首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The A(2A)-adenosine receptor is a prototypical G(s) protein-coupled receptor but stimulates MAPK/ERK in a G(s)-independent way. The A(2A) receptor has long been known to undergo restricted collision coupling with G(s); the mechanistic basis for this mode of coupling has remained elusive. Here we visualized agonist-induced changes in mobility of the yellow fluorescent protein-tagged receptor by fluorescence recovery after photobleaching microscopy. Stimulation with a specific A(2A) receptor agonist did not affect receptor mobility. In contrast, stimulation with dopamine decreased the mobility of the D(2) receptor. When coexpressed in the same cell, the A(2A) receptor precluded the agonist-induced change in D(2) receptor mobility. Thus, the A(2A) receptor did not only undergo restricted collision coupling, but it also restricted the mobility of the D(2) receptor. Restricted mobility was not due to tethering to the actin cytoskeleton but was, in part, related to the cholesterol content of the membrane. Depletion of cholesterol increased receptor mobility but blunted activation of adenylyl cyclase, which was accounted for by impaired formation of the ternary complex of agonist, receptor, and G protein. These observations support the conclusion that the A(2A) receptor engages G(s) and thus signals to adenylyl cyclase in cholesterol-rich domains of the membrane. In contrast, stimulation of MAPK by the A(2A) receptor was not impaired. These findings are consistent with a model where the recruitment of these two pathways occurs in physically segregated membrane microdomains. Thus, the A(2A) receptor is the first example of a G protein-coupled receptor documented to select signaling pathways in a manner dependent on the lipid microenvironment of the membrane.  相似文献   

2.
Inhibition of pain responses by activation of CB(2) cannabinoid receptors   总被引:4,自引:0,他引:4  
Cannabinoid receptor agonists diminish responses to painful stimuli. Extensive evidence demonstrates that CB(1) cannabinoid receptor activation inhibits pain responses. Recently, the synthesis of CB(2) cannabinoid receptor-selective agonists has allowed testing whether CB(2) receptor activation inhibits pain. CB(2) receptor activation is sufficient to inhibit acute nociception, inflammatory hyperalgesia, and the allodynia and hyperalgesia produced in a neuropathic pain model. Studies using site-specific administration of agonist and antagonist have suggested that CB(2) receptor agonists inhibit pain responses by acting at peripheral sites. CB(2) receptor activation also inhibits edema and plasma extravasation produced by inflammation. CB(2) receptor-selective agonists do not produce central nervous system (CNS) effects typical of cannabinoids retaining agonist activity at the CB(1) receptor. Peripheral antinociception without CNS effects is consistent with the peripheral distribution of CB(2) receptors. CB(2) receptor agonists may have promise for the treatment of pain and inflammation without CNS side effects.  相似文献   

3.
The present study investigated the site of action of 5-hydroxytryptamine (5-HT) and pharmacologically characterized the receptors involved in regulating blood glucose levels in the crayfish, Procambarus clarkii. Injection of 5-HT into intact animals increased glucose levels in a dose-dependent manner. In contrast, 5-HT failed to elicit a hyperglycemic response in eyestalk-ablated animals. Effects of several 5-HT receptor agonists and antagonists were examined. 5-CT, oxymetazoline (both 5-HT(1) receptor agonists) and alpha-methyl-5-HT (a 5-HT(2) receptor agonist), but not 1-phenylbiguanide, m-CPBG (both 5-HT(3) receptor agonists), or RS 67333 (a 5-HT(4) receptor agonist), induced hyperglycemic responses in a dose-dependent manner. In addition, 8-OH-DPAT (a 5-HT(1A) receptor agonist), L-694,247 (a 5-HT(1B/1D) receptor agonist), and DOI (a 5-HT(2A) receptor agonist) were effective in significantly increasing the glucose levels, whereas both BW 723C86 (a 5-HT(2B) receptor agonist) and m-CPP (a 5-HT(2C) receptor agonist) were ineffective. Finally, ketanserin (a 5-HT(2A) receptor antagonist), but not p-MPPF (a 5-HT(1A) receptor antagonist), GR 55562 (a 5-HT(1B/1D) receptor antagonist), SB 206553 (a 5-HT(2B/2C) receptor antagonist), or tropisetron (a 5-HT(3) receptor antagonist), was able to block 5-HT-induced hyperglycemia. The combined results support the hypothesis that 5-HT exerts its hyperglycemic effect by enhancing the release of hyperglycemic factor(s) from the eyestalks, and suggest that 5 HT-induced hyperglycemia is mediated by 5-HT(1)- and 5-HT(2)-like receptors.  相似文献   

4.
Tuberoinfundibular peptide of 39 residues (TIP39) and the parathyroid hormone-2 (PTH2) receptor form part of an extended family of related signaling molecules that includes the PTH1 receptor, which responds to PTH and PTH-related protein. TIP39 does not appreciably activate the PTH1 receptor, but in this study it is shown to bind the receptor with moderate affinity (59 nm). In this study, we investigated the molecular determinants of both ligand and receptor for the PTH2 receptor selectivity of TIP39 and quantitatively evaluated the role of molecular elements in the binding of TIP39 to the PTH2 and PTH1 receptors. A chimeric receptor composed of the N-terminal extracellular domain of the PTH1 receptor and the remainder (juxtamembrane domain) of the PTH2 receptor (P2-NP1) was fully activated by TIP39 (E(max) = 98% of the rPTH-(1-34), E(max), EC(50) = 2.0 nm). This receptor chimera bound TIP39 with an equivalent affinity to the wild-type PTH2 receptor (2. 3 and 2.0 nm, respectively). The reciprocal chimeric receptor (P1-NP2) was not activated by TIP39 and bound the ligand with an affinity equivalent to that of the PTH1 receptor. Thus, the juxtamembrane receptor domain specifies the signaling and binding selectivity of TIP39 for the PTH2 receptor over the PTH1 receptor. Removing six N-terminal residues of TIP39 eliminated activation of the PTH2 receptor and reduced binding affinity 70-fold. In contrast, this truncation increased affinity for the PTH1 receptor 10-fold, reversing the PTH2/PTH1 receptor binding selectivity and resulting in a high affinity interaction of TIP-(7-39) with the PTH1 receptor (6 nm). These findings can be explained by a strong interaction between the N-terminal region of TIP39 and the juxtamembrane domain of the PTH2 receptor, with the corresponding domain of the PTH1 receptor acting as a selectivity barrier against high affinity binding of TIP39. As a result, TIP-(7-39) is a highly potent, selective antagonist for the PTH1 receptor.  相似文献   

5.
In the heart, ACh activates the ACh-activated K(+) current (I(K,ACh)) via the M(2) muscarinic receptor. The relationship between desensitization of I(K,ACh) and internalization of the M(2) receptor has been studied in rat atrial cells. On application of the stable muscarinic agonist carbachol for 2 h, I(K,ACh) declined by approximately 62% with time constants of 1.5 and 26.9 min, whereas approximately 83% of the M(2) receptor was internalized from the cell membrane with time constants of 2.9 and 51.6 min. Transfection of the cells with beta-adrenergic receptor kinase 1 (G protein-receptor kinase 2) and beta-arrestin 2 significantly increased I(K,ACh) desensitization and M(2) receptor internalization during a 3-min application of agonist. Internalized M(2) receptor in cells exposed to carbachol for 2 h was colocalized with clathrin and not caveolin. It is concluded that a G protein-receptor kinase 2- and beta-arrestin 2-dependent internalization of the M(2) receptor into clathrin-coated vesicles could play a major role in I(K,ACh) desensitization.  相似文献   

6.
UTP is a potent full agonist at both the human P2Y(4) (hP2Y(4)) and rat P2Y(4) (rP2Y(4)) receptor. In contrast, ATP is a potent full agonist at the rP2Y(4) receptor but is a similarly potent competitive antagonist at the hP2Y(4) receptor. To delineate the structural determinants of agonism versus antagonism in these species homologues, we expressed a series of human/rat P2Y(4) receptor chimeras in 1321N1 human astrocytoma cells and assessed the capacity of ATP and UTP to mobilize intracellular Ca(2+). Replacement of the NH(2) terminus of the hP2Y(4) receptor with the corresponding region of the rP2Y(4) receptor resulted in a receptor that was activated weakly by ATP, whereas replacement of the second extracellular loop (EL2) of the hP2Y(4) receptor with that of the rP2Y(4) receptor yielded a chimeric receptor that was activated fully by UTP and near fully by ATP, albeit with lower potencies than those observed at the rP2Y(4) receptor. These potencies were increased, and ATP was converted to a full agonist by replacing both the NH(2) terminus and EL2 in the hP2Y(4) receptor with the corresponding regions from the rP2Y(4) receptor. Mutational analysis of the five divergent amino acids in EL2 between the two receptors revealed that three amino acids, Asn-177, Ile-183, and Leu-190, contribute to the capacity of EL2 to impart ATP agonism. Taken together, these results suggest that the second extracellular loop and the NH(2) terminus form a functional motif that plays a key role in determining whether ATP functions as an agonist or antagonist at mammalian P2Y(4) receptors.  相似文献   

7.
A series of indole compounds have been prepared and evaluated for affinity at D2-like dopamine receptors using stably transfected HEK cells expressing human D2, D3, or D4 dopamine receptors. These compounds share structural elements with the classical D2-like dopamine receptor antagonists, haloperidol, N-methylspiperone, and benperidol. The compounds that share structural elements with N-methylspiperone and benperidol bind non-selectively to the D2 and D3 dopamine receptor subtypes. However, several of the compounds structurally similar to haloperidol were found to (a) bind to the human D2 receptor subtype with nanomolar affinity, (b) be 10- to 100-fold selective for the human D2 receptor compared to the human D3 receptor, and (c) bind with low affinity to the human D4 dopamine receptor subtype. Binding at sigma (sigma) receptor subtypes, sigma1 and sigma2, were also examined and it was found that the position of the methoxy group on the indole was pivotal in both (a) D2 versus D3 receptor selectivity and (b) affinity at sigma1 receptors. Adenylyl cyclase studies indicate that our indole compounds with the greatest D2 receptor selectivity are neutral antagonists at human D2 dopamine receptor subtypes. With stably transfected HEK cells expressing human D2 (hD2-HEK), these compounds (a) have no intrinsic activity and (b) attenuated quinpirole inhibition of adenylyl cyclase. The D2 receptor selective compounds that have been identified represent unique pharmacological tools that have potential for use in studies on the relative contribution of the D2 dopamine receptor subtypes in physiological and behavioral situations where D2-like dopaminergic receptor involvement is indicated.  相似文献   

8.
Interleukin (IL) 2 receptor subunit alpha (IL-2Ralpha) increases the affinity of the IL-2 receptor complex while hetero-association of IL-2Rbeta and gamma(c) chains initiates a proliferative signal. We show here that IL-2Ralpha is necessary for receptor clustering required for augmentation of IL-2 signalling. Cells expressing chimeras incorporating the extracellular domain of IL-2Ralpha demonstrated IL-2 independent homo-association of the IL-2Ralpha chimera. Singly or co-transfected IL-2Rbeta and gamma(c) chimeras showed no spontaneous or IL-2-inducible oligomerization. Co-transfection of IL-2Ralpha and IL-2Rbeta (+/- gamma(c)) chimeras diminished spontaneous IL-2Ralpha chimera oligomerization and permitted IL-2-inducible hetero-oligomerization of receptor components. Homo-association of IL-2Ralpha was also demonstrated by fluorescence resonance energy transfer (FRET). The spontaneous homo-oligomerization property of IL-2Ralpha required the membrane proximal region of the receptor (exon 6) by deletion analysis; the IL-2 inducible oligomerization property of IL-2Ralpha required the second "sushi" domain (exon 4). This work provides insight into the mechanics of this complex receptor system and to other receptor complexes in the immune system that send signals by clustering receptor subunits.  相似文献   

9.
The calcitonin (CT)-like (CL) receptor is a CT gene-related peptide (CGRP) receptor or an adrenomedullin (AM) receptor when co-expressed with receptor-activity-modifying proteins (RAMP) 1 or 2, respectively. The CL receptor shows 57% overall sequence identity with the CT receptor, but the homology is much lower in the extreme N-terminus. An N-terminal deletion mutant of the human (h) CL receptor (Delta18-hCL) and a chimeric receptor consisting of the N-terminal amino acids of the porcine (p) CT receptor fused to the Delta18-hCL receptor (pCT-hCL) were therefore analyzed. The Delta18-hCL receptor function was abolished when co-expressed with RAMP1 or -2. The pCT-hCL receptor was a fully functional CGRP receptor when co-expressed with RAMP1, but the RAMP2-dependent AM receptor function was impaired. Limited sequence similarities in the N-terminus of the pCT and the hCL receptors rescue CGRP but not AM receptor binding and signalling.  相似文献   

10.
Kuo J  Usdin TB 《Peptides》2007,28(4):887-892
The parathyroid hormone 2 (PTH2) receptor is a Family B G-protein coupled receptor most highly expressed within the brain. Current evidence suggests that tuberoinfundibular peptide of 39 residues (TIP39) is the PTH2 receptor's endogenous ligand. To facilitate investigation of the physiological function of the PTH2 receptor/TIP39 system, we have developed a novel PTH2 receptor antagonist, by changing several residues within the amino terminal domain of TIP39. Histidine(4), tyrosine(5), tryptophan(6), histidine(7)-TIP39 binds the PTH2 receptor with high affinity, has over 30-fold selectivity for the rat PTH2 receptor over the rat PTH1 receptor and displays no detectable agonist activity. This ligand should be useful for in vivo investigation of PTH2 receptor function.  相似文献   

11.
In gastrointestinal smooth muscle cells, VPAC(2) receptor desensitization is exclusively mediated by G protein-coupled receptor kinase 2 (GRK2). The present study examined the mechanisms by which acetylcholine (ACh) acting via M(3) receptors regulates GRK2-mediated VPAC(2) receptor desensitization in gastric smooth muscle cells. Vasoactive intestinal peptide induced VPAC(2) receptor phosphorylation, internalization, and desensitization in both freshly dispersed and cultured smooth muscle cells. Costimulation with ACh in the presence of M(2) receptor antagonist (i.e., activation of M(3) receptors) inhibited VPAC(2) receptor phosphorylation, internalization, and desensitization. Inhibition was blocked by the selective protein kinase C (PKC) inhibitor bisindolylmaleimide, suggesting that the inhibition was mediated by PKC, derived from M(3) receptor activation. Similar results were obtained by direct activation of PKC with phorbol myristate acetate. In the presence of the M(2) receptor antagonist, ACh induced phosphorylation of Raf kinase inhibitory protein (RKIP), increased RKIP-GRK2 association, decreased RKIP-Raf-1 association, and stimulated ERK1/2 activity, suggesting that, upon phosphorylation by PKC, RKIP dissociates from its known target Raf to associate with, and block the activity of, GRK2. In muscle cells expressing RKIP(S153A), which lacks the PKC phosphorylation site, RKIP phosphorylation was blocked and the inhibitory effect of ACh on VPAC(2) receptor phosphorylation, internalization, and desensitization and the stimulatory effect on ERK1/2 activation were abolished. This study identified a novel mechanism of cross-regulation of G(s)-coupled receptor phosphorylation and internalization by G(q)-coupled receptors. The mechanism involved phosphorylation of RKIP by PKC, switching RKIP from association with Raf-1 to association with, and inhibition of, GRK2.  相似文献   

12.
Effects of imipramine on plasma glucose levels were investigated in mice. Imipramine i. p. induced dose-dependent hyperglycemia, which was enhanced by pretreatment with 5-HT (1/2/5/7) receptor antagonist methysergide and 5-HT (2A/2B/2C) receptor antagonist LY 53857. 5-HT (2C/2B) receptor antagonist SB 206553 also augmented imipramine-induced hyperglycemia although 5-HT (1A) and 5-HT (1B) receptor antagonist (-)-propranolol,5-HT (2A) receptor antagonist ketanserin and 5-HT (3/4) receptor antagonist tropisetron each had no effect. Imipramine i. p.-induced hyperglycemia was antagonized by the 5-HT (2C/2B) receptor agonist 1-(3-chlorophenyl)piperazine (mCPP), while the 5-HT (2B) receptor agonist BW 723C86 had no effect. Intracerebroventricular injection of imipramine also elevated plasma glucose levels, which is enhanced by SB 206553. Hyperglycemia elicited by central injection of imipramine was abolished by adrenalectomy. These results suggest that imipramine-induced hyperglycemia in mice is related to its inhibition of the central 5-HT (2C) receptor. Moreover, our results indicate that adrenaline release is related to imipramine-induced hyperglycemia.  相似文献   

13.
Corticotropin-releasing factor (CRF) is involved in a variety of physiological functions including regulation of hypothalamo-pituitary-adrenal axis activity during stressful periods. Urocortins (Ucns) are known to be members of the CRF family peptides. CRF has a high affinity for CRF receptor type 1 (CRF(1) receptor). Both Ucn2 and Ucn3 have very high affinity for CRF receptor type 2 (CRF(2) receptor) with little or no binding affinity for the CRF(1) receptor. Gonadotropin-releasing hormone (GnRH) is known to be involved in the regulation of the stress response. Gonadotropin-inhibitory hormone (GnIH) neurons interact directly with GnRH neurons, and the action of GnIH is mediated by a novel G-protein coupled receptor, Gpr147. This study aimed to explore the possible function of CRF family peptides and the regulation of GnRH mRNA in hypothalamic GnRH cells. Both mRNA and protein expression of the CRF(1) receptor and CRF(2) receptor were found in hypothalamic GnRH N39 cells. CRF suppressed GnRH mRNA levels via the CRF(1) receptor, while Ucn2 increased the levels via the CRF(2) receptor. Both CRF and Ucn2 increased Gpr147 mRNA levels. The results indicate that CRF and Ucn2 can modulate GnRH mRNA levels via each specific CRF receptor subtype. Finally, CRF suppressed GnRH protein levels, while Ucn2 increased the levels. Differential regulation of GnRH by CRF family peptides may contribute to the stress response and homeostasis in GnRH cells.  相似文献   

14.
We have recently shown that the mu-opioid receptor [MOR1, also termed mu-opioid peptide (MOP) receptor] is associated with the phospholipase D2 (PLD2), a phospholipid-specific phosphodiesterase located in the plasma membrane. We further demonstrated that, in human embryonic kidney (HEK) 293 cells co-expressing MOR1 and PLD2, treatment with (D-Ala2, Me Phe4, Glyol5)enkephalin (DAMGO) led to an increase in PLD2 activity and an induction of receptor endocytosis, whereas morphine, which does not induce opioid receptor endocytosis, failed to activate PLD2. In contrast, a C-terminal splice variant of the mu-opioid receptor (MOR1D, also termed MOP(1D)) exhibited robust endocytosis in response to both DAMGO and morphine treatment. We report here that MOR1D also mediates an agonist-independent (constitutive) PLD2-activation facilitating agonist-induced and constitutive receptor endocytosis. Inhibition of PLD2 activity by over-expression of a dominant negative PLD2 (nPLD2) blocked the constitutive PLD2 activation and impaired the endocytosis of MOR1D receptors. Moreover, we provide evidence that the endocytotic trafficking of the delta-opioid receptor [DOR, also termed delta-opioid peptide (DOP) receptor] and cannabinoid receptor isoform 1 (CB1) is also mediated by a PLD2-dependent pathway. These data indicate the generally important role for PLD2 in the regulation of agonist-dependent and agonist-independent G protein-coupled receptor (GPCR) endocytosis.  相似文献   

15.
Insulin activates a complex set of intracellular responses, including the activation of mitogen-activated protein kinases Erk1,2. The counterregulatory actions of insulin on catecholamine action are well known and include phosphorylation of the beta(2)-adrenergic receptor on Tyr(350), Tyr(354), and Tyr(364) in the C-terminal cytoplasmic domain, as well as enhanced sequestration of the beta(2)-adrenergic receptor. Both beta-adrenergic agonists and insulin provoke sequestration of beta(2)-adrenergic receptors in a synergistic manner. In the current work, cross-talk between insulin action and beta(2)-adrenergic receptors revealed that insulin activation of Erk1,2 was amplified via beta(2)-adrenergic receptors. In Chinese hamster ovary cells, expression of beta(2)-adrenergic receptors enhanced 5-10-fold the activation of Erk1,2 by insulin and prolonged the activation, the greatest enhancement occurring at 5 min post-insulin. The potentiation of insulin signaling on Erk1,2 was proportional to the level of expression of beta(2)-adrenergic receptor. The potentiation of insulin signaling requires the integrity of Tyr(350) of the beta(2)-adrenergic receptor, a residue phosphorylated in response to insulin. beta(2)-adrenergic receptors with a Y350F mutation failed to potentiate insulin activation of Erk1,2. Expression of the C-terminal domain of the beta(2)-adrenergic receptor (Pro(323)-Leu(418)) in cells expressing the intact beta(2)-adrenergic receptor acts as a dominant negative, blocking the potentiation of insulin activation of Erk1,2 via the beta(2)-adrenergic receptor. Blockade of beta(2)-adrenergic receptor sequestration does not alter the ability of the beta(2)-adrenergic receptor to potentiate insulin action on Erk1,2. We propose a new paradigm in which a G-protein-linked receptor, such as the beta(2)-adrenergic receptor, itself acts as a receptor-based scaffold via its binding site for Src homology 2 domains, facilitating signaling of the mitogen-activated protein kinase pathway by insulin.  相似文献   

16.
Insulin receptors from rat liver membranes were labelled with a 125I-labelled photoreactive insulin analogue or by iodination using lactoperoxidase and analysed by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Under nonreducing conditions different receptor forms with Mr 400,000 (alpha 2 beta 2), 360,000 (alpha 2 beta beta'), 330,000 (alpha 2 beta' beta'), 320,000 (alpha 2 beta), 280,000 (alpha 2 beta'), 240,000 (alpha 2), 210,000 (alpha beta), 165,000 (alpha beta') and 115,000 (alpha) were detected. The subunit composition of these receptor forms was determined by two-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis in the absence and presence of dithioerythritol. During denaturation in sodium dodecyl sulfate in the absence of reductants, the Mr 400,000 receptor form (alpha 2 beta 2) was converted into the Mr 320,000 (alpha 2 beta) and Mr 240,000 (alpha 2) receptor form. This conversion was prevented either by N-ethylmaleimide, oxidants, or low pH. In contrast, alkylation of the receptor with N-ethylmaleimide under non-denaturing conditions did not prevent the appearance of intermediate-sized receptor forms. Furthermore, the inhibition of receptor cleavage by N-ethylmaleimide during denaturation was also observed when the amount of free sulfhydryl groups was reconstituted by the addition of an unlabelled and non-alkylated receptor sample to the alkylated and photoaffinity-labelled receptor. These results suggest, that the generation of different oligomeric receptor forms detected by sodium dodecyl sulfate polyacrylamide gel electrophoresis is due at least in part to the cleavage of one or both beta-subunits from the insulin receptor.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
18.
The stimulatory effect of VIP on intracellular calcium concentration ([Ca(2+)](i)) has been investigated in Chinese hamster ovary cells stably transfected with the reporter gene aequorin, and expressing human VPAC(1), VPAC(2), chimeric VPAC(1)/VPAC(2), or mutated receptors. The VIP-induced [Ca(2+)](i) increase was linearly correlated with receptor density and was higher in cells expressing VPAC(1) receptors than in cells expressing a similar VPAC(2) receptor density. The study was performed to establish the receptor sequence responsible for that difference. VPAC(1)/VPAC(2) chimeric receptors were first used for a broad positioning: those having the third intracellular loop (IC(3)) of the VPAC(1) or of the VPAC(2) receptor behaved, in that respect, phenotypically like VPAC(1) and VPAC(2) receptor, respectively. Replacement in the VPAC(2) receptor of the sequence 315-318 (VGGN) within the IC(3) by its VPAC(1) receptor counterpart 328-331 (IRKS) and the introduction of VGGN in state of IRKS in VPAC(1) was sufficient to mimic the VPAC(1) and VPAC(2) receptor characteristics, respectively. Thus, a small sequence in the IC(3) of the VPAC(1) receptor, probably through interaction with G(alphai) and G(alphaq) proteins, is responsible for the efficient agonist-stimulated [Ca(2+)](i) increase.  相似文献   

19.
The CRF2 receptor is involved in stress responses, cardiovascular function and gastric motility. Endogenous agonists (urocortin (UCN) 2, UCN 3) and synthetic antagonists (astressin2-B, antisauvagine-30) are selective for CRF2 over the CRF1 receptor. Peptide ligand binding properties of the CRF2 receptor require further investigation, including ligand affinity for endogenously expressed receptors, the effect of receptor-G-protein coupling on ligand affinity, and the molecular basis of ligand selectivity. Ligand affinity for rat CRF(2a) in olfactory bulb and CRF(2b) in A7r5 cells was similar to that for the cloned human CRF(2a) receptor (within three-fold), except for oCRF (9.4- and 5.4-fold higher affinity in olfactory bulb and A7r5 cells, respectively). Receptor-G-protein uncoupling reduced agonist affinity only 1.2- to 6.5-fold (compared with 92-1300-fold for the CRF1 receptor). Ligand selectivity mechanisms were investigated using chimeric CRF2/CRF1 receptors. The juxtamembrane receptor domain determined selectivity of antisauvagine-30, the N-terminal-extracellular domain contributed to selectivity of UCN 3, and both domains contributed to selectivity of UCN 2 and astressin2-B. Therefore ligands differ in the contribution of receptor domains to their selectivity, and CRF2-selective antagonists bind the juxtamembrane domain. These findings will be important for identifying the CRF2 receptor in tissues and for developing ligands targeting the receptor, both of which will be useful in identifying the emerging physiological functions of the CRF2 receptor.  相似文献   

20.
We investigated the effects of a neurokinin-1 (NK(1)) receptor antagonist (SR-140333) and a NK(2) receptor antagonist (SR-48968) on airway responsiveness and on the function of neuronal M(2) muscarinic receptors, which normally inhibit vagal acetylcholine release, in guinea pigs infected with parainfluenza virus. Antagonists were given 1 h before infection and daily thereafter. Four days later, bronchoconstriction induced by either intravenous histamine (which is partly vagally mediated) or electrical stimulation of the vagus nerves was increased by viral infection compared with control. In addition, the ability of the muscarinic agonist pilocarpine to inhibit vagally induced bronchoconstriction was lost in virus-infected animals, demonstrating loss of neuronal M(2) receptor function. Macrophage influx into the lungs was inhibited by pretreatment with both antagonists. However, only the NK(1) receptor antagonist prevented M(2) receptor dysfunction and inhibited hyperresponsiveness (measured as an increase in either vagally induced or histamine-induced bronchoconstriction). Thus virus-induced M(2) receptor dysfunction and hyperresponsiveness are prevented by a NK(1) receptor antagonist, but not by a NK(2) receptor antagonist, whereas both antagonists had similar anti-inflammatory effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号