首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have shown previously that induction of the stringent response in Bacillus subtilis resulted in the arrest of chromosomal replication between 100 and 200 kb either side of oriC at distinct stop sites, designated LSTer and RSTer, left and right stringent terminators respectively. This replication checkpoint was also shown to involve the RTP protein, normally active at the chromosomal terminus. In this study, we show that the replication block is absolutely dependent upon RelA, correlated with high levels of ppGpp, but that efficient arrest at STer sites also requires RTP. DNA-DNA hybridization data indicated that one or more such LSTer sites mapped to gene yxcC (-128 kb from oriC). A 7.75 kb fragment containing this gene was cloned into a theta replicating plasmid, and plasmid replication arrest, requiring both RelA and RTP, was demonstrated. This effect was polar, with plasmid arrest only detected when the fragment was orientated in the same direction with respect to replication, as in the chromosome. This LSTer2 site was further mapped to a 3.65 kb fragment overlapping the next40 probe. Remarkably, this fragment contains a 17 bp sequence (B'-1) showing 76% identity with an RTP binding site (B sequence) present at the chromosomal terminus. This B'-1 sequence, located in the gene yxcC, efficiently binds RTP in vitro, as shown by DNA gel retardation studies and DNase I footprinting. Importantly, precise deletion of this sequence abolished the replication arrest. We propose that this modified B site is an essential constituent of the LSTer2 site. The differences between arrest at the normal chromosomal terminus and arrest at LSTer site are discussed.  相似文献   

2.
The gene amplification plays a critical role in the malignant transformation of mammalian cells. The most widespread method for amplifying a target gene in cell culture is the use of methotrexate (Mtx) treatment to amplify dihydrofolate reductase (Dhfr). Whereas, we found that a plasmid bearing both a mammalian origin of replication (initiation region; IR) and a matrix attachment region (MAR) was spontaneously amplified in mammalian cells. In this study, we attempted to uncover the underlying mechanism by which the IR/MAR sequence might accelerate Mtx induced Dhfr amplification. The plasmid containing the IR/MAR was extrachromosomally amplified, and then integrated at multiple chromosomal locations within individual cells, increasing the likelihood that the plasmid might be inserted into a chromosomal environment that permits high expression and further amplification. Efficient amplification of this plasmid alleviated the genotoxicity of Mtx. Clone-based cytogenetic and sequence analysis revealed that the plasmid was amplified in a chromosomal context by breakage-fusion-bridge cycles operating either at the plasmid repeat or at the flanking fragile site activated by Mtx. This mechanism explains how a circular molecule bearing IR/MAR sequences of chromosomal origin might be amplified under replication stress, and also provides insight into gene amplification in human cancer.  相似文献   

3.
Activity of the c-myc Replicator at an Ectopic Chromosomal Location   总被引:5,自引:0,他引:5       下载免费PDF全文
DNA replication starts at multiple discrete sites across the human chromosomal c-myc region, including two or more sites within 2.4 kb upstream of the c-myc gene. The corresponding 2.4-kb c-myc origin fragment confers autonomously replicating sequence (ARS) activity on plasmids, which specifically initiate replication in the origin fragment in vitro and in vivo. To test whether the region that displays plasmid replicator activity also acts as a chromosomal replicator, HeLa cell sublines that each contain a single copy of the Saccharomyces cerevisiae FLP recombinase target (FRT) sequence flanked by selectable markers were constructed. A clonal line containing a single unrearranged copy of the transduced c-myc origin was produced by cotransfecting a donor plasmid containing the 2.4-kb c-myc origin fragment and FRT, along with a plasmid expressing the yeast FLP recombinase, into cells containing a chromosomal FRT acceptor site. The amount of short nascent DNA strands at the chromosomal acceptor site was quantitated before and after targeted integration of the origin fragment. Competitive PCR quantitation showed that the c-myc origin construct substantially increased the amount of nascent DNA relative to that at the unoccupied acceptor site and to that after the insertion of non-myc DNA. The abundance of nascent strands was greatest close to the c-myc insert of the integrated donor plasmid, and significant increases in nascent strand abundance were observed at sites flanking the insertion. These results provide biochemical and genetic evidence for the existence of chromosomal replicators in metazoan cells and are consistent with the presence of chromosomal replicator activity in the 2.4-kb region of c-myc origin DNA.  相似文献   

4.
In the region of plasmid F DNA with coordinates 52,2-55,8 kb, the chr ("chromosome replication") locus has been revealed. A failure in the functioning of this locus in the integrated plasmid, which leads to a temperature-sensitive disturbance in chromosome replication of the Hfr strain and to the changes in its sensitivity to some membranotropic agents. Integration of an F segment containing the chr+ allele into the chromosome of an F-like derivative of such Hfr strain (retaining a mutant part of the F DNA), results in formation of temperature-resistant clones. In these clones, chromosomal replication is controlled by the plasmid replicon at the elevated temperature. It has been concluded that the F plasmid can control chromosome replication of the dna+ HfrC strain of Escherichia coli K-12 and that the product of the chr gene is a membrane protein involved in chromosomal replication.  相似文献   

5.
The Escherichia coli chromosomal origin contains several bindings sites for factor for inversion stimulation (FIS), a protein originally identified to be required for DNA inversion by the Hin and Gin recombinases. The primary FIS binding site is close to two central DnaA boxes that are bound by DnaA protein to initiate chromosomal replication. Because of the close proximity of this FIS site to the two DnaA boxes, we performed in situ footprinting with 1, 10-phenanthroline-copper of complexes formed with FIS and DnaA protein that were separated by native gel electrophoresis. These studies show that the binding of FIS to the primary FIS site did not block the binding of DnaA protein to DnaA boxes R2 and R3. Also, FIS appeared to be bound more stably to oriC than DnaA protein, as deduced by its reduced rate of dissociation from a restriction fragment containing oriC . Under conditions in which FIS was stably bound to the primary FIS site, it did not inhibit oriC plasmid replication in reconstituted replication systems. Inhibition, observed only at high levels of FIS, was due to absorption by FIS binding of the negative superhelicity of the oriC plasmid that is essential for the initiation process.  相似文献   

6.
Transformation studies with Saccharomyces cerevisiae (bakers' yeast) have identified DNA sequences which permit extrachromosomal maintenance of recombinant DNA plasmids in transformed cells. It has been hypothesized that such sequences (called ARS for autonomously replicating sequence) serve as initiation sites for DNA replication in recombinant DNA plasmids and that they represent the normal sites for initiation of replication in yeast chromosomal DNA. We have constructed a novel plasmid called TRP1 R1 Circle which consists solely of 1,453 base pairs of yeast chromosomal DNA. TRP1 RI Circle contains both the TRP1 gene and a sequence called ARS1. This plasmid is found in 100 to 200 copies per cell and is relatively stable during both mitotic and meiotic cell cycles. Replication of TRP1 RI Circle requires the products of the same genes (CDC28, CDC4, CDC7, and CDC8) required for replication of chromosomaL DNA. Like chromosomal DNA, its replication does not occur in cells arrested in the B1 phase of the cell cycle by incubation with the yeast pheromone alpha-factor. In addition, TRP1 RI Circle DNA is organized into nucleosomes whose size and spacing are indistinguishable from that of bulk yeast chromatin. These results indicate that TRP1 RI Circle has the replicative and structural properties expected for an origin of replication from yeast chromosomal DNA. Thus, this plasmid is a suitable model for further studies of yeast DNA replication in both cells and cell-free extracts.  相似文献   

7.
Toh-E A  Wickner RB 《Genetics》1979,91(4):673-682
Yeast strains carrying a 1.5 x 10(6) molecular weight linear double-stranded RNA in virus-like particles (M dsRNA, the killer plasmid or virus) secrete a toxin that is lethal to strains not carrying this plasmid. Recessive mutations in any of four chromosomal genes (called ski1-ski4) result in increased production of toxin activity. We report here a mutation of the killer plasmid (called [KIL-sd] for ski-dependent) that makes the killer plasmid dependent for its replication on the presence of a chromosomal mutation in any ski gene. Thus, the [KIL-sd] plasmid is lost from SKI(+) strains. When the wild-type killer plasmid, [KIL-k], is introduced into a ski2-2 [KIL-o] strain, the killer plasmid changes to a [KIL-sd] plasmid. This may represent a specific form of mutagenesis or selective replication in the ski2-2 strain of [KIL-sd] variants (mutants) in the normal [KIL-k] population. The ski2-1 and ski2-3 mutations do not convert [KIL-k] to [KIL-sd], but ski2-3 does allow maintenance of the [KIL-sd] plasmid. The [KIL-sd] plasmid thus lacks a plasmid site or product needed for replication in wild-type cells.  相似文献   

8.
S E Celniker  J L Campbell 《Cell》1982,31(1):201-213
An enzyme system prepared from Saccharomyces cerevisiae carries out the replication of exogenous yeast plasmid DNA. Replication in vitro mimics that in vivo in that DNA synthesis in extracts of strain cdc8, a temperature-sensitive DNA replication mutant, is thermolabile relative to the wild-type, and in that aphidicolin inhibits replication in vitro. Furthermore, only plasmids containing a functional yeast replicator, ARS, initiate replication at a specific site in vitro. Analysis of replicative intermediates shows that plasmid YRp7, which contains the chromosomal replicator ARS1, initiates bidirectional replication in a 100 bp region within the sequence required for autonomous replication in vivo. Plasmids containing ARS2, another chromosomal replicator, and the ARS region of the endogenous yeast plasmid 2 microns circle give similar results, suggesting that ARS sequences are specific origins of chromosomal replication. Used in conjunction with deletion mapping, the in vitro system allows definition of the minimal sequences required for the initiation of replication.  相似文献   

9.
10.
We have isolated a 5.4-kilobase fragment of Bacillus subtilis DNA that confers the ability to replicate upon a nonreplicative plasmid. The B. subtilis 168 EcoRI fragment was ligated into the chimeric plasmid pCs540, which contains a chloramphenicol resistance determinant from the Staphylococcus aureus plasmid pC194 and an HpaII fragment from the Escherichia coli plasmid, pSC101. A recE B. subtilis derivative, strain BD224, is capable of maintaining this DNA as an autonomously replicating plasmid. In rec+ recipients, chloramphenicol-resistant transformants do not contain free plasmid. The plasmid is integrated as demonstrated by alterations in the pattern of chromosomal restriction enzyme fragments to which the plasmid hybridizes. The site of plasmid integration was mapped by PBS1-mediated transduction to the metC-PBSX region. A strain was a deletion in the region of defective bacteriophage PBSX differs in the hybridization profile obtained by probing EcoRI digests with this cloned fragment. This same deletion mutant, though proficient in normal recombinational pathways, permits autonomous replication of the plasmid apparently owing to the lack of an homologous chromosomal region with which to recombine. We believe that, like E. coli. B. subtilis contains at least one DNA fragment capable of autonomous replication when liberated from its normally integrated chromosomal site and that this cloned DNA fragment comes from the region of defective bacteriophage PBSX.  相似文献   

11.
Insertion of factor MudJ in the intergenic region between divergent genes yrfF and yrfE, at centisome 76 in the genome of Salmonella enterica serovar Typhimurium LT2, confers the characteristics recently described for mucM mutants, i.e. mucoidy and resistance to mecillinam. Cloning of the intergenic region plus either the yrfF or the yrfE gene in a multicopy plasmid showed that only the plasmid carrying the yrfF gene complemented mucM mutants, thus suggesting that mucM mutations are in fact yrfF mutations. A null yrfF mutation obtained by insertion of a kanamycin cassette into the yrfF open reading frame (yrfF28::Kan) produced abortive colonies when transduced to a wild-type strain but was normally accepted by rcsB, rcsC or yojN strains. Neither mutations preventing synthesis of the capsular exopolysaccharide colanic acid (cps, galE) nor rcsA mutations, which reduce expression of cps genes, conferred tolerance to the lethal yrfF28::Kan mutation. Spontaneous suppressor mutations arose very frequently in abortive yrfF28::Kan colonies, and all of them affected either rcsC, yojN, or rcsB genes. Thus, the lethal effect caused by inactivation of gene yrfF appears to be mediated by a function that is dependent on the rcsC-yojN-rcsB phosphorelay system but does not involve synthesis of colanic acid.  相似文献   

12.
The yeast 2 microns plasmid is found in the nucleus of almost all Saccharomyces cerevisiae strains. Its replication is very similar to that of chromosomal DNA. Although the plasmid does not encode essential genes it is stably maintained in the yeast population and exhibits only a small, though detectable, loss rate. This stability is achieved by a plasmid-encoded copy-number control system which ensures constant plasmid levels. For the investigation of 2 microns replication, a yeast strain that is absolutely dependent on this plasmid was constructed. This was achieved by disruption of the chromosomal CDC9 gene, coding for DNA ligase and providing this essential gene on a 2 microns-derived plasmid. This plasmid is absolutely stable under all growth conditions tested. Using the temperature-sensitive mutant allele cdc9-1 we have developed an artificial control system which allows one to change the copy number of 2 microns-derived plasmids solely by changing the incubation temperature.  相似文献   

13.
Initiation of chromosomal DNA replication of several Escherichia coli dnaA (Ts) strains is diminished in cell harbouring pBR322 hybrid plasmids carrying both oriC and the adjacent 16kD gene promoter of E. coli K12. This perturbance, resulting in very slow growth, is caused both by the dnaA allele and the E. coli B/r-derived region of the replication origin of these strains. Cloning and DNA sequence analysis of the E. coli B/r replication origin revealed several base differences as compared to the E. coli K12 sequence. The replication origin of temperature sensitive fast growing mutants, originating from a homologous exchange between chromosomal and plasmid DNA sequences were also cloned. Sequence data showed that a single base change within the promoter of the 16kD gene of these dnaA (Ts) strains is able to suppress the inhibition of chromosomal DNA replication by the mentioned pBR322 hybrid plasmids. Our results strongly indicate a role of the 16kD gene promoter in control of initiation of chromosomal DNA replication.  相似文献   

14.
The F plasmid of Escherichia coli was used to study the genetic background of the control circuit in the bacteria that co-ordinates DNA replication and cell division of the host cells. When DNA replication of the F plasmid was blocked by growing cells carrying an amber-suppressible replication-defective F plasmid mutant under restrictive conditions, the cells continued to divide for about one generation until F plasmid was supposedly diluted to one copy per cell, and then they stopped dividing and formed non-septated filamentous cells. These observations suggest that completion of a round of replication is a necessary and sufficient condition of F DNA synthesis in the cell division of F+ bacteria; i.e. cell division of the F+ bacteria is coupled with DNA replication of the F plasmid. The observation that Giemsa-stainable materials in the filamentous cells were clustered in the center indicates that partitioning of chromosomal DNA (and presumably of F plasmid DNA) is also coupled with plasmid DNA replication. The function necessary for this coupling is carried by the 42.84-43.6 F (BamHI-PstI) segment, which is located outside the region essential for replication of the F plasmid. The nucleotide sequence demonstrates the existence of two open reading frames in this region, which encode polypeptides of 72 and 101 amino acids, respectively. These two reading frames are most likely to be transcribed as a single polycistronic message in the direction from the BamHI site at 42.84 F to the PstI site at 43.6 F. The expression of this "operon" is likely to be controlled by plasmid DNA replication.  相似文献   

15.
This work characterizes a recently discovered natural tetracycline-resistance plasmid called pMA67 from Paenibacillus larvae--a Gram-positive bacterial pathogen of honey bees. We provide evidence that pMA67 replicates by the rolling-circle mechanism, and sequence comparisons place it in the pMV158 family of rolling-circle replicons. The plasmid contains predicted rep, cop, and rnaII genes for control of replication initiating at a predicted double-strand origin. The plasmid has an ssoT single-strand origin, which is efficient enough to allow only very small amounts of the single-stranded DNA intermediate to accumulate. The overall efficiency of replication is sufficient to render the plasmid segregationally stable without selection in P. larvae and in Bacillus megaterium, but not in Escherichia coli. The plasmid is expected to be mobilizable due to the presence of a mob gene and an oriT site. The plasmid contains a tetL gene, whose predicted amino acid sequence implies a relatively ancient divergence from all previously known plasmid-encoded tetL genes. We confirm that the tetL gene alone is sufficient for conferring resistance to tetracyclines. Sequence comparisons, mostly with the well-characterized pMV158, allow us to predict promoters, DNA and RNA secondary structures, DNA and protein motifs, and other elements.  相似文献   

16.
T Hara  S Nagatomo  S Ogata    S Ueda 《Applied microbiology》1991,57(6):1838-1841
The structure of a 2.0-kb BstEII DNA sequence necessary and sufficient for the replication of a 5.7-kb Natto plasmid, pUH1, which is responsible for gamma-polyglutamate production by Bacillus subtilis (natto), has been characterized by using a trimethoprim resistance gene derived from B. subtilis chromosomal DNA as a selective marker. The 2.0-kb DNA sequence contains an open reading frame, rep, stretching for 999 bp; a promoter region for rep expression; and a possible replication origin for the plasmid upstream of the promotor. The predicted Rep protein has highly homologous amino acid sequences with rep14 of pFTB14 in B. amyloliquefaciens, RepB of pUB110, and protein A, which is necessary for pC194 replication in staphylococci throughout the protein molecule, but is not homologous with RepC of staphylococcal plasmid pT181.  相似文献   

17.
The dpiA and dpiB genes of Escherichia coli, which are orthologs of genes that regulate citrate uptake and utilization in Klebsiella pneumoniae, comprise a two-component signal transduction system that can modulate the replication of and destabilize the inheritance of pSC101 and certain other plasmids. Here we show that perturbed replication and inheritance result from binding of the effector protein DpiA to A+T-rich replication origin sequences that resemble those in the K. pneumoniae promoter region targeted by the DpiA ortholog, CitB. Consistent with its ability to bind to A+T-rich origin sequences, overproduction of DpiA induced the SOS response in E. coli, suggesting that chromosomal DNA replication is affected. Bacteria that overexpressed DpiA showed an increased amount of DNA per cell and increased cell size-both also characteristic of the SOS response. Concurrent overexpression of the DNA replication initiation protein, DnaA, or the DNA helicase, DnaB-both of which act at A+T-rich replication origin sequences in the E. coli chromosome and DpiA-targeted plasmids-reversed SOS induction as well as plasmid destabilization by DpiA. Our finding that physical and functional interactions between DpiA and sites of replication initiation modulate DNA replication and plasmid inheritance suggests a mechanism by which environmental stimuli transmitted by these gene products can regulate chromosomal and plasmid dynamics.  相似文献   

18.
The structure of a 2.0-kb BstEII DNA sequence necessary and sufficient for the replication of a 5.7-kb Natto plasmid, pUH1, which is responsible for gamma-polyglutamate production by Bacillus subtilis (natto), has been characterized by using a trimethoprim resistance gene derived from B. subtilis chromosomal DNA as a selective marker. The 2.0-kb DNA sequence contains an open reading frame, rep, stretching for 999 bp; a promoter region for rep expression; and a possible replication origin for the plasmid upstream of the promotor. The predicted Rep protein has highly homologous amino acid sequences with rep14 of pFTB14 in B. amyloliquefaciens, RepB of pUB110, and protein A, which is necessary for pC194 replication in staphylococci throughout the protein molecule, but is not homologous with RepC of staphylococcal plasmid pT181.  相似文献   

19.
毛裕民  盛祖嘉 《遗传学报》1990,17(6):476-483
我们曾报道整合的F′质粒所发动的大肠杆菌染色体复制依赖于recA基因,而整合的F质粒则不。构建带有IS1的mini-F质粒,它们的复制起点分别来自F或F′质粒。这些质粒的整合抑制菌株中都有约20%是recA依赖的,不管这一mini-F质粒的复制起点来自F或F′质粒,也不管这一质粒在游离状态中的复制方向是单向或双向。实验结果说明,质粒的整合位置是决定由整合质粒所发动的染色体复制对recA基因的依赖性的主要因素。  相似文献   

20.
The replication of the bacteriocinogenic plasmid Clo DF13 has been studied in the seven temperature-sensitive Escherichia coli mutants defective in deoxyribonucleic acid (DNA) replication (dnaA-dnaG). Experiments with dna initiation mutants revealed that the replication of the Clo DF13 plasmid depends to a great extent on the host-determined dnaC (dnaD) gene product, but depends slightly on the dnaA gene product. The synthesis of Clo DF13 plasmid DNA also requires the dnaF and dnaG gene products, which are involved in the elongation of chromosomal DNA replication. In contrast, the Clo DF13 plasmid is able to replicate in the dnaB and dnaE elongation mutants at the restrictive temperature. When de novo protein synthesis is inhibited by chloramphenicol in wild-type cells, the Clo DF13 plasmid continues to replicate for at least 12 h, long after chromosomal DNA synthesis has ceased, resulting in an accumulation of Clo DF13 DNA molecules of about 500 copies per cell. After 3 h of chloramphenicol treatment, the Clo DF13 plasmid replicates at a rate approximately five times the rate in the absence of chloramphenicol. Inhibition of protein synthesis by chloramphenicol does not influence the level of Clo DF13 DNA synthesis at the restrictive temperature in the dna mutants, except for the dnaA mutant. Chloramphenicol abolishes the inhibition of Clo DF13 DNA synthesis in the dnaA mutant at the nonpermissive temperature. Under these conditions, Clo DF13 DNA synthesis was slightly stimulated in the first 30 min after the temperature shift, and continued for more than 3 h at an almost uninhibited level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号