae could not be cultured. The specificity of the probe was evaluated, and cross-hybridization, although negligible, was used to set detection limits for the assay. Salmonella DNA bound the probe quantitatively, and from these results Salmonella DNA in the total particulate DNA in environmental samples could be estimated. The data obtained in this study indicate that Salmonella spp. often are not detected in water samples by culture methods, even when they are present in significant numbers. 相似文献