首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
2.
The Growth Differentiation Factor-15 gene (GDF15) is a member of TGF-b superfamily and this cytokine family is considered to be a promising target for cancer therapy. The purpose of this study was to investigate the effect of tumor derived GDF15 on proliferation and radiosensitivity of breast cancer cells in vitro and in vivo. A mouse breast cancer LM2 cell line with stable transfection of full-length mouse GDF15 cDNA was established. Cell growth and proliferation was observed using WST assay and impedance-based method. Radiation induced GDF15 and TGF-b1 expression was determined by qRT-PCR. Radiosensitivity was measured by a colony formation assay in vitro and by a tumor growth delay assay in vivo. Cells with more than a 10-fold increase in GDF15 expression had a higher growth rate than parental control cells in vitro and in vivo. The radiation induced elevation of the expression of TGFb1 was reduced in GDF15 overexpressing cells. GDF15 may play a role in the radiation response of breast cancer cells by effecting cell survival, inhibiting radiation-induced cell death, and inhibiting the TGF-b1 related cytotoxic action.  相似文献   

3.
Kwon YH  Jung SY  Kim JW  Lee SH  Lee JH  Lee BY  Kwon SM 《PloS one》2012,7(4):e33618

Background

There is increasing evidence that phloroglucinol, a compound from Ecklonia cava, induces the apoptosis of cancer cells, eventually suppressing tumor angiogenesis.

Methodology/Principal Findings

This is the first report on phloroglucinol''s ability to potentially inhibit the functional bioactivities of endothelial progenitor cells (EPCs) and thereby attenuate tumor growth and angiogenesis in the Lewis lung carcinoma (LLC)-tumor-bearing mouse model. Although Phloroglucinol did not affect their cell toxicity, it specifically inhibited vascular endothelial growth factor (VEGF) dependent migration and capillary-like tube formation of EPCs. Our matrigel plug assay clearly indicated that orally injected phloroglucinol effectively disrupts VEGF-induced neovessel formation. Moreover, we demonstrated that when phloroglucinol is orally administered, it significantly inhibits tumor growth and angiogenesis as well as CD45/CD34+ progenitor mobilization into peripheral blood in vivo in the LLC-tumor-bearing mouse model.

Conclusions/Significance

These results suggest a novel role for phloroglucinol: Phloroglucinol might be a modulator of circulating EPC bioactivities, eventually suppressing tumorigenesis. Therefore, phloroglucinol might be a candidate compound for biosafe drugs that target tumor angiogenesis.  相似文献   

4.
Angiogenesis, a marker of cancer development, affects response to radiotherapy sensibility. This preclinical study aims to understand the receptor tyrosine kinase-mediated angiogenesis in head neck squamous cell carcinoma (HNSCC). The receptor tyrosine kinase activity in a transgenic mouse model of HNSCC was assessed. The anti-tumorigenetic and anti-angiogenetic effects of cetuximab-induced epidermal growth factor receptor (EGFR) inhibition were investigated in xenograft and transgenic mouse models of HNSCC. The signaling transduction of Notch1 and hypoxia-inducible factor-1α (HIF-1α) was also analyzed. EGFR was overexpressed and activated in the Tgfbr1/Pten deletion (2cKO) mouse model of HNSCC. Cetuximab significantly delayed tumor onset by reducing tumor angiogenesis. This drug exerted similar effects on heterotopic xenograft tumors. In the human HNSCC tissue array, increased EGFR expression correlated with increased HIF-1α and micro vessel density. Cetuximab inhibited tumor-induced angiogenesis in vitro and in vivo by significantly downregulating HIF-1α and Notch1. EGFR is involved in the tumor angiogenesis of HNSCC via the HIF-1α and Notch1 pathways. Therefore, targeting EGFR by suppressing hypoxia- and Notch-induced angiogenesis may benefit HNSCC therapy.  相似文献   

5.
Breast cancer often metastasizes to bone causing osteolytic bone resorption which releases active TGFβ. Because TGFβ favors progression of breast cancer metastasis to bone, we hypothesized that treatment using anti-TGFβ antibody may reduce tumor burden and rescue tumor-associated bone loss in metastatic breast cancer. In this study we have tested the efficacy of an anti-TGFβ antibody 1D11 preventing breast cancer bone metastasis. We have used two preclinical breast cancer bone metastasis models, in which either human breast cancer cells or murine mammary tumor cells were injected in host mice via left cardiac ventricle. Using several in vivo, in vitro and ex vivo assays, we have demonstrated that anti-TGFβ antibody treatment have significantly reduced tumor burden in the bone along with a statistically significant threefold reduction in osteolytic lesion number and tenfold reduction in osteolytic lesion area. A decrease in osteoclast numbers (p = 0.027) in vivo and osteoclastogenesis ex vivo were also observed. Most importantly, in tumor-bearing mice, anti-TGFβ treatment resulted in a twofold increase in bone volume (p<0.01). In addition, treatment with anti-TGFβ antibody increased the mineral-to-collagen ratio in vivo, a reflection of improved tissue level properties. Moreover, anti-TGFβ antibody directly increased mineralized matrix formation in calverial osteoblast (p = 0.005), suggesting a direct beneficial role of anti-TGFβ antibody treatment on osteoblasts. Data presented here demonstrate that anti-TGFβ treatment may offer a novel therapeutic option for tumor-induced bone disease and has the dual potential for simultaneously decreasing tumor burden and rescue bone loss in breast cancer to bone metastases. This approach of intervention has the potential to reduce skeletal related events (SREs) in breast cancer survivors.  相似文献   

6.
Despite recent advances in medicine, 30–40% of patients with breast cancer show recurrence underscoring the need for improved effective therapy. In this study, by in vitro screening we have selected a novel synthetic indole derivative 2,2''-diphenyl-3,3''-diindolylmethane (DPDIM) as a potential anti- breast cancer agent. DPDIM induces apoptosis both in vitro in breast cancer cells MCF7, MDA-MB 231 and MDA-MB 468 and in vivo in 7,12-dimethylbenz[α]anthracene (DMBA) induced Sprague-Dawley (SD) rat mammary tumor. Our in vitro studies show that DPDIM exerts apoptotic effect by negatively regulating the activity of EGFR and its downstream molecules like STAT3, AKT and ERK1/2 which are involved in the proliferation and survival of these cancer cells. In silico predictions also suggest that DPDIM may bind to EGFR at its ATP binding site. DPDIM furthermore inhibits EGF induced increased cell viability. We have also shown decreased expression of pro-survival factor Bcl-XL as well as increase in the level of pro-apoptotic proteins like Bax, Bad, Bim in DPDIM treated cells in vitro and in vivo. Our results further indicate that the DPDIM induced apoptosis is mediated through mitochondrial apoptotic pathway involving the caspase-cascade. To the best of our knowledge this is the first report of DPDIM for its anticancer activity. Altogether this report suggests that DPDIM could be an effective therapeutic agent for breast cancer.  相似文献   

7.
As neovascularization is essential for tumor growth and metastasis, controlling angiogenesis is a promising tactic in limiting cancer progression. Melatonin has been studied for their inhibitory properties on angiogenesis in cancer. We performed an in vivo study to evaluate the effects of melatonin treatment on angiogenesis in breast cancer. Cell viability was measured by MTT assay after melatonin treatment in triple-negative breast cancer cells (MDA-MB-231). After, cells were implanted in athymic nude mice and treated with melatonin or vehicle daily, administered intraperitoneally 1 hour before turning the room light off. Volume of the tumors was measured weekly with a digital caliper and at the end of treatments animals underwent single photon emission computed tomography (SPECT) with Technetium-99m tagged vascular endothelial growth factor (VEGF) C to detect in vivo angiogenesis. In addition, expression of pro-angiogenic/growth factors in the tumor extracts was evaluated by membrane antibody array and collected tumor tissues were analyzed with histochemical staining. Melatonin in vitro treatment (1 mM) decreased cell viability (p<0.05). The breast cancer xenografts nude mice treated with melatonin showed reduced tumor size and cell proliferation (Ki-67) compared to control animals after 21 days of treatment (p<0.05). Expression of VEGF receptor 2 decreased significantly in the treated animals compared to that of control when determined by immunohistochemistry (p<0.05) but the changes were not significant on SPECT (p>0.05) images. In addition, there was a decrease of micro-vessel density (Von Willebrand Factor) in melatonin treated mice (p<0.05). However, semiquantitative densitometry analysis of membrane array indicated increased expression of epidermal growth factor receptor and insulin-like growth factor 1 in treated tumors compared to vehicle treated tumors (p<0.05). In conclusion, melatonin treatment showed effectiveness in reducing tumor growth and cell proliferation, as well as in the inhibition of angiogenesis.  相似文献   

8.
Interleukin (IL)-20 is a proinflammatory cytokine in the IL–10 family. IL–20 is associated with tumor promotion in the pathogenesis of oral, bladder, and breast cancer. However, little is known about the role of IL–20 in prostate cancer. We hypothesize that IL–20 promotes the growth of prostate cancer cells. Immunohistochemical staining showed that IL–20 and its receptors were expressed in human PC–3 and LNCaP prostate cancer cell lines and in prostate tumor tissue from 40 patients. In vitro, IL–20 upregulated N-cadherin, STAT3, vimentin, fibronectin, RANKL, cathepsin G, and cathepsin K, and increased the migration and colony formation of prostate cancer cells via activated p38, ERK1/2, AKT, and NF-κB signals in PC–3 cells. We investigated the effects of anti-IL–20 monoclonal antibody 7E on prostate tumor growth in vivo using SCID mouse subcutaneous and intratibial xenograft tumor models. In vivo, 7E reduced tumor growth, suppressed tumor-mediated osteolysis, and protected bone mineral density after intratibial injection of prostate cancer cells. We conclude that IL–20 is involved in the cell migration, colony formation, and tumor-induced osteolysis of prostate cancer. Therefore, IL–20 might be a novel target for treating prostate cancer.  相似文献   

9.
Angiogenesis is a crucial step in the growth and metastasis of cancers, since it enables the growing tumor to receive oxygen and nutrients. Cancer prevention using natural products has become an integral part of cancer control. We studied the antiangiogenic activity of quercetin using ex vivo, in vivo and in vitro models. Rat aortic ring assay showed that quercetin at non-toxic concentrations significantly inhibited microvessel sprouting and exhibited a significant inhibition in the proliferation, migration, invasion and tube formation of endothelial cells, which are key events in the process of angiogenesis. Most importantly, quercetin treatment inhibited ex vivo angiogenesis as revealed by chicken egg chorioallantoic membrane assay (CAM) and matrigel plug assay. Western blot analysis showed that quercetin suppressed VEGF induced phosphorylation of VEGF receptor 2 and their downstream protein kinases AKT, mTOR, and ribosomal protein S6 kinase in HUVECs. Quercetin (20 mg/kg/d) significantly reduced the volume and the weight of solid tumors in prostate xenograft mouse model, indicating that quercetin inhibited tumorigenesis by targeting angiogenesis. Furthermore, quercetin reduced the cell viability and induced apoptosis in prostate cancer cells, which were correlated with the downregulation of AKT, mTOR and P70S6K expressions. Collectively the findings in the present study suggest that quercetin inhibits tumor growth and angiogenesis by targeting VEGF-R2 regulated AKT/mTOR/P70S6K signaling pathway, and could be used as a potential drug candidate for cancer therapy.  相似文献   

10.
11.
12.
BackgroundCyperenoic acid, one of the main chemical constituents of the root of Croton crassifolius, exhibited potent anti-angiogenic property on the zebrafish embryo model with little cytotoxicity. Nevertheless, its anti-angiogenic mechanism and anti-tumor effect have not been investigated.PurposeTo investigate the anti-angiogenic mechanisms of cyperenoic acid and evaluate it whether could exert anti-tumor effect by inhibiting angiogenesis.Study designTargeting vascular endothelial growth factor receptor-2 (VEGFR2) pathway to inhibit tumor angiogenesis is a significant strategy for cancer treatment. Initially, the anti-angiogenic effect of cyperenoic acid as well as the mechanisms of the action was studied using both in-vitro and in-vivo methodologies. Then, its anti-tumor effect through anti-angiogenesis by attenuating VEGFR2 signaling pathway was evaluated.MethodsThe in-vitro inhibitory effect of cyperenoic acid on the vascular endothelial growth factor (VEGF)-induced angiogenesis was evaluated using human umbilical vein endothelial cells (HUVECs) model. Moreover, its ex-vivo and in-vivo effects were evaluated using the aortic ring assay and the matrigel plug assay. The influence of the cyperenoic acid on tyrosine phosphorylation of VEGFR2 was studied by western blotting assay and the influence on downstream signaling pathway of VEGFR2 also be detected. Computer-docking simulations were carried out to study the interaction between cyperenoic acid and VEGFR2. Finally, its inhibitory effect on tumor growth was studied using breast cancer xenograft model.ResultsCyperenoic acid possessed little toxicity to HUVECs, but it significantly inhibited VEGF-induced proliferation, invasion, migration and tube formation of HUVECs. Moreover, it inhibited VEGF-induced sprout formation ex vivo and vessel formation in vivo. Further mechanistic study showed that cyperenoic acid could suppress VEGFR2 tyrosine kinase activity and alter its downstream signaling pathways in VEGF-induced HUVECs. In addition, it could form two hydrogen bonds with the ATP binding pocket of the VEGFR2 kinase domain by docking. For breast cancer xenograft model, cyperenoic acid suppressed tumor growth, but no obvious toxic pathologic changes were observed in mice. Besides, it suppressed the phosphorylation of VEGFR2 in tumor, demonstrating its anti-angiogenic ability in vivo partly targeting the VEGFR2.ConlusionCyperenoic acid could exert anti-tumor effect in breast cancer by inhibiting angiogenesis via VEGFR2 signaling pathway.  相似文献   

13.
14.
Antiangiogenic therapy is important for the treatment of gynecological cancer. However, the therapeutic benefit derived from these treatments is transient, predominantly due to the selective activation of compensatory proangiogenic pathways that lead to rapid development of resistance. We aimed to identify and target potential alternative signaling to anti-vascular endothelial growth factor (VEGF) therapy, with a view toward developing a combination of antiangiogenic agents to provide extended therapeutic benefits. We developed a preclinical in vivo phenotypic resistance model of ovarian cancer resistant to antiangiogenic therapy. We measured dynamic changes in secreted chemokines and angiogenic signaling in tumors and plasma in response to anti-VEGF treatment, as tumors advanced from the initial responsive phase to progressive disease. In tumors that progressed following sorafenib treatment, gene and protein expression levels of proangiogenic CXC chemokines and their receptors were significantly elevated, compared with responsive tumors. The chemokine (C-X-C motif) ligand 8 (CXCL8), also known as interleukin-8 (IL-8) increase was time-dependent and coincided with the dynamics of tumor progression. We used SB225002, a pharmacological inhibitor of chemokine (C-X-C motif) receptor 2 (CXCR2), to disrupt the CXC chemokine-mediated functions of ovarian cancer cells in in vitro assays of cell growth inhibition, spheroid formation, and cell migration. The combination of CXCR2 inhibitor with sorafenib led to a synergistic inhibition of cell growth in vitro, and further stabilized tumor progression following sorafenib in vivo. Our results suggest that CXCR2-mediated chemokines may represent an important compensatory pathway that promotes resistance to antiangiogenic therapy in ovarian cancer. Thus, simultaneous blockage of this proangiogenic cytokine pathway using CXCR2 inhibitors and the VEGF receptor (VEGFR) pathway could improve the outcomes of antiangiogenic therapy.  相似文献   

15.
Antiestrogen therapy resistance remains a huge stumbling block in the treatment of breast cancer. We have found significant elevation of O6 methylguanine DNA methyl transferase (MGMT) expression in a small sample of consecutive patients who have failed tamoxifen treatment. Here, we show that tamoxifen resistance is accompanied by upregulation of MGMT. Further we show that administration of the MGMT inhibitor, O6-benzylguanine (BG), at nontoxic doses, leads to restoration of a favorable estrogen receptor alpha (ERα) phosphorylation phenotype (high p-ERα Ser167/low p-ERα Ser118), which has been reported to correlate with sensitivity to endocrine therapy and improved survival. We also show BG to be a dual inhibitor of MGMT and ERα. In tamoxifen-resistant breast cancer cells, BG alone or in combination with antiestrogen (tamoxifen [TAM]/ICI 182,780 [fulvestrant, Faslodex]) therapy enhances p53 upregulated modulator of apoptosis (PUMA) expression, cytochrome C release and poly (ADP-ribose) polymerase (PARP) cleavage, all indicative of apoptosis. In addition, BG increases the expression of p21cip1/waf1. We also show that BG, alone or in combination therapy, curtails the growth of tamoxifen-resistant breast cancer in vitro and in vivo. In tamoxifen-resistant MCF7 breast cancer xenografts, BG alone or in combination treatment causes significant delay in tumor growth. Immunohistochemistry confirms that BG increases p21cip1/waf1 and p-ERα Ser167 expression and inhibits MGMT, ERα, p-ERα Ser118 and ki-67 expression. Collectively, our results suggest that MGMT inhibition leads to growth inhibition of tamoxifen-resistant breast cancer in vitro and in vivo and resensitizes tamoxifen-resistant breast cancer cells to antiestrogen therapy. These findings suggest that MGMT inhibition may provide a novel therapeutic strategy for overcoming antiestrogen resistance.  相似文献   

16.
Previous studies have shown that Atp6v1c1, a regulator of the assembly of the V0 and V1 domains of the V-ATPase complex, is up-regulated in metastatic oral tumors. Despite these studies, the function of Atp6v1c1 in tumor growth and metastasis is still unknown. Atp6v1c1''s expression in metastatic oral squamous cell carcinoma indicates that Atp6v1c1 has an important function in cancer growth and metastasis. We hypothesized that elevated expression of Atp6v1c1 is essential to cancer growth and metastasis and that Atp6v1c1 promotes cancer growth and metastasis through activation of V-ATPase activity. To test this hypothesis, a Lentivirus-mediated RNAi knockdown approach was used to study the function of Atp6v1c1 in mouse 4T1 mammary tumor cell proliferation and migration in vitro and cancer growth and metastasis in vivo. Our data revealed that silencing of Atp6v1c1 in 4T1 cancer cells inhibited lysosomal acidification and severely impaired 4T1 cell growth, migration, and invasion through Matrigel in vitro. We also show that Atp6v1c1 knockdown with Lenti-c1s3, a lentivirus targeting Atp6v1c1 for shRNA mediated knockdown, can significantly inhibit 4T1 xenograft tumor growth, metastasis, and osteolytic lesions in vivo. Our study demonstrates that Atp6v1c1 may promote breast cancer growth and bone metastasis through regulation of lysosomal V-ATPase activity, indicating that Atp6v1c1 may be a viable target for breast cancer therapy and silencing of Atp6v1c1 may be an innovative therapeutic approach for the treatment and prevention of breast cancer growth and metastasis.  相似文献   

17.
Nasser MW  Qamri Z  Deol YS  Smith D  Shilo K  Zou X  Ganju RK 《PloS one》2011,6(9):e23901

Background

Cannabinoids bind to cannabinoid receptors CB1 and CB2 and have been reported to possess anti-tumorigenic activity in various cancers. However, the mechanisms through which cannabinoids modulate tumor growth are not well known. In this study, we report that a synthetic non-psychoactive cannabinoid that specifically binds to cannabinoid receptor CB2 may modulate breast tumor growth and metastasis by inhibiting signaling of the chemokine receptor CXCR4 and its ligand CXCL12. This signaling pathway has been shown to play an important role in regulating breast cancer progression and metastasis.

Methodology/Principal Findings

We observed high expression of both CB2 and CXCR4 receptors in breast cancer patient tissues by immunohistochemical analysis. We further found that CB2-specific agonist JWH-015 inhibits the CXCL12-induced chemotaxis and wound healing of MCF7 overexpressing CXCR4 (MCF7/CXCR4), highly metastatic clone of MDA-MB-231 (SCP2) and NT 2.5 cells (derived from MMTV-neu) by using chemotactic and wound healing assays. Elucidation of the molecular mechanisms using various biochemical techniques and confocal microscopy revealed that JWH-015 treatment inhibited CXCL12-induced P44/P42 ERK activation, cytoskeletal focal adhesion and stress fiber formation, which play a critical role in breast cancer invasion and metastasis. In addition, we have shown that JWH-015 significantly inhibits orthotopic tumor growth in syngenic mice in vivo using NT 2.5 cells. Furthermore, our studies have revealed that JWH-015 significantly inhibits phosphorylation of CXCR4 and its downstream signaling in vivo in orthotopic and spontaneous breast cancer MMTV-PyMT mouse model systems.

Conclusions/Significance

This study provides novel insights into the crosstalk between CB2 and CXCR4/CXCL12-signaling pathways in the modulation of breast tumor growth and metastasis. Furthermore, these studies indicate that CB2 receptors could be used for developing innovative therapeutic strategies against breast cancer.  相似文献   

18.
Transforming growth factor-β1 (TGF-β1) promotes cancer progression by regulating tumor cell growth and angiogenesis and high levels of TGF-β1 have been associated with metastatic disease and poor prognosis in breast cancer patients. We have previously reported anti-angiogenic effects of the anti-estrogen tamoxifen in breast cancer, by increased matrix metalloproteinase-9 (MMP-9) activity and generation of endostatin. Here, we show that exposure of tamoxifen to ER-positive breast cancer cells for 7 days, decreased extracellular TGF-β1. Intracellular TGF-β1 levels were unaffected by tamoxifen treatment, indicating a post-translational regulation of TGF-β1. Inhibition of MMP activity restored TGF-β1 levels, suggesting an involvement of MMP activities in the down-regulation of TGF-β1 by tamoxifen. Moreover, using an in vivo model of solid MCF-7 tumors in nude mice, we analyzed tumor levels of TGF-β1 after in vivo treatment with estradiol and tamoxifen. Exposure of tumor-bearing mice to tamoxifen significantly decreased tumor TGF-β1 protein levels, tumor growth and angiogenesis. In conclusion, our findings suggest a novel mechanism of action of tamoxifen in breast cancer via sex steroid dependent modulation of the proteolytic tumor microenvironment resulting in reduced extracellular TGF-β1 levels.  相似文献   

19.
Endothelial cell migration is an essential aspect of tumor angiogenesis. Rac1 activity is needed for cell migration in vitro implying a requirement for this molecule in angiogenesis in vivo. However, a precise role for Rac1 in tumor angiogenesis has never been addressed. Here we show that depletion of endothelial Rac1 expression in adult mice, unexpectedly, has no effect on tumor growth or tumor angiogenesis. In addition, repression of Rac1 expression does not inhibit VEGF-mediated angiogenesis in vivo or ex vivo, nor does it affect chemotactic migratory responses to VEGF in 3-dimensions. In contrast, the requirement for Rac1 in tumor growth and angiogenesis becomes important when endothelial β3-integrin levels are reduced or absent: the enhanced tumor growth, tumor angiogenesis and VEGF-mediated responses in β3-null mice are all Rac1-dependent. These data indicate that in the presence of αvβ3-integrin Rac1 is not required for tumor angiogenesis.  相似文献   

20.
The Ras inhibitor S-trans-trans farnesylthiosalicylic acid (FTS) inhibits active Ras, which controls cell proliferation, differentiation, survival, and metabolism. FTS also inhibits HIF1α expression in cancer cells, leading to an energy crisis. The synthetic glucose analog 2-deoxy-D-glucose (2-DG), which inhibits glycolysis, is selectively directed to tumor cells that exhibit increased glucose consumption. The 2-DG enters tumor cells, where it competes with glucose for glycolytic enzymes. In cancer models, as well as in human phase 1 trials, 2-DG inhibits tumor growth without toxicity. We postulated that under normoxic conditions, tumor cells treated with FTS would be more sensitive than normal cells to 2-DG. We show here that combined treatment with FTS and 2-DG inhibited cancer cell proliferation additively, yet induced apoptotic cell death synergistically both in vitro and in vivo. The induced apoptosis was inferred from QVD-OPH inhibition, an increase in cleaved caspase 3, and loss of survivin. FTS and 2-DG when combined, but not separately, also induced an increase in fibrosis of the tumor tissue, chronic inflammation, and tumor shrinkage. Overall, these results suggest a possible new treatment of pancreatic tumors by the combined administration of FTS and 2-DG, which together induce pancreatic tumor cell death and tumor shrinkage under non-toxic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号